
Concurrent Knowledge Activation Calculation in Large Declarative Memories

Scott A. Douglass (scott.douglass@mesa.afmc.af.mil)

Christopher W. Myers (christopher.myers2@wpafb.af.mil)
Air Force Research Laboratory, 6030 S. Kent St.

Mesa, AZ 85206 USA

Abstract

To behave effectively and flexibly in complex situations,

models specified in cognitive architectures must be able to

store and access large amounts of declarative knowledge.

However, as research efforts employing cognitive modeling

grow in scope and complexity, currently available modeling

tools, languages and cognitive architectures are being pushed

to their practical limits. This paper describes research looking

specifically at how a large declarative memories challenge the

current implementation of ACT-R and describes an applied

effort to develop an alternative implementation of ACT-R’s

retrieval process. The alternative exploits concurrency

features of the Erlang programming language to extend the

practicality of ACT-R’s retrieval mechanisms to new levels of

scale. The ideas and methods underlying the alternative

implementation are general and illustrate how concurrency

can accelerate calculation in other architectures struggling to

support large associative declarative memories.

Keywords: declarative memory; concurrent activation

calculation; semantic networks; ACT-R; Erlang.

Introduction

As research efforts employing cognitive modeling grow in

scope and complexity, available modeling tools and

languages are being pushed to their practical limits. For

example, the implementation of ACT-R within the Lisp

programming language may hinder the development of

large-scale models due to limitations in declarative storage

capacities (Douglass, 2009). If cognitive modeling is to

grow in scope and complexity, we must meet the challenges

underlying these limits.

An AFRL large-scale cognitive modeling (LSCM)

initiative is currently exploring potential solutions to these

challenges. The LSCM initiative is committed to integrating

well understood mechanisms from cognitive architecture

research into new modeling approaches that facilitate model

scaling. For example, the empirical strength of ACT-R’s

declarative system (Anderson, 2007) has motivated us to

ensure that the LSCM initiative’s solutions preserve ACT-

R’s declarative memory mechanisms.

LSCM initiative efforts to develop domain-specific

modeling languages (DSML-s) supporting increased model

scale and persistence involve efforts to increase the scale

and persistence of a declarative memory system that mimics

ACT-R’s. This paper describes recent efforts to retain and

scale ACT-R's memory mechanisms in a modeling and

simulation framework supporting RML1 (research modeling

language), the first DSML developed in the LSCM

initiative. RML1 is a generic DSML tailored to the needs of

cognitive modeling. RML1 has a hybrid (graphical and

textual) syntax, and executes in a runtime environment

implemented in the Erlang programming language

(Armstrong, 2007).

Modeling with Large Declarative Memories

In the following sections we provide a brief overview of

ACT-R and describe how to extend ACT-R’s declarative

retrieval process by ―carving it up at the joints.‖ We

conclude this section with a discussion of replicating top-

down (i.e., endogenous) and bottom-up (i.e., exogenous)

constraints on ACT-R’s memory retrieval process.

Brief Overview of ACT-R

ACT-R is a cognitive architecture for developing

computational cognitive process models (Anderson, 2007).

In ACT-R, cognition revolves around the interaction

between a central production system and several modules.

There are modules for vision, motor capabilities, memory,

storing the model’s intentions for completing the task (i.e.,

the control state), information retrieved from memory, and a

module for storing the mental representation of the task at

hand (i.e., the problem state). Each module contains one or

more buffers that can store one piece of information, or

chunk, at a time. Modules are capable of massively parallel

computation to obtain chunks. For example, the memory

module can retrieve a single chunk from long-term memory

and place it into the module’s buffer.

Chunks are defined by the modeler to have a particular

type, or chunk-type, and a set of key-value pairs. Retrieval

in ACT-R is based on a combination of: (1) endogenous

influences expressed in retrieval constraints; and (2)

exogenous influences originating from chunks in the slots of

buffers assigned activation weights by the modeler. When

retrieving a chunk, the modeler must specify the type of

chunk to retrieve, and all chunks of that chunk-type are

candidates for retrieval. All candidates’ activations are

computed, and the one with the highest activation is

retrieved. Chunk activation can be exogenously influenced

(i.e., primed) by spreading activation from other modules—

any module that contains a chunk as the value in a key-value

pair spreads activation to related chunks. As the number of

chunks in declarative memory increases, the number of

candidates during retrieval also increases. As retrieval

candidates increase, retrievals may become slow, and in

some instances too slow to support large-scale models that

must interact with other system components in real-time.

55

Increasing Scale by Externalizing Chunk Storage

Our initial efforts to extend the viability of ACT-R’s

retrieval system to large-scale modeling contexts focused on

the storage of chunks outside of ACT-R and Lisp. Database

management systems (DBMS) such as PostgreSQL can be

effectively used to store a large and persistent set of ACT-R

declarative memories (Douglass, et al, 2009). This research

determined that services provided by the PostgreSQL

DBMS can be integrated into ACT-R via a custom

―persistent-DM‖ module. We found that the persistent-DM

module greatly reduced ACT-R’s storage burden and

significantly increased the practical size of declarative

memory sets that could be accessed by cognitive models.

The effectiveness of the persistent-DM module was based

on the fact that ACT-R’s application of retrieval constraints

mimics the behavior of a DBMS executing a SQL query.

When the persistent-DM module is employed, requests for

instances of a particular chunk-type possessing specific sets

of key-value properties are translated into SQL queries and

then executed to recover matching chunk instances from an

external database. ―Outsourcing‖ the storage and recovery

of matching chunks through SQL queries in this way is

beneficial because of the capacity of PostgreSQL databases

and the effectiveness of indexing in relational databases.

Unfortunately, while persistent-DM assumed some of the

retrieval burden by efficiently isolating the subset of chunks

that had to have their activations re-calculated, the module

simply relayed them to ACT-R’s default serial activation

calculation mechanism.

Carving the Retrieval Process at the Joints

We started the development of RML1’s memory system by

asking ourselves three questions:

Q1. How do the equations that explain activation and

associative strengths in ACT-R define the fundamental

nature of the ACT-R retrieval process?

Q2. How does the current ACT-R implementation

computationally realize the retrieval process?

Q3. Can the fundamentals of the retrieval process be

computationally realized in other ways?

Q1 Human memory is more than an information storage and

retrieval system. Likewise, declarative memory in ACT-R is

more than just a mechanistic account of information storage

and retrieval (Anderson, 2007). Human memory is a part of

a system that learns and acts in the world. Human behavior

is as flexible as it is because we know lots of things and can

use what we know to craft contextually appropriate and

effective actions in many different circumstances. It is not

enough to know a lot; we also have to be able to quickly cull

through all that we know in order to retrieve and apply the

right knowledge given our circumstances. The crown jewels

of ACT-R’s memory system are a set of equations

explaining how sub-symbolic calculation, learning, and the

utilization of activations and associative strengths enable

these critical properties of human memory (see Anderson, et

al., 2004 and Anderson, 2007 for detailed descriptions). The

equations are presented in Table 1 below so that their

details—specifically their indexing of chunks i and j—can

be used to confirm a claim that they describe how sub-

symbolic properties related to the activations and associative

strengths of individual chunks influence the probabilities

and time costs of their retrievals. That is, the equations

precisely explain how activation is calculated for individual

chunks in what can be considered independent calculations.

Table 1: Equations describing chunk activation. The key

components of the equations are a single focal chunk

indexed as i and chunks in context indexed as j.

Common Name Equation

Activation 𝐴𝑖 = 𝐵𝑖 + 𝑊𝑗𝑆𝑗𝑖
𝑗 ∈𝐶

Base-Level Learning
𝐵𝑖 = ln 𝑡𝑘

−𝑑

𝑛

𝑘=1

Attention Weighting 𝑊𝑗 = 𝑊
𝑛

Associative Strength 𝑆𝑗𝑖 = ln 𝑝𝑟𝑜𝑏 𝑖 𝑗 /𝑝𝑟𝑜𝑏 𝑖

Retrieval Time 𝑇𝑖𝑚𝑒 = 𝐹𝑒−𝐴𝑖
Retrieval Probability 𝑃𝑟𝑜𝑏 = 1/ 1 + 𝑒− 𝐴𝑖−𝑡 /𝑠

Any declarative memory system adhering to ACT-R’s

theory of human associative memory must minimally

calculate each chunk’s activation according to these

equations. The equations define a fundamental unit of

computation scoped around each chunk in declarative

memory and abstract away from how the process of retrieval

executes all the chunk activation calculations underlying a

single retrieval.

Q2 The current ACT-R implementation (ACT-R 6)

sequentially realizes all the chunk activation calculations

underlying a single retrieval. Hence, chunk activation

calculations occur one after the other as a process, not

described in the equations above, searches for and retrieves

the chunk with the highest activation. To ensure that this

point is clear, the retrieval process in ACT-R will now be

summarized.

Retrieval in ACT-R is influenced by bottom-up

contextual cues and the application of top-down constraints.

Retrievals based on top-down constraints generally proceeds

in the following way. An ―ISA‖ property in a retrieval

request is used to isolate type-compatible chunks in

declarative memory into a candidate set. Slot value

constraints representing additional properties required of a

chunk contained in retrieval requests are then used to further

reduce the candidate set. The activations of chunks

surviving all these top-down constraints are then computed

in accordance with the equations above. The chunk meeting

all top-down retrieval constraints with the highest activation

is returned in the retrieval buffer.

The impact of the serial calculation of activation is

illustrated in Figure 1 below. The top and bottom diagrams

56

in the figure represent two extreme situations. When

activation calculations are computed sequentially, the total

time cost is roughly equivalent to a per-activation

computation time, t, multiplied by the number of chunks.

When activation calculations are computed concurrently, the

total time cost will be slightly more than t. Given that the

ACT-R activation equations function in the scope of single

chunks and in so doing ―modularize‖ the calculation of

chunk activations, we argue that the challenge to extend the

scale of ACT-R’s memory system is really a challenge to

maximize the concurrency of chunk activation calculation

during retrieval events.

Figure 1: Costs of serial & concurrent activation calculation.

Q3 To find a way to incorporate concurrent activation

calculation into the persistent-DM module, we set out to: (1)

extend persistent-DM with the ability to compute

activations; and (2) develop ways of partitioning databases

across multiple PostgreSQL DBMS instances. The first of

these challenges was low-hanging fruit; queries to an

extended persistent-DM can now include a query capturing

top-down retrieval constraints and a representation of

context capturing bottom-up sources of activation.

Retrievals executed by this version of persistent-DM isolate

a sub-set of chunks meeting the top-down constraints, re-

compute their activations, and then return the set sorted by

activation. Stymied by the second of these challenges, we

turned away from trying to find ways of improving query-

based retrieval with concurrency and started researching

more radical alternatives for realizing massively concurrent

retrieval processes. We quickly realized that two problems

oppose the development of a memory system utilizing

concurrent activation calculation:

P1. To parallelize activation calculation, one needs a

language supporting concurrent computation. What

language can do this for us?

P2. To continue allowing retrievals to be based on top-

down retrieval constraints, we have to integrate the

processing of top-down information with the process of

concurrently computing chunk activations. How can a

retrieval process utilizing concurrent activation

calculation use top-down information and constraints?

Concurrently Computing Activations in Erlang The

semantic anchoring of RML1 is currently realized in a

modeling and simulation framework developed using the

Erlang programming language (Armstrong, 2007; Cesarini

& Thompson, 2009). Erlang is an open-source general-

purpose functional programming language developed by

Ericsson. Erlang is chiefly used to develop persistent, fault-

tolerant, dynamically re-configurable, soft real-time

constrained control systems that use large databases.

Furthermore, it supports multiple process threads and

automatically exploits multi-core and networked computing

resources. In Erlang, program components are represented

as sets of separate parallel threads. Erlang manages threads

through a middleware framework called the Open Telecom

Platform (OTP) which simplifies the development and

execution of programs consisting of large numbers of

concurrent processes. Programs written in Erlang can

contain millions of concurrent processes (Armstrong, 2007).

RML1’s Erlang-based semantic anchoring represents

declarative knowledge in OWL-compatible ontologies

(Smith, Welty, & McGuiness, 2008) that describe the

classes, class properties, object properties, data properties,

and instances constituting a domain. Each node in a

semantic network is realized as a separate OTP process

thread in Erlang. These process threads maintain

information about: (a) retrieval parameters; (b) reference

histories; (c) last activation level; (d) lists of class, object,

and data relations constituting the defining properties of the

individual; and (e) lists of object relations the individual

serves a range role in. Process threads also receive and

respond to messages sent to them by OTP supervisor

processes. Each individual process thread is capable of

responding to requests to re-compute and report their

activation. Activity spreads in RML1 semantic networks as

messages are asynchronously exchanged between the

process threads constituting their nodes. Since process

threads in Erlang execute concurrently, spreading activation

achieved through asynchronous message passing and

activation re-computing are massively parallel. The retrieval

of declarative knowledge from a RML1 semantic network

involves all concurrent multi-core computation available.

In order to maximize the parallelization of the activation

computation, retrieval in the RML1 declarative memory

system is based solely on the spread of activation in

semantic networks. At first blush, it is not obvious how

something functionally equivalent to an ACT-R top-down

―isa‖ constraint can be obtained through bottom-up

spreading activation. The following discussion explains how

this is accomplished.

Replicating Top-Down Constraints with Message

Filters and Endogenous/Exogenous Message Sources
Table A1 (in Appendix) shows how the behavior of top-

down retrieval request patterns in ACT-R can be replicated

in RML1. Deliberate retrieval constraints introduce top-

down network activity into semantic networks as

endogenous messages. Endogenous messages introduce

network activity into semantic networks but do not convey

weighted activation to nodes and therefore do not influence

a receiving node’s calculation of its activation. Contexts

t

t

t

t

t

t

S F

t t t t t tS F

S Start
F Finish
t Time to compute activation of a chunk

57

introduce bottom-up network activity into semantic

networks as exogenous messages. Exogenous messages

function just like spreading activation in ACT-R; network

activity introduced into semantic networks by exogenous

sources convey weight and fan and therefore do influence a

receiving node’s calculation and reporting of its activation.

Message filters prevent network activity from being sent to

nodes lacking defining properties corresponding to the

properties in them. For example, the ―k1,v1‖ message filter

in example 3 of Table A1, prevents the endogenous message

―type,c1‖ from passing network activity into nodes lacking

the ―k1,v1‖ property.

Retrieval in RML1 proceeds in the following way:

1) An OTP supervisor process sends, in parallel, “spread

network activation” endogenous and/or exogenous

messages to nodes serving domain roles in the relations

expressed in the messages that pass any present message

filters. For example, in example 1 of Table A1, the OTP

supervisor process will send a message to c1. Since

―type,c1‖ is an endogenous message in this circumstance,

the message will convey a weight of 0.

2) Nodes receiving ―spread network activation‖ messages

relay them, in parallel, to instances serving domain roles in

relations with them. In example 1 of Table A1, any node

serving a domain role in the ―type,c1‖ relation will receive

network activation. As mentioned earlier, individuals

maintain lists of the relations they participate in with other

individuals. Instances receiving these messages store the

weighted activation increments they contain and notify the

OTP supervisor that their activation has been influenced by

network activity. Because ―weights of activation spread‖

incorporated into endogenous supervisor messages are 0,

stored activation increments from endogenous sources force

the individual to re-compute their activation but do not

increase spreading activation. If, as is the case in example 2

of Table A1, context produced an exogenous message

―k2,v2‖, the ―weight of activation spread‖ incorporated into

exogenous supervisor messages would reflect attentional

weight and fan.

3) The OTP supervisor process sends, in parallel, “report

your re-computed activation” messages to nodes that

reported contributions to their activations. Individual

processes receiving these messages concurrently re-compute

their activation. Individuals that received only messages

containing 0 weights of activation spread report activation

values based solely on changes to their base level

activations.

4) Finally, the OTP supervisor posts the defining properties

of the node reporting the highest activation to RML1’s

working memory.

Retrieval in a Large Declarative Memory

To determine the impact of concurrency in RML’s retrieval

process, a basic comparison study was conducted. In this

comparison study, the wall-clock retrieval times of ACT-R

and RML1 executing retrievals in large declarative

memories were compared. To stress test the declarative

systems of ACT-R and RML1, portions of the Moby

Thesaurus II synonym database were transcribed into ACT-

R’s declarative memory and RML1’s semantic network.

The Moby Thesaurus II contains 30,260 root words that are

related to each other by 2,520,264 synonyms. Compound

root words were excluded from the comparison study. This

exclusion process reduced the number of root words to

24,890. Five different declarative memory sets were created

using this reduced set. Sets consisted of proportions of the

reduced set of root words and the synonyms relating them.

Table 2 below summarizes the properties of these sub-sets,

and Figure 2 represents a portion of the smallest of these

sub-sets.

Table 2: Properties of the synonym sets used in the

comparison study.

Proportion 20% 25% 33% 50% 100%

Synonyms 53,560 77,313 145,073 318,435 1,281,763

Figure 2: Portion of the Moby II semantic network showing

a subset of the root words and synonyms related to the root

words ―coquettish‖, ―mazy‖, and ―whimsical‖. 29, 52, and

67 word/syn relations involving coquettish, mazy and

whimsical are not shown.

To create a declarative memory in ACT-R, instances of a

root_word chunk-type were used to represent root words

and instances of a synonym chunk-type were used to

represent word/synonym relationships between root words.

Figure 3 shows chunk types and chunk instances that would

allow an ACT-R model to represent and process some of the

root words and relations displayed in Figure 2. To create an

ontology-based semantic network in RML1, root_word and

synonym classes were defined. Object properties necessary

to relate words to syn in synonym instances were also

defined. Figure 3 shows the definitions of the root_word

and synonym classes and definitions of employed object and

58

data properties. Representing these in an ontology allows

RML1’s runtime environment to search the semantic

network and make inferences about arbitrary descriptions or

entities lacking class identifiers.

Figure 3: ACT-R (top) and RML1 (bottom) root_words and

synonyms matching some of the Figure 2 information. Note

the object and data property specifications in RML1 .

Equipment

A Dell Precision T7500 was used in the comparison study.

The Dell’s physical configuration included 2 quad core Intel

3.33Ghz Xeon (W5590) CPUs and 48 GiB of RAM. The

computer’s software configuration included the openSUSE

11.2 Linux-based OS, SBCL 1.0.35 running ACT-R6 r845,

and Erlang R13B04.

Procedures

Context-sensitive retrievals of chunks from the sub-sets of

the Moby Thesaurus II were carried out in ACT-R and

RML1 using the request patterns and context representation

shown in Table A2. Real-time costs of executing retrievals

in ACT-R were measured by: (1) placing three chunks

corresponding to root word chunks into slots of a goal

chunk representing retrieval context; (2) initiating a retrieval

request corresponding to the ―+retrieval> isa synomym‖

request pattern; and (3) measuring elapsed system time until

the retrieval process returned a chunk. The real-time costs of

executing retrievals in RML1 were measured by: (1)

distributing messages from endogenous and exogenous

message sources that passed through message filters into the

semantic network; and (2) measuring elapsed time until the

OTP supervisor process managing the retrieval determined

the network node with the highest activation.

Results

The same retrieval parameters were used in both systems:

maximum associative strength was set to 5.0, the base-level

constant was set to 0, and the base-level learning rate was

set to 0.5. All chunks were initialized with 7 references.

Retrievals executed through ACT-R and RML1 returned

the same synonym chunks, computed equivalent chunk

activations, and retrieval latencies. The use of the ―isa

synonym‖ constraint in the ACT-R retrieval pattern required

that the activations of all synonym chunks be calculated

before the retrieval process could finish. Treating ―type,

synonym‖ as if it were from an endogenous message in the

RML1 retrieval process correspondingly lead to all

synonym instances re-computing and reporting their

activations. Table 3 summarizes the results of the

comparison study.

Table 3: ACT-R and RML1 performance. Times (seconds)

represent average wall-clock time to execute 10 retrievals.

20% 25% 33% 50% 100%

Synonyms 53,560 77,313 145,073 318,435 1,281,763

ACT-R 3.22 6.00 18.63 86.39 NA

RML1 0.44 0.64 1.21 2.65 10.90

The most important thing to notice in Table 3 is that while

ACT-R (SBCL) performance time is increasing at a rate

faster than the increase in chunks, RML1 (Erlang) is

essentially scaling linearly. Added concurrency from

additional processor cores will further improve the relative

performance of RML1.

Conclusion

The declarative system underneath RML1 discussed in this

paper is interesting because it: (1) does not depend on a top-

(chunk-type root_word name)

(chunk-type synonym word syn)

(add-dm
...

(coquettish ISA root_word name "coquettish")

(inconstant ISA root_word name "inconstant")

(flighty ISA root_word name "flighty")

(mazy ISA root_word name "mazy")

(whimsical ISA root_word name "whimsical")

...

(syn1 ISA synonym

word coquettish

syn flighty)

(syn2 ISA synonym
word coquettish

syn inconstant)

(syn3 ISA synonym

word flighty

syn mazy)

...

)

(set-all-base-levels 7 0)

{class, {root_word, [{subclass_of, thing}]}}.

{class, {synonym, [{subclass_of, relation}]}}.

{object_property,

{word, [{sub_property_of, base_object_property},

{domain, synonym}, {range, root_word}]}}.

{object_property,

{syn, [{sub_property_of, base_object_property},

{domain, synonym}, {range, root_word}]}}.

{data_property,

{name, [{sub_property_of, base_data_property},

{domain, root_word}, {range, string}]}}.

{individual,

{coquettish, [{type, root_word}], [],

[{name, "coquettish"}], 7}}.

{individual,

{inconstant, [{type, root_word}], [],

[{name, "inconstant"}], 7}}.

{individual,

{mazy, [{type, root_word}], [],

[{name, "mazy"}], 7}}.

{individual,

{whimsical, [{type, root_word}], [],

[{name, "whimsical"}], 7}}.

{individual,

{s1, [{type, synonym}],

[{word, coquettish}, {syn, inconstant}], [], 7}}.

{individual,

{s2, [{type, synonym}],

[{word, inconstant}, {syn, coquettish}], [], 7}}.

{individual,

{s3, [{type, synonym}],

[{word, mazy}, {syn, whimsical}], [], 7}}.

{individual,

{s4, [{type, synonym}],

[{word, whimsical}, {syn, mazy}], [], 7}}.

59

down retrieval process that functions like a query against a

relational database followed by activation calculation; (2) is

capable of producing behavior that is functionally

indistinguishable from ACT-R; (3) exploits concurrency in

Erlang and therefore scales nearly linearly; (4) is part of the

runtime environment supporting RML1, the first DSML

researched and developed by the LSCM initiative. If

cognitive modeling is to successfully grow in scope and

complexity, it must find effective ways of meeting the

challenges associated with maintaining and using large

declarative memories. RML1’s declarative system illustrates

how concurrent knowledge activation calculation in large

declarative memories can be technically realized and is

therefore progress towards meeting LSCM challenges

associated with modeling human memory on a large scale.

Acknowledgements

This research was funded through a seedling grant from the Chief

Scientist of the 711th Human Performance Wing of the Air Force

Research Laboratory awarded to Drs. Douglass & Myers, and

through AFOSR grant #10RH05COR awarded to Dr. Douglass.

References

Anderson, J. R. (2007). How Can the Human Mind Occur in the

Physical Universe? Oxford: OUP

Anderson, J. R., Bothell, D., Douglass, S. A., Byrne, M. D.,

Lebiere, C., Qin, Y., et al. (2004). An integrated theory of the

mind. Psychological review, 111(4), 1036–1060.

Armstrong, J. (2007). Programming Erlang: Software for a

Concurrent World. Raleigh: The Pragmatic Bookshelf.

Cesarini, F., & Thompson, S. (2009). Erlang Programming.

O'Reilly Media, Inc.

Douglass, S. A., Ball, J., T., & Rogers, S. (2009). Large declarative

memories in ACT-R. In A. Howes, D. Peebles, R. Cooper

(Eds.), 9th International Conference on Cognitive Modeling –

ICCM2009, Manchester, UK.

Smith, M. K., Welty, C., & McGuiness, D. L. (2008). OWL Web

Ontology Language Guide. W3C.

Appendix

Table A1. Examples of how query-based retrieval behavior in ACT-R can be replicated using message passing in RML1

semantic networks. The character ―*‖ is used in messages to represent a wildcard that is free to match against any relation.

The ―*‖ is necessary because contextual priming in ACT-R is insensitive to the key component of the key/value pairs in

context chunks. Notice that examples 3 and 4 yield the same retrieval behavior while using the ―type,c1‖ and ―k1,v1‖

messages in different ways. Since it is likely to be the case that the fan of v1 is less than the fan of c1, treating the ―k1,v1‖

message as endogenous will greatly reduce the spread of network activity and therefore expedite retrieval.

Table A2. ACT-R retrieval requests and contexts & RML1 message filters and message sources employed in the declarative

memory system comparison study. To ensure the fairness of the comparison, all exogenous messages conveying activation

due to contextual priming had to be insensitive to relation (they all had to use ―*‖). Parenthesized numbers indicate fan.

Example
ACT-R RML1

Retrieval Request Context Message Filters

Message Sources

Exogenous Endogenous

1
 +retrieval>
 isa c1

 type,c1

2
 +retrieval>
 isa c1

 isa c2
 k2 v2

 k2|*,v2 type,c1

3
 +retrieval>
 isa c1
 k1 v1

 k1,v1 type,c1

4
 +retrieval>
 isa c1
 k1 v1

 type,c1 k1,v1

5
 +retrieval>
 isa c1
 k1 v1

 isa c2
 k2 v2

 type,c1 k2|*,v2 k1,v1

Example
ACT-R RML1

Retrieval Request Context Message Filters

Message Sources

Exogenous Endogenous

1
+retrieval>
 ISA synonym

=goal>
 c1 whimsical(73)
 c2 mazy (60)
 c3 coquettis(31)

type,synonym
*,whimsical
*,mazy
*,coquettish

 type,synonym

2
+retrieval>
 ISA synonym

=goal>
 c1 vexing (20)
 c2 heavy (249)
 c3 operose (42)

type,synonym
*,vexing
*,heavy
*,operose

 type,synonym

3
+retrieval>
 ISA synonym

=goal>
 c1 entangle (63)
 c2 stare (65)
 c3 woo (33)

type,synonym
*,entangle
*,stare
*,woo

 type,synonym

60

