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Abstract 

To behave effectively and flexibly in complex situations, 

models specified in cognitive architectures must be able to 

store and access large amounts of declarative knowledge. 

However, as research efforts employing cognitive modeling 

grow in scope and complexity, currently available modeling 

tools, languages and cognitive architectures are being pushed 

to their practical limits. This paper describes research looking 

specifically at how a large declarative memories challenge the 

current implementation of ACT-R and describes an applied 

effort to develop an alternative implementation of ACT-R’s 

retrieval process. The alternative exploits concurrency 

features of the Erlang programming language to extend the 

practicality of ACT-R’s retrieval mechanisms to new levels of 

scale. The ideas and methods underlying the alternative 

implementation are general and illustrate how concurrency 

can accelerate calculation in other architectures struggling to 

support large associative declarative memories. 

Keywords: declarative memory; concurrent activation 

calculation; semantic networks; ACT-R; Erlang. 

Introduction 

As research efforts employing cognitive modeling grow in 

scope and complexity, available modeling tools and 

languages are being pushed to their practical limits. For 

example, the implementation of ACT-R within the Lisp 

programming language may hinder the development of 

large-scale models due to limitations in declarative storage 

capacities (Douglass, 2009). If cognitive modeling is to 

grow in scope and complexity, we must meet the challenges 

underlying these limits. 

An AFRL large-scale cognitive modeling (LSCM) 

initiative is currently exploring potential solutions to these 

challenges. The LSCM initiative is committed to integrating 

well understood mechanisms from cognitive architecture 

research into new modeling approaches that facilitate model 

scaling. For example, the empirical strength of ACT-R’s 

declarative system (Anderson, 2007) has motivated us to 

ensure that the LSCM initiative’s solutions preserve ACT-

R’s declarative memory mechanisms. 

LSCM initiative efforts to develop domain-specific 

modeling languages (DSML-s) supporting increased model 

scale and persistence involve efforts to increase the scale 

and persistence of a declarative memory system that mimics 

ACT-R’s. This paper describes recent efforts to retain and 

scale ACT-R's memory mechanisms in a modeling and 

simulation framework supporting RML1 (research modeling 

language), the first DSML developed in the LSCM 

initiative. RML1 is a generic DSML tailored to the needs of 

cognitive modeling. RML1 has a hybrid (graphical and 

textual) syntax, and executes in a runtime environment 

implemented in the Erlang programming language 

(Armstrong, 2007). 

Modeling with Large Declarative Memories 

In the following sections we provide a brief overview of 

ACT-R and describe how to extend ACT-R’s declarative 

retrieval process by ―carving it up at the joints.‖ We 

conclude this section with a discussion of replicating top-

down (i.e., endogenous) and bottom-up (i.e., exogenous) 

constraints on ACT-R’s memory retrieval process. 

Brief Overview of ACT-R 

ACT-R is a cognitive architecture for developing 

computational cognitive process models (Anderson, 2007). 

In ACT-R, cognition revolves around the interaction 

between a central production system and several modules. 

There are modules for vision, motor capabilities, memory, 

storing the model’s intentions for completing the task (i.e., 

the control state), information retrieved from memory, and a 

module for storing the mental representation of the task at 

hand (i.e., the problem state). Each module contains one or 

more buffers that can store one piece of information, or 

chunk, at a time. Modules are capable of massively parallel 

computation to obtain chunks. For example, the memory 

module can retrieve a single chunk from long-term memory 

and place it into the module’s buffer.  

Chunks are defined by the modeler to have a particular 

type, or chunk-type, and a set of key-value pairs. Retrieval 

in ACT-R is based on a combination of: (1) endogenous 

influences expressed in retrieval constraints; and (2) 

exogenous influences originating from chunks in the slots of 

buffers assigned activation weights by the modeler. When 

retrieving a chunk, the modeler must specify the type of 

chunk to retrieve, and all chunks of that chunk-type are 

candidates for retrieval. All candidates’ activations are 

computed, and the one with the highest activation is 

retrieved. Chunk activation can be exogenously influenced 

(i.e., primed) by spreading activation from other modules—

any module that contains a chunk as the value in a key-value 

pair spreads activation to related chunks. As the number of 

chunks in declarative memory increases, the number of 

candidates during retrieval also increases. As retrieval 

candidates increase, retrievals may become slow, and in 

some instances too slow to support large-scale models that 

must interact with other system components in real-time. 
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Increasing Scale by Externalizing Chunk Storage 

Our initial efforts to extend the viability of ACT-R’s 

retrieval system to large-scale modeling contexts focused on 

the storage of chunks outside of ACT-R and Lisp. Database 

management systems (DBMS) such as PostgreSQL can be 

effectively used to store a large and persistent set of ACT-R 

declarative memories (Douglass, et al, 2009). This research 

determined that services provided by the PostgreSQL 

DBMS can be integrated into ACT-R via a custom 

―persistent-DM‖ module. We found that the persistent-DM 

module greatly reduced ACT-R’s storage burden and 

significantly increased the practical size of declarative 

memory sets that could be accessed by cognitive models. 

The effectiveness of the persistent-DM module was based 

on the fact that ACT-R’s application of retrieval constraints 

mimics the behavior of a DBMS executing a SQL query. 

When the persistent-DM module is employed, requests for 

instances of a particular chunk-type possessing specific sets 

of key-value properties are translated into SQL queries and 

then executed to recover matching chunk instances from an 

external database. ―Outsourcing‖ the storage and recovery 

of matching chunks through SQL queries in this way is 

beneficial because of the capacity of PostgreSQL databases 

and the effectiveness of indexing in relational databases. 

Unfortunately, while persistent-DM assumed some of the 

retrieval burden by efficiently isolating the subset of chunks 

that had to have their activations re-calculated, the module 

simply relayed them to ACT-R’s default serial activation 

calculation mechanism. 

Carving the Retrieval Process at the Joints 

We started the development of RML1’s memory system by 

asking ourselves three questions: 

Q1.  How do the equations that explain activation and 

associative strengths in ACT-R define the fundamental 

nature of the ACT-R retrieval process? 

Q2.  How does the current ACT-R implementation 

computationally realize the retrieval process? 

Q3.  Can the fundamentals of the retrieval process be 

computationally realized in other ways? 

Q1 Human memory is more than an information storage and 

retrieval system. Likewise, declarative memory in ACT-R is 

more than just a mechanistic account of information storage 

and retrieval (Anderson, 2007). Human memory is a part of 

a system that learns and acts in the world. Human behavior 

is as flexible as it is because we know lots of things and can 

use what we know to craft contextually appropriate and 

effective actions in many different circumstances. It is not 

enough to know a lot; we also have to be able to quickly cull 

through all that we know in order to retrieve and apply the 

right knowledge given our circumstances. The crown jewels 

of ACT-R’s memory system are a set of equations 

explaining how sub-symbolic calculation, learning, and the 

utilization of activations and associative strengths enable 

these critical properties of human memory (see Anderson, et 

al., 2004 and Anderson, 2007 for detailed descriptions). The 

equations are presented in Table 1 below so that their 

details—specifically their indexing of chunks i and j—can 

be used to confirm a claim that they describe how sub-

symbolic properties related to the activations and associative 

strengths of individual chunks influence the probabilities 

and time costs of their retrievals. That is, the equations 

precisely explain how activation is calculated for individual 

chunks in what can be considered independent calculations. 

Table 1: Equations describing chunk activation. The key 

components of the equations are a single focal chunk 

indexed as i and chunks in context indexed as j. 

Common Name Equation 

Activation 𝐴𝑖 = 𝐵𝑖 +  𝑊𝑗𝑆𝑗𝑖
𝑗 ∈𝐶

 

Base-Level Learning 
𝐵𝑖 = ln   𝑡𝑘

−𝑑

𝑛

𝑘=1

  

Attention Weighting 𝑊𝑗 = 𝑊
𝑛  

Associative Strength 𝑆𝑗𝑖 = ln 𝑝𝑟𝑜𝑏 𝑖 𝑗 /𝑝𝑟𝑜𝑏 𝑖   

Retrieval Time 𝑇𝑖𝑚𝑒 = 𝐹𝑒−𝐴𝑖  
Retrieval Probability 𝑃𝑟𝑜𝑏 = 1/ 1 + 𝑒− 𝐴𝑖−𝑡 /𝑠  

 

Any declarative memory system adhering to ACT-R’s 

theory of human associative memory must minimally 

calculate each chunk’s activation according to these 

equations. The equations define a fundamental unit of 

computation scoped around each chunk in declarative 

memory and abstract away from how the process of retrieval 

executes all the chunk activation calculations underlying a 

single retrieval. 

Q2 The current ACT-R implementation (ACT-R 6) 

sequentially realizes all the chunk activation calculations 

underlying a single retrieval.  Hence, chunk activation 

calculations occur one after the other as a process, not 

described in the equations above, searches for and retrieves 

the chunk with the highest activation. To ensure that this 

point is clear, the retrieval process in ACT-R will now be 

summarized. 

Retrieval in ACT-R is influenced by bottom-up 

contextual cues and the application of top-down constraints. 

Retrievals based on top-down constraints generally proceeds 

in the following way. An ―ISA‖ property in a retrieval 

request is used to isolate type-compatible chunks in 

declarative memory into a candidate set. Slot value 

constraints representing additional properties required of a 

chunk contained in retrieval requests are then used to further 

reduce the candidate set. The activations of chunks 

surviving all these top-down constraints are then computed 

in accordance with the equations above. The chunk meeting 

all top-down retrieval constraints with the highest activation 

is returned in the retrieval buffer. 

The impact of the serial calculation of activation is 

illustrated in Figure 1 below. The top and bottom diagrams 

56



in the figure represent two extreme situations. When 

activation calculations are computed sequentially, the total 

time cost is roughly equivalent to a per-activation 

computation time, t, multiplied by the number of chunks. 

When activation calculations are computed concurrently, the 

total time cost will be slightly more than t. Given that the 

ACT-R activation equations function in the scope of single 

chunks and in so doing ―modularize‖ the calculation of 

chunk activations, we argue that the challenge to extend the 

scale of ACT-R’s memory system is really a challenge to 

maximize the concurrency of chunk activation calculation 

during retrieval events. 

 

Figure 1: Costs of serial & concurrent activation calculation. 

Q3 To find a way to incorporate concurrent activation 

calculation into the persistent-DM module, we set out to: (1) 

extend persistent-DM with the ability to compute 

activations; and (2) develop ways of partitioning databases 

across multiple PostgreSQL DBMS instances. The first of 

these challenges was low-hanging fruit; queries to an 

extended persistent-DM can now include a query capturing 

top-down retrieval constraints and a representation of 

context capturing bottom-up sources of activation. 

Retrievals executed by this version of persistent-DM isolate 

a sub-set of chunks meeting the top-down constraints, re-

compute their activations, and then return the set sorted by 

activation. Stymied by the second of these challenges, we 

turned away from trying to find ways of improving query-

based retrieval with concurrency and started researching 

more radical alternatives for realizing massively concurrent 

retrieval processes. We quickly realized that two problems 

oppose the development of a memory system utilizing 

concurrent activation calculation: 

P1.  To parallelize activation calculation, one needs a 

language supporting concurrent computation. What 

language can do this for us? 

P2.  To continue allowing retrievals to be based on top-

down retrieval constraints, we have to integrate the 

processing of top-down information with the process of 

concurrently computing chunk activations. How can a 

retrieval process utilizing concurrent activation 

calculation use top-down information and constraints? 

Concurrently Computing Activations in Erlang The 

semantic anchoring of RML1 is currently realized in a 

modeling and simulation framework developed using the 

Erlang programming language (Armstrong, 2007; Cesarini 

& Thompson, 2009). Erlang is an open-source general-

purpose functional programming language developed by 

Ericsson. Erlang is chiefly used to develop persistent, fault-

tolerant, dynamically re-configurable, soft real-time 

constrained control systems that use large databases. 

Furthermore, it supports multiple process threads and 

automatically exploits multi-core and networked computing 

resources. In Erlang, program components are represented 

as sets of separate parallel threads. Erlang manages threads 

through a middleware framework called the Open Telecom 

Platform (OTP) which simplifies the development and 

execution of programs consisting of large numbers of 

concurrent processes. Programs written in Erlang can 

contain millions of concurrent processes (Armstrong, 2007). 

RML1’s Erlang-based semantic anchoring represents 

declarative knowledge in OWL-compatible ontologies 

(Smith, Welty, & McGuiness, 2008) that describe the 

classes, class properties, object properties, data properties, 

and instances constituting a domain. Each node in a 

semantic network is realized as a separate OTP process 

thread in Erlang. These process threads maintain 

information about: (a) retrieval parameters; (b) reference 

histories; (c) last activation level; (d) lists of class, object, 

and data relations constituting the defining properties of the 

individual; and (e) lists of object relations the individual 

serves a range role in. Process threads also receive and 

respond to messages sent to them by OTP supervisor 

processes. Each individual process thread is capable of 

responding to requests to re-compute and report their 

activation. Activity spreads in RML1 semantic networks as 

messages are asynchronously exchanged between the 

process threads constituting their nodes. Since process 

threads in Erlang execute concurrently, spreading activation 

achieved through asynchronous message passing and 

activation re-computing are massively parallel. The retrieval 

of declarative knowledge from a RML1 semantic network 

involves all concurrent multi-core computation available.  

In order to maximize the parallelization of the activation 

computation, retrieval in the RML1 declarative memory 

system is based solely on the spread of activation in 

semantic networks. At first blush, it is not obvious how 

something functionally equivalent to an ACT-R top-down 

―isa‖ constraint can be obtained through bottom-up 

spreading activation. The following discussion explains how 

this is accomplished. 

Replicating Top-Down Constraints with Message 

Filters and Endogenous/Exogenous Message Sources 
Table A1 (in Appendix) shows how the behavior of top-

down retrieval request patterns in ACT-R can be replicated 

in RML1. Deliberate retrieval constraints introduce top-

down network activity into semantic networks as 

endogenous messages. Endogenous messages introduce 

network activity into semantic networks but do not convey 

weighted activation to nodes and therefore do not influence 

a receiving node’s calculation of its activation.  Contexts 

t

t

t

t

t

t

S F

t t t t t tS F

S      Start
F      Finish
t      Time to compute activation of a chunk
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introduce bottom-up network activity into semantic 

networks as exogenous messages. Exogenous messages 

function just like spreading activation in ACT-R; network 

activity introduced into semantic networks by exogenous 

sources convey weight and fan and therefore do influence a 

receiving node’s calculation and reporting of its activation. 

Message filters prevent network activity from being sent to 

nodes lacking defining properties corresponding to the 

properties in them. For example, the ―k1,v1‖ message filter 

in example 3 of Table A1, prevents the endogenous message 

―type,c1‖ from passing network activity into nodes lacking 

the ―k1,v1‖ property. 

Retrieval in RML1 proceeds in the following way: 

1)  An OTP supervisor process sends, in parallel, “spread 

network activation” endogenous and/or exogenous 

messages to nodes serving domain roles in the relations 

expressed in the messages that pass any present message 

filters. For example, in example 1 of Table A1, the OTP 

supervisor process will send a message to c1. Since 

―type,c1‖ is an endogenous message in this circumstance, 

the message will convey a weight of 0. 

2)  Nodes receiving ―spread network activation‖ messages 

relay them, in parallel, to instances serving domain roles in 

relations with them. In example 1 of Table A1, any node 

serving a domain role in the ―type,c1‖ relation will receive 

network activation. As mentioned earlier, individuals 

maintain lists of the relations they participate in with other 

individuals. Instances receiving these messages store the 

weighted activation increments they contain and notify the 

OTP supervisor that their activation has been influenced by 

network activity. Because ―weights of activation spread‖ 

incorporated into endogenous supervisor messages are 0, 

stored activation increments from endogenous sources force 

the individual to re-compute their activation but do not 

increase spreading activation. If, as is the case in example 2 

of Table A1, context produced an exogenous message 

―k2,v2‖, the ―weight of activation spread‖ incorporated into 

exogenous supervisor messages would reflect attentional 

weight and fan. 

3)  The OTP supervisor process sends, in parallel, “report 

your re-computed activation” messages to nodes that 

reported contributions to their activations. Individual 

processes receiving these messages concurrently re-compute 

their activation. Individuals that received only messages 

containing 0 weights of activation spread report activation 

values based solely on changes to their base level 

activations. 

4)  Finally, the OTP supervisor posts the defining properties 

of the node reporting the highest activation to RML1’s 

working memory. 

Retrieval in a Large Declarative Memory 

To determine the impact of concurrency in RML’s retrieval 

process, a basic comparison study was conducted. In this 

comparison study, the wall-clock retrieval times of ACT-R 

and RML1 executing retrievals in large declarative 

memories were compared. To stress test the declarative 

systems of ACT-R and RML1, portions of the Moby 

Thesaurus II synonym database were transcribed into ACT-

R’s declarative memory and RML1’s semantic network. 

The Moby Thesaurus II contains 30,260 root words that are 

related to each other by 2,520,264 synonyms. Compound 

root words were excluded from the comparison study. This 

exclusion process reduced the number of root words to 

24,890. Five different declarative memory sets were created 

using this reduced set. Sets consisted of proportions of the 

reduced set of root words and the synonyms relating them. 

Table 2 below summarizes the properties of these sub-sets, 

and Figure 2 represents a portion of the smallest of these 

sub-sets. 

Table 2: Properties of the synonym sets used in the 

comparison study.  

Proportion 20% 25% 33% 50% 100%

Synonyms 53,560 77,313 145,073 318,435 1,281,763  

 

Figure 2: Portion of the Moby II semantic network showing 

a subset of the root words and synonyms related to the root 

words ―coquettish‖, ―mazy‖, and ―whimsical‖. 29, 52, and 

67 word/syn relations involving coquettish, mazy and 

whimsical are not shown. 

To create a declarative memory in ACT-R, instances of a 

root_word chunk-type were used to represent root words 

and instances of a synonym chunk-type were used to 

represent word/synonym relationships between root words. 

Figure 3 shows chunk types and chunk instances that would 

allow an ACT-R model to represent and process some of the 

root words and relations displayed in Figure 2. To create an 

ontology-based semantic network in RML1, root_word and 

synonym classes were defined. Object properties necessary 

to relate words to syn in synonym instances were also 

defined. Figure 3 shows the definitions of the root_word 

and synonym classes and definitions of employed object and 
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data properties. Representing these in an ontology allows 

RML1’s runtime environment to search the semantic 

network and make inferences about arbitrary descriptions or 

entities lacking class identifiers. 

 

 

Figure 3: ACT-R (top) and RML1 (bottom) root_words and 

synonyms matching some of the Figure 2 information.  Note 

the object and data property specifications in RML1 . 

Equipment 

A Dell Precision T7500 was used in the comparison study. 

The Dell’s physical configuration included 2 quad core Intel 

3.33Ghz Xeon (W5590) CPUs and 48 GiB of RAM. The 

computer’s software configuration included the openSUSE 

11.2 Linux-based OS, SBCL 1.0.35 running ACT-R6 r845, 

and Erlang R13B04. 

Procedures 

Context-sensitive retrievals of chunks from the sub-sets of 

the Moby Thesaurus II were carried out in ACT-R and 

RML1 using the request patterns and context representation 

shown in Table A2.  Real-time costs of executing retrievals 

in ACT-R were measured by: (1) placing three chunks 

corresponding to root word chunks into slots of a goal 

chunk representing retrieval context; (2) initiating a retrieval 

request corresponding to the ―+retrieval> isa synomym‖ 

request pattern; and (3) measuring elapsed system time until 

the retrieval process returned a chunk. The real-time costs of 

executing retrievals in RML1 were measured by: (1) 

distributing messages from endogenous and exogenous 

message sources that passed through message filters into the 

semantic network; and (2) measuring elapsed time until the 

OTP supervisor process managing the retrieval determined 

the network node with the highest activation. 

Results 

The same retrieval parameters were used in both systems: 

maximum associative strength was set to 5.0, the base-level 

constant was set to 0, and the base-level learning rate was 

set to 0.5. All chunks were initialized with 7 references. 

Retrievals executed through ACT-R and RML1 returned 

the same synonym chunks, computed equivalent chunk 

activations, and retrieval latencies. The use of the ―isa 

synonym‖ constraint in the ACT-R retrieval pattern required 

that the activations of all synonym chunks be calculated 

before the retrieval process could finish. Treating ―type, 

synonym‖ as if it were from an endogenous message in the 

RML1 retrieval process correspondingly lead to all 

synonym instances re-computing and reporting their 

activations. Table 3 summarizes the results of the 

comparison study. 

Table 3: ACT-R and RML1 performance. Times (seconds) 

represent average wall-clock time to execute 10 retrievals. 

20% 25% 33% 50% 100%

Synonyms 53,560 77,313 145,073 318,435 1,281,763

ACT-R 3.22 6.00 18.63 86.39 NA

RML1 0.44 0.64 1.21 2.65 10.90

 

The most important thing to notice in Table 3 is that while 

ACT-R (SBCL) performance time is increasing at a rate 

faster than the increase in chunks, RML1 (Erlang) is 

essentially scaling linearly. Added concurrency from 

additional processor cores will further improve the relative 

performance of RML1. 

Conclusion 

The declarative system underneath RML1 discussed in this 

paper is interesting because it: (1) does not depend on a top-

(chunk-type root_word name)

(chunk-type synonym word syn)

(add-dm
...

(coquettish ISA root_word name "coquettish")

(inconstant ISA root_word name "inconstant")

(flighty ISA root_word name "flighty")

(mazy ISA root_word name "mazy")

(whimsical ISA root_word name "whimsical")

...

(syn1 ISA synonym 

word coquettish

syn flighty)

(syn2 ISA synonym 
word coquettish

syn inconstant)

(syn3 ISA synonym 

word flighty

syn mazy)

...

)

(set-all-base-levels 7 0)

{class, {root_word, [{subclass_of, thing}]}}.

{class, {synonym, [{subclass_of, relation}]}}.

{object_property,

{word, [{sub_property_of, base_object_property},

{domain, synonym}, {range, root_word}]}}.

{object_property,

{syn, [{sub_property_of, base_object_property},

{domain, synonym}, {range, root_word}]}}.

{data_property,

{name, [{sub_property_of, base_data_property},

{domain, root_word}, {range, string}]}}.

{individual,

{coquettish, [{type, root_word}], [],

[{name, "coquettish"}], 7}}.

{individual,

{inconstant, [{type, root_word}], [],

[{name, "inconstant"}], 7}}.

{individual,

{mazy, [{type, root_word}], [],

[{name, "mazy"}], 7}}.

{individual,

{whimsical, [{type, root_word}], [],

[{name, "whimsical"}], 7}}.

{individual,

{s1, [{type, synonym}],

[{word, coquettish}, {syn, inconstant}], [], 7}}.

{individual,

{s2, [{type, synonym}],

[{word, inconstant}, {syn, coquettish}], [], 7}}.

{individual,

{s3, [{type, synonym}],

[{word, mazy}, {syn, whimsical}], [], 7}}.

{individual,

{s4, [{type, synonym}],

[{word, whimsical}, {syn, mazy}], [], 7}}.

59



down retrieval process that functions like a query against a 

relational database followed by activation calculation; (2) is 

capable of producing behavior that is functionally 

indistinguishable from ACT-R; (3) exploits concurrency in 

Erlang and therefore scales nearly linearly; (4) is part of the 

runtime environment supporting RML1, the first DSML 

researched and developed by the LSCM initiative. If 

cognitive modeling is to successfully grow in scope and 

complexity, it must find effective ways of meeting the 

challenges associated with maintaining and using large 

declarative memories. RML1’s declarative system illustrates 

how concurrent knowledge activation calculation in large 

declarative memories can be technically realized and is 

therefore progress towards meeting LSCM challenges 

associated with modeling human memory on a large scale. 
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Appendix 

Table A1. Examples of how query-based retrieval behavior in ACT-R can be replicated using message passing in RML1 

semantic networks. The character ―*‖ is used in messages to represent a wildcard that is free to match against any relation. 

The ―*‖ is necessary because contextual priming in ACT-R is insensitive to the key component of the key/value pairs in 

context chunks. Notice that examples 3 and 4 yield the same retrieval behavior while using the ―type,c1‖ and ―k1,v1‖ 

messages in different ways. Since it is likely to be the case that the fan of v1 is less than the fan of c1, treating the ―k1,v1‖ 

message as endogenous will greatly reduce the spread of network activity and therefore expedite retrieval. 

 

Table A2. ACT-R retrieval requests and contexts & RML1 message filters and message sources employed in the declarative 

memory system comparison study. To ensure the fairness of the comparison, all exogenous messages conveying activation 

due to contextual priming had to be insensitive to relation (they all had to use ―*‖). Parenthesized numbers indicate fan. 

 

Example 
ACT-R RML1 

Retrieval Request Context Message Filters 

Message Sources 

Exogenous Endogenous 

1 
 +retrieval> 
  isa   c1 

    type,c1 

2 
 +retrieval> 
  isa   c1 

 isa   c2 
  k2   v2 

  k2|*,v2  type,c1 

3 
 +retrieval> 
  isa   c1 
   k1   v1 

    k1,v1   type,c1 

4 
 +retrieval> 
  isa   c1 
   k1   v1 

  type,c1     k1,v1 

5 
 +retrieval> 
  isa   c1 
   k1   v1 

 isa   c2 
  k2   v2 

 type,c1 k2|*,v2    k1,v1 

 

Example 
ACT-R RML1 

Retrieval Request Context Message Filters 

Message Sources 

Exogenous Endogenous 

1 
+retrieval> 
 ISA synonym 

=goal> 
 c1  whimsical(73) 
 c2  mazy     (60) 
 c3  coquettis(31) 

type,synonym 
*,whimsical 
*,mazy 
*,coquettish 

 type,synonym 

2 
+retrieval> 
 ISA synonym 

=goal> 
 c1  vexing   (20) 
 c2  heavy   (249) 
 c3  operose  (42) 

type,synonym 
*,vexing 
*,heavy 
*,operose 

 type,synonym 

3 
+retrieval> 
 ISA synonym 

=goal> 
 c1  entangle (63) 
 c2  stare    (65) 
 c3  woo      (33) 

type,synonym 
*,entangle 
*,stare 
*,woo 

 type,synonym 
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