
“Hello Java!” Linking ACT-R 6 with a Java simulation

Philippe Büttner
Technische Universität Berlin

Centre of Human Machine Systems
Franklinstr. 28-29, FR 2-6

10587 Berlin, Germany
pbu@zmms.tu-berlin.de

Abstract

Many more applications and simulations are developed in the
Java programming language than in the Lisp programming
language. This can be attributed to a number of reasons, in-
cluding platform independence, object-oriented programming,
etc. Due to the fact that the ACT-R software was programmed
in Lisp, incompatibility issues between it and Java arose.
These issues necessitated the establishment of a tool capable
of preventing a Lisp reimplementation of existing Java appli-
cations. Consequently, “Hello Java!” was developed to link
cognitive models written in ACT-R with Java applications,
namely simulations. In order to achieve this, a package must
be added to the Java simulation so that it can observe and per-
form actions on the frame, as well as communicate with the
ACT-R software. The line of communication between Java
and Lisp is established through a TCP/IP connection. As a re-
sult, the simulation and cognitive models can be run on dif-
ferent computers. Since the release of ACT-R 6, the methods
for perception and action have been externalized. These ex-
ternalized methods can be utilized as devices for the ACT-R
software, making it possible to, consequently, use a Java
simulation as a device for ACT-R.

Keywords: ACT-R; device; Java; simulation; network

Introduction
ACT-R (Anderson & Lebiere, 1998) is a computational the-
ory of human cognition with two separate, but interacting,
knowledge stores developed in Lisp. Both declarative
knowledge and procedural knowledge are unified into a
production system where procedural rules act on declarative
chunks. The ACT-R system includes the capability to create
simulated environments, such as screen interfaces. Produc-
tion rules have the ability to interact with this environment
by perceiving objects and making motor movements
through perceptual and motor buffers.

The externalization of all necessary methods involved in
the perception of objects and the facilitation of motor move-
ments makes it possible to extend the environment to a
world outside of ACT-R, without requiring a modification
of its architecture. An interaction with the production rules
can be enabled with any device which meets the specifica-
tions of these externalized methods. Due to the fact that
Lisp supports communication via the TCP/IP network pro-
tocol, it becomes possible for ACT-R to interact with any
environment also possessing the capability to communicate
via TCP/IP.

I was able to take advantage of this trait and developed
“Hello Java!” as an open source tool for linking cognitive
models written in ACT-R to applications and simulations

written in Java. This tool and additional examples, including
the source code, are available on the following website:
http://www.zmms.tu-berlin.de/kogmod/tools/hello-java.html

Design
To link a cognitive model written in ACT-R to a frame-
based Java simulation two elements that coordinate the in-
teraction between the model and the simulation are required.
The first of these elements is a Java package that must be
added to the simulation. The second element is a device for
the ACT-R software that bridges the incompatibility be-
tween Java and Lisp with the TCP/IP network protocol. I
will now proceed to describe the communication and syn-
chronization of the elements in detail:
Communication
The line of communication between Java and Lisp is estab-
lished through a TCP/IP connection, which is a protocol
commonly used to connect computers to the internet. All
information sent with this protocol can be transmitted as a
string representation. This string representation carries data
pertaining to perception and action that is exchanged be-
tween the cognitive model and the simulation. In order to be
able to communicate via TCP/IP, each side must encode and
decode information using a common vocabulary and unified
grammar. ACT-R receives data pertaining to perception and
sends back data pertaining to the execution of motor move-
ments. Java, meanwhile, receives data instructing it to per-
form the cognitive model’s desired action and provides a
visual representation of all objects visible in the frame.

By using a network structure it is possible to run a cogni-
tive model and a simulation on different computers. This
increases computing power for each, cognitive model and
simulation.
Synchronization
In order to keep the cognitive model and the simulation syn-
chronized, the simulation must adjust its cycle speed to that
of the cognitive model. The opportunity to do this applies to
all clock-controlled simulations. A clock-controlled simula-
tion updates all elements visible on the screen after one cy-
cle. The length of a cycle depends on the time resolution of
the simulation. The shorter the cycle, the smoother a simula-
tion appears to be.

ACT-R is responsible for adjusting the cycle speed of the
simulation. It accomplishes this by synchronizing the execu-
tion of the simulation’s cycles with the computed time in-
terval of the cognitive model. ACT-R’s scheduler is used to
trigger the cycles in a calculated time interval.

289

As an example, let us assume that the cycle length of a
clock-controlled simulation is one second. The scheduler
will also be adjusted to one second and it assumes control of
the cycles of the simulation. Due to the fact that the time
interval of the scheduler is synchronized with the computed
time interval of the cognitive model, the same time will
elapse for the simulation and the cognitive model.

Extending the Java simulation
Java has established itself as a widely used, universal,

platform-independent programming language. In order for
ACT-R to be able to access a Java simulation, the simula-
tion itself must be extended by a package. In general, a Java
package contains classes, methods and functions that extend
an application. This package coordinates the functions of
observing all objects from the simulation, performing ac-
tions on the simulation, and exchanging information with
ACT-R. In order to run the package, one must first add it to
the simulation and initialize it. The package consists of three
sub-packages. Their descriptions and roles are listed below:
Robot

This sub-package triggers actions like clicking a mouse
button, moving the mouse, stroking a key, moving the atten-
tion pointer and speaking, if the cognitive model decides to
perform one of these actions.
GUI

GUI contains the information of all objects visible in the
frame. By recursively accessing objects in the frame, data
pertaining to the following objects becomes accessible: la-
bels, text fields, buttons, radio buttons and toggle buttons. In
principle, every Java object can be accessed. Therefore,
information pertaining to the kind, value, colour, size and
relative position of an object must be encoded to a string
representation. This information is necessary for the visual
icon of ACT-R. An object can be one of the following
types: text, line or oval. Because ACT-R interprets an oval
as a button, every type of button is assigned as oval.
Net

This sub-package provides all methods responsible for
encoding and decoding information and handles the network
connection with ACT-R. A socket process is started that
waits for a connection from ACT-R on a predefined port. If
the socket process receives information, it proceeds to parse
it, thereby enabling it to perform actions based on methods
obtained from the robot sub-package. Furthermore, it can
send back visual information from the GUI package.

ACT-R device
As described above, ACT-R 6 provides externalized, acces-
sible methods responsible for the perception of objects and
the execution of motor movements. These methods can be
implemented and utilized as a device, resulting in an inter-
action between this particular device and the production
rules. In order to be able to link ACT-R to a Java simula-
tion, it was necessary to implement the following methods:

 device-move-cursor-to: ACT-R sends an action to the
Java simulation to move the mouse pointer to a given
position.

 device-handle-click: ACT-R sends an action to the Java
simulation to perform a mouse click.

 device-handle-keypress: ACT-R sends an action to the
Java simulation to perform a keystroke.

 device-speak-string: ACT-R sends an action to the Java
simulation to speak a string.

 get-mouse-coordinates: ACT-R sends a request to the
Java simulation to gather data pertaining to the position
of the mouse.

 build-vis-locs-for: This method updates the visual icon
of ACT-R’s vision module with all visible objects of
the device. It will be invoked after the proc-display
command is called.

 device-update: This method is called after ACT-R
computes one cycle. At this point it is optional to up-
date the visual icon of ACT-R’s vision module or to
perform other tasks.

Updating the visual icon of the vision module
To update the visual icon, it is necessary to call an update-
method. This method regulates the gathering of visual in-
formation, but is not one of ACT-R’s device-methods. The
update-method sends a request to the Java application in-
structing it to collect data pertaining to all visible objects
present in the simulation. Once this visual data is transmit-
ted to ACT-R, it is then written into the visual icon of ACT-
R via the “build-vis-locs-for” method. The visual icon pro-
vides information about the kind, value, colour, size and
relative position of visible objects in the environment. This
method responsible for updating the visual icon can be trig-
gered in two different ways:
 By utilizing a scheduler corresponding to a regular time

interval, resulting in reduced network traffic for longer
time intervals. A scheduled update is especially practi-
cal on clock-controlled simulations in which the simu-
lation updates the screen after a certain interval.

 By allowing every instance in which ACT-R calls the
“device-update” method to serve as a trigger. Although
this method ensures that the visual icon is always up-to-
date when being accessed by ACT-R, it incurs higher
network traffic costs.

Discussion
“Hello Java!” was developed as a tool to directly interface
ACT-R with an external system. Its defining trait is its ease
of use resulting from the fact that no modification of the
simulation is required, that no restrictions are imposed upon
the model and that it is possible to synchronize the simula-
tion with the model.

References
Anderson, J. R., & Lebiere, C. (1998). The atomic compo-
nents of thought. Mahwah, NJ: Erlbaum.

290

