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Abstract 
This paper presents the first computational cognitive model of 
second-order social reasoning. The model uses a decision tree 
strategy to reason about the opponent’s behavior. We 
hypothesize that a decision tree strategy requires (1) 
declarative memory, and (2) working memory. Declarative 
memory is required to retrieve successive reasoning steps, 
while working memory is required to temporarily store these 
reasoning steps while the next step is retrieved from memory. 
The model fit on data from a social reasoning game supports 
the validity of the model. This initial result leads to an explicit 
prediction for an experiment in which the reasoning game is 
combined with another task that requires the same cognitive 
resources as hypothesized by the model. This work is a first 
step towards understanding higher-order social reasoning 
from a cognitive modeling perspective. 

Keywords: reasoning; theory of mind; cognitive models; 
ACT-R 

Introduction 

What is social reasoning? 
The ability to successfully interact with others requires 
knowledge on how your actions are going be interpreted by 
others. Additionally, successful interaction requires the 
ability to reason about the actions that other people might 
take to respond to, or even to anticipate, your own actions. 
(Verbrugge, 2009). A term that is often used in connection 
with this ability is theory of mind (Premack & Woodruff, 
1978). In this paper we will present a computational 
cognitive model of second-order theory of mind, calling  the 
process second-order social reasoning. 

Contrary to the case of first-order mental state attributions 
such as "she plans to move her queen", second-order social 
reasoning requires the ability to attribute mental states about 
mental states to others, as in "she believes that I intend to 
sacrifice my horse" (Perner & Wimmer, 1985). In higher-
order social reasoning, this ability is recursively applied for 
successful behavior. The cognitive model presented in this 
paper will be the first that explicitly addresses higher-order 
social reasoning. We will present a theory on how people 
reason in second-order social reasoning games, as well as 
explicit predictions on how behavior changes if the task is 
made more complex. 

Second-order social reasoning has often been studied by 
use of simple strategic games in which success is only 
warranted if the players successfully anticipate each other’s 
moves. A very simple example of such a game is tic-tac-toe 
(also known as noughts-and-crosses), in which each player 
has all information available on the playing board, and 
players have to take into account what the optimal move is 
for the opponent (that is, games of perfect information, 

Osborne & Rubinstein, 1994). A more complex example is 
Cluedo (Van Ditmarsch, 2002) in which not all information 
is known to each player, and players also have to reason 
about what information they will provide to their opponents 
by making a move, in addition to reasoning about optimal 
moves, for example, “I don't want Alice to know that I know 
that she has the ace of hearts”. In this paper, we will focus 
on a simpler game called Marble Drop in which all 
information about the current game state is known. Marble 
Drop is equivalent to the well-known centipede game 
(Rosenthal, 1981) and will be discussed in detail in later 
sections. 

What are important questions in social reasoning? 
Two issues stand out in studying social reasoning. The first 
relates to human performance on games such as Marble 
Drop. Up to this point we have described behavior as 
“optimal” or “rational”, but it turns out that humans perform 
significantly suboptimally on these games as the complexity 
increases (Flobbe, Verbrugge, Hendriks, & Krämer, 2008; 
Hedden & Zhang, 2002). Flobbe et al. for example found 
that participants in a centipede game only correctly perform 
75.5% of second-order games, whereas they are near-perfect 
on the first-order games (97%).  

The second issue relates to the role of memory in 
reasoning tasks. Taking the perspective of others about your 
own mental states and then incorporating that knowledge in 
your own reasoning must require some form of working 
memory. In this paper, we will present the first 
computational model that explicitly addresses both issues. 

After a brief overview of other models of social 
reasoning, we will introduce our model. Then we will 
present the model fit on relevant data and we will discuss 
how this model can contribute new insights in the 
understanding of social reasoning. 

Formal models of social cognition 
Social reasoning has been formally studied from a number 
of perspectives. These perspectives differ in the amount of 
cognitive validity that is considered. One perspective is to 
study social cognition as an interactive game (Camerer, 
2003). This game-theoretic perspective assumes that people 
are rational agents, optimizing their gain by applying 
strategic reasoning. However, many experiments have 
shown that people are not completely rational in this sense. 
For example, McKelvey and Palfrey (1992) have shown that 
in a traditional centipede game participants do not behave 
rationally. In this version of the game, the payoffs are 
distributed in such a way that the optimal strategy is to 
always end the game at the first move (i.e., Nash 
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equilibrium, Nash, 1951). However, in McKelvey and 
Palfrey’s experiment participants continued the game for 
some rounds before ending it. One interpretation of this 
result is that the game-theoretic perspective fails to take into 
account the reasoning abilities of participants. That is, due 
to cognitive constraints such as working memory capacity, 
participants may be unable to perform optimal strategic 
reasoning, even if in principle they are willing to do so.  

A different perspective, that focuses on cognitive validity 
in developing formal models, is that of a cognitive 
architecture (Anderson, 2007; Newell, 1990). Cognitive 
models developed within this framework aim to explain 
certain aspects of cognition by assuming only general 
cognitive principles. However, the current cognitive models 
that describe social interactions do not take second-order 
reasoning into account. For example, cognitive models of 
simple games exist in which it is important to know the 
opponent’s behavior (e.g., Lebiere & West, 1999; West, 
Lebiere, & Bothell, 2006). These cognitive models 
demonstrate that declarative memory is important in playing 
strategically. In the current work however, we are less 
interested in how people adapt their strategy to an opposing 
strategy, but rather we are studying the cognitive limitations 
of explicit second-order reasoning. Related to this, Hendriks 
and colleagues (e.g., Hendriks, Van Rijn, & Valkenier, 
2007; Van Rij, Van Rijn, & Hendriks, in press) have studied 
the development of first-order theory-of-mind in language 
using computational cognitive modeling. 

An ACT-R model of social reasoning 
To provide a full model of second-order social reasoning, 
we implemented our model in the cognitive architecture 
ACT-R (Anderson, 2007). ACT-R aspires to explain all of 
cognition using one theoretical framework. To achieve this, 
the heart of ACT-R consists of a procedural memory 
system, which contains condition-action pairs known as 
production rules. Besides the procedural module, ACT-R 
has designated modules for specific types of information. 
For example, the visual module processes visual 
information, whereas the declarative memory module 
processes declarative or factual information. Each module 
has a buffer that may contain one unit of information (a 
chunk). If the current contents of all buffers in the system 
matches the conditions of a particular production rule, that 
rule fires and its actions are executed. Each action may refer 
to an operation in one of the modules. 

This general layout of the cognitive system enables the 
development of models in which different kinds of 
information can be processed at the same time, while each 
module can only process one unit of information at a time. 
Based on this feature, ACT-R predicts specific interference 
effects if different aspects of a task require the same 
cognitive resource at the same time (e.g., Borst, Taatgen, & 
Van Rijn, 2010; Van Maanen & Van Rijn, 2010; Van 
Maanen, Van Rijn, & Borst, 2009). In the discussion section 
of the current paper we will use this feature of the 

architecture to make explicit predictions for a particular 
social reasoning task. 

Two modules of ACT-R deserve extra attention in the 
light of our model of second-order social reasoning: the 
declarative memory module and the problem state module. 
The declarative memory module retrieves information from 
long-term memory, called chunks. Each chunk in memory is 
represented by an activation value that represents the 
likelihood that that item can be retrieved. If the activation 
value drops below a certain minimal value (the retrieval 
threshold), the related information is no longer accessible. 
In that case, the system will report a retrieval failure after a 
constant time factor. If the activation value is above the 
retrieval threshold, the information is accessible. However, 
the time needed to retrieve it from memory depends on how 
active the item actually is. The more active, the faster the 
retrieval will be. Connected to the declarative memory 
module is a retrieval buffer, which may contain one 
(retrieved) item at a time. If another item is retrieved, it is 
stored in the retrieval buffer, with the previous item being 
pushed back to long-term memory. 

The problem state module (sometimes referred to as the 
imaginal module) contains a buffer in which information 
can be temporarily stored. Typically, this information 
contains a subsolution to the problem at hand. In the case of 
a social reasoning task, this may be the outcome of a 
reasoning step that will be relevant in subsequent reasoning. 
Storing information in the problem state buffer is associated 
with a time cost (typically 200ms). The model that we 
present in this paper relies on the combination of the 
declarative module and the problem state buffer. That is, the 
model retrieves relevant information from memory and 
moves that information to the problem state buffer if new 
information is retrieved from memory that needs to be 
stored in the retrieval buffer. 

Marble Drop game 
To study the reasoning processes that are involved in social 
reasoning, we developed a cognitive model of a reasoning 
game in which in order to play optimally the players have to 
anticipate each other’s moves. The particular game that was 
analyzed and modeled is a variant of the centipede game 
called Marble Drop (Meijering, Van Maanen, Van Rijn, & 
Verbrugge, 2010).  

Marble Drop is a marble run game containing trapdoors 
(Figure 1). Players take turns in deciding whether to open 
one trapdoor or the other. In each turn, opening one trapdoor 
leads to the end of the game, whereas opening the other 
trapdoor means that the game continues to the next bin on 
the right and the opponent may choose which trapdoor to 
open. If a player decides to end the game, both players 
receive the credits that are associated with that stage of the 
game. If a player decides to continue the game, the players 
traverse to a new stage with which new credits are 
associated. Because all credits are known in advance, both 
players can reason about their opponent’s possible moves 
further on in the game. The players can do this by applying 
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backward induction (Van der Hoek & Verbrugge, 2002; 
Verbrugge & Mol, 2008). For example, a player can reason 
that his opponent wants the highest payoff in bins C and D. 
As a result the player knows the maximal payoff that he can 
get from bins C and D, and can then compare that 
information to his own payoff in bin B. If it is possible in a 
particular game for a player to behave optimally by directly 
predicting its opponent’s actions, we refer to this game as 
being first-order. In a second-order game it is necessary to 
predict the opponent’s predictions of ones own actions in 
order to behave optimally. In principle, Marble Drop games 
could be developed for third-order or even higher-order 
games. 

The Model 
The model follows a backward induction strategy to predict 
the opponent’s moves further on in the game. Hedden and 
Zhang (2002) provide a decision tree analysis of this 
process for their matrix version of the game.1 The model has 
knowledge on how to solve Marble Drop games for all 
possible distributions of payoffs over the bins of the marble 
run game. That is, the model stores chunks containing 
information on which payoffs to compare at each step. In 
addition, chunks representing the magnitudes of the payoff 
shades are stored in declarative memory, as well as chunks 
representing the location of the payoffs on the screen. 

                                                             
1 an analysis that shows the logical equivalence of these games 

can be found at http://www.ai.rug.nl/~leendert/Equivalence.pdf 

Finally, chunks representing ordinal information are stored 
in declarative memory. This means that the model contains 
knowledge on the relative magnitudes of each combination 
of payoff values. 

A model run starts with the initial comparison of two 
payoff values (Figure 2). For second-order games, that 
initial comparison is always a comparison between the 
player’s own payoffs in Bins C and D. First, it retrieves 
from declarative memory where the first payoff is located 
on the screen (Bin D in Figure 1). If it retrieves that 
knowledge, the model attends Bin D and tries to retrieve the 
magnitude of the observed payoff. At the same time, the 
model stores the current comparison in the problem state 
buffer, to free the retrieval buffer for the upcoming payoff 
information. 

Because in the experiment the payoffs are represented by 
shaded marbles, the model has to retrieve the value 
corresponding to the observed shade. Next, the model 
retrieves the location information for the other payoff value 
that is part of the current comparison. Again to free the 
retrieval buffer, the payoff value of the first payoff is stored 
in the problem state buffer. The payoff is attended and the 
corresponding value is retrieved from memory. Finally, the 
two values are compared by trying to retrieve a chunk with 
ordinal information from memory. Based on the outcome of 
this retrieval the model now retrieves a new payoff 
comparison. For example (Figure 1), if the value in bin D 
was smaller than the value in bin B, the model attends the 
payoff in bin B, and compares that with the payoff in bin A. 
If the value in bin D was larger than the value in bin B, then 
the model attends the opponent’s payoff in bin D, and 
compares that with the opponent’s payoff in bin C. The 
model continues to compare payoffs following the decision 
tree (Hedden & Zhang, 2002) until it reaches the bottom of 
the tree. There, it decides its action based on the final 
comparison. 

Model fit The model was tested against data from a Marble 
Drop task (Meijering et al., 2010). In the experiment the 
participants were asked to solve zero-order, first-order, and 
second-order Marble Drop problems. In all these conditions, 
participants were instructed to indicate the optimal first 

 
Figure 1. The interface of a second-order Marble Drop 

game. Color shades of the marbles in the experiment are 
represented by numbers. 

 
Figure 2. Flow chart of the model activity in ACT-R modules. The width of each box denotes the duration of each 

stage. Arrows indicate possible next actions. 
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move as quickly as possible. That is, even in second-order 
games participants had to make only one choice. However, 
because the opponent always played rationally (and the 
participants were informed of this), there was always only 
one optimal choice. 

 Figure 3 presents the model fit on both response times 
and accuracy of the first moves. The fit on the response 
times is very good (R2 = 1.0; RMSE = 0.42 s). The fit on the 
accuracy data is slightly less (RMSE = 0.067, R2 = 0.2), but 
this may be attributed to lack of data, making the estimated 
means less reliable.2 

As the order of the Marble Drop reasoning problems 
increases, the model requires more time to respond. This is 
because more comparisons have to be made, and therefore 
more information has to be retrieved from declarative 
memory and stored in the problem state buffer. These steps 
take time, increasing the response time for higher-order 
reasoning problems. Because of the similar behavioral 
patterns between model and data, this study supports the 
view that participants in this task follow the same reasoning 
steps as the model does. That is, participants in a social 
reasoning game follow a decision tree to make the correct 
decision.  

Discussion & Predictions 

First model of second-order social reasoning 
The ACT-R model of second-order social reasoning 
described in this paper is the first cognitive model to 
account for second-order social reasoning. Other cognitive 
models in the field of social reasoning have either not 
explicitly addressed orders of reasoning (e.g., Lebiere & 
West, 1999; West et al., 2006), or have focused on first-
order reasoning only (e.g., Hendriks et al., 2007; Van Rij et 
al., in press). 

Because the model is based on Hedden and Zhang’s 
(2002) decision tree analysis of behavior in 2x2 matrix 
games, the model provides support for their theory of 

                                                             
2 As the data presented here are actually the practice block of the 

experiment performed by Meijering et al. (2010), the number of 
observations per participant was 4 for zero-order games, and 8 for 
first and second-order games. 

second-order social reasoning. The model can be considered 
as a cognitively plausible implementation of that analysis. 

Model predictions 
Our model can be used to provide explicit predictions 
regarding the use of memory in second-order social 
cognition (Verbrugge, 2009). In particular, the model relies 
on various declarative memory retrieval steps, in 
combination with storage of information in a problem state 
buffer. An explicit prediction would be that second-order 
theory of mind reasoning would be affected by performing 
another task at the same time that would require the same 
resources (Borst et al., 2010). To our knowledge, such an 
experiment has not been done yet. Therefore, in the 
remainder of this paper we would like to propose such an 
experiment, combined with explicit, quantitative predictions 
provided by the model. By providing the predictions of our 
model before actually doing the experiment, we counter the 
criticism that insufficiently constrained cognitive models 
can be made to fit any dataset (Roberts & Pashler, 2000). 

A task that would require the same resources as 
hypothesized for social reasoning is a tone counting task. 
Participants are presented with tones of two different pitches 
and are requested to count the number of tones for each 
pitch. This task would tap into the same cognitive resources 
as hypothesized for the Marble Drop reasoning task, as 
maintaining two counters at the same time can be 
considered a heavy working memory load. A control 
condition in this task would be one in which participants 
would not need to maintain a counter, but rather just say 
“high” or “low” every time they heard a tone of a particular 
(higher or lower) pitch. Because the control task does not 
require maintaining a counter (a problem state), concurrent 
execution of this task and the social reasoning task does not 
pose a conflict, and the different stages of the tasks could be 
interleaved without much loss of time (Anderson, Taatgen, 
& Byrne, 2005). 

A dual-task model of social reasoning A simple model of 
this task would involve maintaining the current counter in a 
problem state buffer. In addition, the model would – upon 
hearing a tone – check whether the pitch of the tone is the 
same as the pitch of the previous tone. Specifically, the 
model compares the pitch of the tone with the pitch 

 
Figure 3. Model fit to data from Meijering et al. (2010). Left: Response time, Right: Accuracy. 
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associated with the counter in the problem state buffer. If 
this is the case, the model then retrieves the subsequent 
number of the stored counter from memory. If this is not the 
case, the model retrieves the other counter from memory, 
and based on that retrieves the subsequent number. 

Such a model would require both the problem state buffer 
and the retrieval buffer, resulting in interference with 
performance on the Marble Drop game. For the control task, 
both the retrieval and the problem state resources are not 
required. The model of the control task consists of a simple 
stimulus response mechanism: When a tone of a particular 
pitch is heard, the model responds with a vocal response 
(either “high” or “low”). 

We adapted our model to also perform the tone counting 
task. The model was extended with a control mechanism 
that maintained which task was currently given preference 
(Salvucci & Taatgen, 2008). The model performs the 
Marble Drop task until a tone is presented. At that point a 
switch is made to the counting task. If necessary, the model 
tries to retrieve the current count and restore the problem 
state of the counting task. Then, it retrieves the subsequent 
number from declarative memory followed by a vocal 
response saying the number. After that, the model tries to 
restore the problem state of the Marble Drop task by 
retrieving a comparison from memory. 

Model predictions We ran the second-order reasoning 
model in three conditions for a sufficient number of trials to 
obtain a stable estimate of the predicted response. In the 
first condition (Single) the model only performed the 
Marble Drop task. In the Control condition, the model 
performed the Marble Drop task in combination with the 
simple response task. The tones were presented with 
stimulus onset asynchronies (SOAs) of 2s, 5s, 8s, 11s, 14s, 
17s, 20s, and 23s. Only those tones were presented that 
preceded the model response on the reasoning task. In the 
Interference condition, the model performed the Marble 
Drop task in combination with the tone counting task. The 
tones were presented similarly as in the Control condition. 

Figure 4 presents the predicted reaction time and accuracy 
of the dual-task model as a function of the number of tones 
presented. The left-most data point in each graph (where the 
number of tones is zero) represents the behavior of the 
model under single-task conditions. This is the same as the 
model fit presented in Figure 3. For the Control condition 

the model predicts an increase in the response time, and no 
change in accuracy. This is because the single response task 
used as secondary task in the Control condition does not 
share any resources with the Marble Drop task. Thus, 
responding to the tones only adds time to the Marble Drop 
response, but does not change the difficulty of the task. In 
contrast, the tone counting task that the model performs in 
the Interference condition adds considerable time to the 
response. In addition, the accuracy of the model decreases 
as well. Moreover, the mean response time in the 
Interference condition increases dramatically to 27s (Figure 
5), whereas the mean response time in the control condition 
is 8.3s, which is only slightly above the mean response time 
of the single response task (7.7s). Our interpretation of these 
results is that the tone counting task and the Marble Drop 
task share a cognitive resource. In particular, both tasks 
require a problem state buffer for maintaining intermediate 
results. Swapping these problem states takes extra time and 
is prone to errors, explaining the increased reaction times 
and the decreased accuracy. 

Conclusion 
This paper presents the first computational cognitive model 
of second-order social reasoning. The model uses a decision 
tree strategy to reason about the opponent’s behavior in a 
social reasoning game. We hypothesize that a decision tree 
strategy requires (1) declarative memory, and (2) working 
memory. Declarative memory is required to retrieve 
successive reasoning steps, while working memory is 
required to temporarily store these reasoning steps while the 

 
Figure 5. Predicted mean response time for the dual-task 

model. Left: Response time, Right: Accuracy. 
 

 
Figure 4. Model predictions for the dual-task social reasoning task. Left: Response time, Right: Accuracy. 
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next step is retrieved from memory. We implemented 
working memory as a problem state buffer using the ACT-R 
cognitive architecture (Borst et al., 2010). The model fit on 
data from a social reasoning game called Marble Drop 
(Meijering et al., 2010) supports the validity of the model. 
This initial result leads to an explicit prediction for an 
experiment in which the reasoning game is combined with 
another task that requires the same cognitive resources as 
hypothesized by the model. In particular, if the other task 
also requires the problem state resource, the interference of 
that task is substantial. On the other hand, a secondary task 
that is equivalent but does not require the problem state 
resource exhibits minimal interference. This work is a first 
step towards understanding higher-order social reasoning 
from a cognitive modeling perspective. 
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