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Abstract 
Computer simulations, or microworlds, have been used for 
studying various topics including problem solving. This work 
investigates strategies for complex, dynamic problem solving 
in a fire-fighting microworld. Using data from a study by 
Cañas, Antolí, Fajardo & Salmerón (2005), an ACT-R 
cognitive model is developed with the aim of providing 
insight into the development and selection of strategies 
participants use. One particular behavior observed in 
participants when trained repetitively on the same scenario, 
the creation of a fire-break barrier to prevent the fire 
spreading, is discussed. It was found that selection of a 
particular strategy depends on the fine-tuning of ACT-R 
production rule utilities as a consequence of environmental 
rewards, highlighting the role of reward size and timing. The 
model is able to capture various aspects of the data by 
promoting a free competition of small blocks of behavior 
based on rational analysis. A key finding is that good 
performance is linked to effective combination of strategic 
control with attention to changing task demands reflecting 
time and care taken in informing and effecting action. 

Keywords: Cognitive Modeling; ACT-R; problem solving; 
strategy; microworlds.  

Introduction 
Microworlds are computer simulations that represent a 
middle point between naturalistic scenarios and laboratory 
tasks (Brehmer and Dörner, 1993). Although microworlds 
are relatively simple, they embody the essential 
characteristics of real-world dynamic decision-making 
environments (Gonzalez, Vanyukov and Martin, 2005). 
Microworlds allow for an economic and standardized 
presentation of scenarios, data registration and computing of 
results (Frensch and Funke, 1995; Brehmer and Dörner, 
1993). These tasks have been used for studying various 
domains including problem solving (Frensch and Funke, 
1995; Brehmer and Dörner 1993; Taatgen 2005).  

Microworlds have three characteristics. Firstly, 
complexity, owing to the number of elements and number 
(and nature) of their interrelationship (Frensch and Funke, 
1995). Second, lack of transparency; the problem solver 
does not have access to all relevant task information, 
making interaction with the world necessary for knowledge 
requirements. Last, the problem state changes both 
independently and as a consequence of the participant’s 
actions. Microworlds consequently place a variety of 
cognitive demands on the problem solver. According to 

Anderson et al. (2004) dynamic tasks require considerable 
goal-directed processing within demanding perceptual 
displays and execution of motor commands under severe 
constraints. They require continuous processing of feedback 
in order to select appropriate actions within an ever-
changing situation (Brehmer and Dörner, 1993). This paper 
focuses on the demands posed by these dynamic task 
characteristics, in particular the way performance feedback 
from a dynamic environment is processed, and how this 
allows the consolidation of strategies. 

Frensch and Funke (1995) suggest that it is important to 
understand the process of Complex Problem Solving (CPS), 
rather than the product; this process is an interaction 
between the problem solver, the task and the environment. 
A cognitive model is able to reveal the internal processes for 
selecting actions together with their interaction with the 
environment, increasing our understanding of these 
processes. Cognitive modeling has been used in dynamic 
environments such as air traffic control (Taatgen, 2005). 
The work presented here uses the FireChief fire-fighting 
microworld (Omodei & Wearing, 1995).  

The FireChief Microworld 
FireChief participants combat fires spreading in a landscape 
using truck and copter units. Trials last 260 seconds. A 
FireChief scenario is specified by a variety of properties 
such as landscape distribution of forest, clearings and 
property, the number and position of initial fires, the 
direction and strength of the wind, and the initial position of 
fire-fighting units. Figure 1 shows the central cells of a 
FireChief trial display converted for model use. Copters 
(shown as CR) and trucks (TR) can move between 
landscape grid cells (R, L & H) and can Drop Water (DW) 
over cells to extinguish fires (Fn where n indicates fire 
intensity). Copters are three times faster than trucks and 
cannot be destroyed by fire, but a truck’s water tanks have 
twice the capacity and are able to Control Fire (CF) by 
creating a fire-break. Commands are issued through a 
combination of mouse and keyboard operations and their 
execution takes a fixed amount of time, 4 seconds to DW, 2 
seconds to CF, and a variable amount of time to Move a unit 
depending on distance and type of unit. Wind strength and 
direction are in the upper right-hand corner of the display. 

FireChief is a dynamic decision-making problem solving 
task environment where a series of interdependent decisions 
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are required to reach the goal, the environment changes over 
time, and user actions change the state of the world 
(Gonzalez et al., 2005). The problem solver is engaged in a 
strategic situation where he or she has control over a limited 
number of fire fighting units and has to use them to 
accomplish one mission: to fight and quell the fire. Task 
performance is inversely proportional to the number of cells 
destroyed by fire at the end of the trial.   

 
 

Figure 1: Central cells of the model version of a FireChief 
trial display using ‘buttons’ (Lisp) 

ACT-R Architecture 
The CPS model is implemented in ACT-R 6.0 (Anderson et 
al., 2004). ACT-R is divided into various modules 
according to the kind of information they process: a visual 
module for identifying objects in the visual field (in Figure 
1 the focus of attention is on the cell in the fourth row of the 
penultimate column), a manual module for controlling the 
hands (the mouse pointer is located in the same cell), a 
declarative module for retrieving information from memory, 
and a goal and imaginary modules for keeping track of 
current goals and intentions. Communication between 
modules is achieved through buffers where the content of 
any buffer is limited to a single declarative unit of 
knowledge, a ‘chunk’. Thus the system can only respond to 
a limited amount of information. Behavior in ACT-R occurs 
through interaction of its specialized modules via the 
buffers, coordinated by a central production system.  

There are two types of knowledge in ACT-R: chunks 
encode declarative knowledge whereas procedural 
knowledge is represented by production rules, where each 
rule corresponds to a cognitive processing step. Each ACT-
R production has two elements: the condition, a 
combination of states from the different buffers, and an 
action, which can perform transformations over the state of 
buffers and trigger actions in modules. ACT-R functionality 
is achieved through many mechanisms, but two are of the 
utmost importance in this model: utility and reward. 

Utility designates the value of executing a rule; it 
represents the perceived value of a production and is 
updated by rewards from the environment. Utility of 
productions is compared during the process of conflict 
resolution where only the rule with the highest utility is 

acted upon. From a computational perspective, a participant 
can be considered as a collection of utility values. By 
interacting with FireChief, these utility values are tuned 
throughout a sequence of trials in a unique fashion within 
constraints imposed by the properties of the FireChief task, 
the procedural knowledge represented by rules, and rewards 
from the environment. The combination of ACT-R utility 
learning mechanisms with the dynamic nature of FireChief 
means the model can run a number of times under the same 
task conditions with the same knowledge and yet produce a 
different pattern of behavior each time. Rewards are the 
ACT-R mechanism for giving the model feedback from the 
environment. When a reward is triggered the utilities of all 
productions that have fired since the last reward are 
updated. The amount and distribution of rewards have an 
important impact on model’s behavior (Janssen, Gray and 
Schoelles, 2008).  

Human Study Data 
The data used for specifying and fitting the CPS model 
comes from a study by Cañas et al. (2005). Those 
participants trained on the same, reliably predictable 
FireChief scenario for 16 trials were found to increasingly 
preferentially select the fire-fighting strategy that achieved 
the best outcome. This paper focuses on modeling strategy 
selection during constant training in order to understand this 
process and thereby gain insight into strategy formation. 
The constant scenario is characterized by a strong, constant 
easterly wind. Participants are limited to 2 copters and 2 
trucks. To begin with there are two groups of fire in close 
proximity which quickly spread eastward (Figure 1 shows 
their initial distribution). A variety of different strategies can 
be used to stop the fire, as described in the next section.  

Strategy Use 
In total, 1728 protocols from 72 participants were analysed 
to identify four main strategies. In the Non-Barrier strategy 
CF commands are issued with noticeable spatial dispersion 
and are interleaved with DW commands. In the Stop 
strategy DW commands are used alone and are issued over 
the most intense fires within sufficient proximity to stop the 
fire. In the Follow strategy only DW commands are used but 
they do not target the strongest fires nor are they issued in 
close proximity to each other. The most structured strategy 
is called Barrier and it turns out to be very effective in the 
constant training scenario; it is used twice as often (50 vs. 
27) by the top four performers compared to the four worst. 
For these reasons it is discussed here in more detail.   

The Barrier strategy 
The Barrier strategy presents a very characteristic way of 
dealing with the fire: the issuing of an ordered pattern of CF 
commands in a shape, similar to a barrier, intended to stop 
the fire spreading. There are many forms in which the 
barrier is created but a semicircle or straight line is the most 
frequent. In Figure 2 the barrier has the form of a semicircle 
where the black squares represent CF commands and the 
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grey squares represent DW commands. The strategy recruits 
top-down processes in constructing a fire-break but is 
sensitive to bottom-up perceptual processes so the final 
form of the barrier is a function of the shape of the fire that 
is being controlled.  
 

 
 

Figure 2: A typical Barrier strategy formation. 

The Cognitive Model 
To allow interaction between ACT-R and the FireChief task 
a Lisp version of FireChief was developed following the 
original specification provided in the FireChief manual 
(Omodei & Wearing, 1993). This is able to control all 
relevant aspects of the task: the landscape, development of 
fire, execution of commands, and performance calculations. 
Before running the model a FireChief scenario is loaded in 
an experimental window in the form of a matrix of multi-
colored labeled buttons. Buttons enable interaction between 
the model and the experimental window by means of mouse 
and keyboard commands 
   The model implements all four main strategies, deciding 
which to use (based on initial utility comparisons) or 
switching to another (as utilities change) during the trial if 
the fire is not under control. An ineffective strategy, poorly 
rewarded, can be abandoned at any point, therefore. A 
chosen strategy is held in the imaginal buffer and affects 
model behavior by defining, for example, whether the 
model will use a mixture of DW and CF commands, 
whether or not a barrier will be created, or which ways of 
attacking the fire are preferred. In the very first trial the 
rules that select a strategy have an initial random utility 
determined by the standard ACT-R utility equation that has 
a random component. After the trial ends the utility of these 
productions is modified according to the final result. In this 
way, the actual means of executing a strategy emerges by 
rewarding certain rules over others (so a strategy is more 
precisely a set of strategies manifesting similar behaviour). 

Creating a barrier 
The functional block of rules described here belong to the 
set of strategies for creating barriers (see Figure 3). These 
rules represent a small subset of all the productions that are 
available to the model which is able to select and perform 
any of the four main strategies identified from the human 
data analysis. A FireChief trial lasts 260 seconds and a 

typical barrier is created in 60 seconds. Each cell in a barrier 
requires a Move followed by a CF command and the 
average number of grid cells needed for a barrier is 15. The 
average number of commands in a trial is 110. 

First the model must specify a starting point for the 
barrier. This will depend upon the current state of fire and 
wind conditions. Second, the location of the next section of 
the barrier must be determined. A design decision was that 
the form of the barrier should be the result of a competition 
for locating the next cell of the barrier; top-down and 
bottom-up processes compete through the ACT-R conflict 
resolution mechanism. The selection of a target cell follows 
a process in which the candidate cell is proposed and then 
various tests (based on perceptual actions) are conducted. 
Third, a truck is moved to the selected cell before executing 
a CF command comprising a sequence of steps: locate the 
target, store location of target in working memory, find a 
truck, attend the unit, move the cursor to the unit, click the 
unit, attend target, move mouse to target, click mouse. Of 
these actions moving a cursor shows the highest time 
variability in the model (this information is not recorded in 
the human study protocols) stressing its importance in the 
total latency of the command and its corresponding 
importance to overall performance. When the truck has 
finished moving a CF command can be initiated. Fourth, the 
status of the barrier is monitored. Eventually, the barrier is 
considered complete when the fire-break is sufficient to 
contain the fire. The shape of the resulting barrier is a 
product of competition between various rules and the 
reward they receive when executing commands.  

In the excerpt shown in Figure 3, the model is following 
the Barrier strategy and has just started a Move command 
with a truck. The current intention of the model is to create a 
fire-break barrier using CF commands. In step 1 the model 
must choose between waiting for the truck that has initiated 
its movement (and is disabled until it arrives) or using the 
other truck. In this step the utilities of productions 1-A and 
1-B are compared and the one with the highest expected 
value is fired. In this case the model decides to wait. In step 
2, the model searches for a visual-location that satisfies a set 
of constraints. In this example the model is verifying if the 
truck has arrived at its destination. The first constraint is 
spatial: the column and row of the destination cell. The 
second constraint is graphical: the cell must have a light-
grey color (if the destination cell is white it means that the 
truck is still moving). The result of this search determines 
step 3. If the truck has not yet arrived, the model returns to 
step 1. When the model detects that the truck has arrived at 
its destination a shift of attention is made to that location. At 
the end of this attention shift the visual buffer is loaded with 
a chunk representing the content of the cell, namely the type 
of landscape and whether the cell is on fire (plus its 
intensity). Step 4 starts by checking whether the visual 
chunk encoded in the visual buffer is a product of an explicit 
shift of attention or the product of buffer stuffing. Buffer 
stuffing is an ACT-R mechanism in which a chunk is stored 
in the visual buffer without an explicit request from a 
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production rule. This can be a recurrent source of distraction 
for the visual system but also allows the detection of 
unforeseen events (for example new fires appearing in the 
scenario). In this example, if the model is distracted a visual 
chunk (that does not represent the location details for where 
the CF is going to be executed) is placed in the visual 
buffer. If the model proceeds with step 4 it will move the 
mouse pointer to the cell that distracted its attention instead 
of the correct cell. If the visual element encoded in the 
visual buffer is a product of the explicit attention shift 
executed in step 3, the CF command can be applied there 
because now the unit is in position. Before issuing a CF 
command the mouse pointer must be located over the truck, 
so step 4 initiates a mouse movement towards the attended 
cell. During this time the target cell may catch fire; in this 
case the model aborts the execution of the CF command. In 
step 5, after the mouse movement is complete, the CF 
command is initiated by pressing a key. In the normal flow 
of events the CF command would start after the click. 
Figure 3 shows a different outcome: just after rule 5-A fires 
the target cell catches fire, rendering the execution of a CF 
command impossible and consequently an alarm is emitted. 
Following this, the model is able to detect this alarm and, 
making use of the contents of the imaginal buffer, can select 
an appropriate course of action based on its strategy choice.  

 

 
 

Figure 3: Sequence of Barrier strategy rules 
 

A model run lasts 4160 seconds (16 sessions of 260 
seconds). The model was run 40 times, following the same 
experimental design as in the Cañas et al. (2005) study. The 
data generated by the model provides a complete protocol of 
interaction with FireChief, as for each human participant, as 
well as a detailed trace of the operations being executed 
inside its various modules. 

Data Fitting 
During initial development, the simplest natural model 

was implemented based on a GOMS (Card, Moran, and 
Newell, 1983) analysis of the task and then fitted to the 
human study data. This initial model was highly efficient: 

all units were used all the time so time wasted was 
negligible. This initial model also followed a rigid strategy 
specification; however, the data reveals that participants do 
not use time as efficiently as in the initial model nor do they 
repeatedly execute the same strategy, making the 
importance of achieving flexibility in behavior evident. The 
approach adopted was to provide the model with complete 
knowledge about all the available strategies (cf. Gray & 
Boehm-Davis, 2000) but to allow them to compete freely 
based on their perceived utility. 

Various reward schemes were tried, the most successful 
being the one that focuses on individual commands. In the 
‘single reward’ scheme a reward (based on final 
performance) is given at the end of the trial. In the ‘reward 
sub-task’ scheme the completion of salient tasks is 
rewarded. For example, in the Barrier strategy stages are 
completion of a barrier, refilling a unit, or extinction of the 
fire. The problem with both these schemes is that, because 
several hundreds of rules may fire between rewards, the 
utility values of the most recent rules are changed only. This 
affects the model’s behavior because the rules responsible 
for achieving good performance may not receive the proper 
reward and hence appropriate learning is deterred. In the 
scheme selected for use here positive rewards are awarded 
for successfully completing individual commands and 
negative rewards for executing unsuccessful commands and 
wasting time. Executing Move and CF commands generates 
a fixed amount of reward but the reward of a DW command 
is a function of the intensity of the fire that is extinguished.  

In fitting the model there was no attempt to obtain the 
exact behavior of any individual; rather, data fitting centered 
on identifying decision points, encoding rules for executing 
actions and assigning rewards.  

Results 
Three metrics are used here to compare behaviour: task 
performance (reflecting appropriate strategy use); command 
duration (reflecting underlying cognitive and other 
processing steps); and interactions between commands 
(reflecting performance-related functional relationships 
between the Move and the CF and DW commands). There 
are other metrics not discussed here.  

 

 
Figure 4: Comparison of performance between model and 

Cañas et al (2005) study participants 
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Figure 4 compares performance in the constant training 
condition for participants and the model. As can be seen, the 
model is able to replicate performance levels and also 
capture the incremental improvement in performance 
(R=.538). A significant performance increment was 
obtained by comparing the first and last four trials for both 
participants and the model.  (F(1,33)=4.417, p<.05 and 
F(1,33)=5.17 p<.05 respectively).  

 
  Performance  Frequency(%) 

Strategy  Data  Model  Data  Model 

Barrier  81.59  81.05  0.65  0.66 

NonBarrier  72.38  71.74  0.17  0.18 

Stop  91.98  71.3  0.02  0.11 

Follow  57.69  66.42  0.16  0.06 
 

Table 1: Strategy use during constant training trials 
 

Table 1 shows that Barrier is the most frequently used 
strategy during constant training1. Due to the high wind 
strength in the constant training scenario it is very difficult 
to stop the fire using DW commands only.  
  

 
 

Figure 5: Increase in production utilities during 
consolidation of the Barrier strategy 

 
A typical run of the model involves around 200 decisions, 
and the execution of each decision requires between 1 to 6 
rules. On average the model executes 103 commands and 
participants execute 110 commands per trial. The model 
improves performance due to the tuning of its production 
utilities to the constant training trial scenario. Figure 5 
shows how the utility of productions related to the creation 
of the barrier steadily increases as trials are completed. This 
continuous increment of utility values implies that FireChief 
commands are being completed with success with more 
frequency over trial runs.   

                                                             
1 The good performance shown in the human data for the Stop 

strategy is based solely on two participants who used it extremely 
successfully from the outset whilst other less proficient participants 
rapidly abandoned it in favour of more reliable strategies. 

Good vs. Bad Performers 
A comparison of the best and worst performers in the 
constant training condition is presented with the aim of 
showing how utility values can be used for understanding 
more about participant behavior. Performance metrics for 
the top four participants in the constant training group are 
compared with the worst four participants and the same is 
done with model data. The best performers use the Barrier 
strategy twice as often as the worst performers (50 vs. 27 
times) and performers/model-runs have an average 
performance per trial of 86.80/87.41 while the worst 
performers have an average performance of 70.91/71.80 
when using this strategy.  
   All participants and model-runs, take a similar amount of 
time to issue a CF command that forms part of a fire-break 
barrier (F(78,1)=.637, p=.427) and (F(81,1)=1.792, p=.185), 
so the performance differences do not lie here. However, 
there is a functional dependence between moving a unit and 
issuing a CF command. Before executing a CF command 
the truck must be moved to the right place. The model 
embodies the assumption that the decision about where to 
move the truck is taken when the execution of the 
movement is initiated. There is a significant difference 
between the best and worst participants in the time it takes 
to execute a movement prior to issuing a CF command 
when forming a barrier (F(1260,1)=67.980, p<.001). The 
model captures latency times for the best performers only; 
worst performers spend much less time on this activity than 
the model. The best approximation to worst performance 
provided by the model is to execute only a single perceptual 
action to ascertain the fire location without checking 
whether the target fire-break cell is on fire. The model uses 
the fire-front for selecting where in a particular row the next 
fire-break cell should be, and poor performers often get this 
wrong (see next section). Even so, the model remains slower 
than participants by 800ms. on average. Even if all 
perceptual and cognitive processing could be removed from 
the model it cannot reduce the time taken by a sufficient 
amount to match human latencies. An explanation for this 
could be connected to the duration of motor commands: a 
Move command requires two key-presses and two mouse 
pointer moves. Perhaps poor performers execute these 
actions with more hastiness. Evidence to support or refute 
this explanation is subject to ongoing research 

Utility profile 
With the aim of gaining insight into what differentiates best 
and worst performers, two profiles were created based on 
utility values for each group from the model run. To obtain 
the profiles, the utility of relevant productions for each 
group is queried at the end of the training phase and 
averaged. In doing this, the comparison is focused only on 
the rules relating to the creation of a barrier: the way trucks 
are used, how they are moved, and how the barrier is 
created.  

The comparison shows that the most striking difference 
between good and bad performers is that good performers 
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successfully combine top-down and bottom-up processes to 
create a barrier, while the worst performers apply only top-
down processes successfully, failing to combine them well 
with bottom-up processes so that cells selected for the fire-
break prove less effective. The key differences are that the 
best performers pay more attention to the fire-front, and also 
that they wait for the trucks to finish their (short) 
movements before executing a CF command, thereby 
completing the sequence of commands successfully. These 
differences can be identified by looking at the utility values 
of the productions that compete at the relevant decision 
points (as in Figure 5).  

Discussion 
This paper is focused on the adaptive selection of strategies 
for fire fighting with the aim of demonstrating how 
cognitive modeling can improve our understanding of 
problem solving behavior when interacting with dynamic 
microworlds, with implications for real-world complex 
problem solving. The model continuously interleaves 
cognitive with perceptual-motor operations, selects different 
strategies and implements them according to the reward 
structure of the task. A particular implementation of a 
strategy depends on the fine-tuning of ACT-R production 
rule utilities as a consequence of environmental rewards and 
thus is a product of both the configuration of the trial (in this 
case the constant training trial) and the history of 
interactions between problem solver and task (which is 
stored in the collection of utility values). As noted by Cañas 
et al. (2005) the constant training condition allows 
participants to consolidate strategies (see Figure 5). 

The most important learning mechanism for the model is 
the one that updates utility. The main objective during the 
fitting of the model was to allow rules to be rewarded (or 
punished) by their effects in the environment, however the 
set of available strategies was not altered. In other words, 
fitting the model was restricted to affecting the competition 
between strategies.  

This work highlights the role of size and location of 
rewards for strategy selection. As pointed out by Janssen, 
Gray & Schoelles (2008) the definition of reward has an 
important influence on model behavior. Due to the large 
number of rules being fired in each trial, it is necessary to 
arrive to an appropriate reward frequency to enable 
appropriate learning. Rewarding productions for their 
effectiveness in successfully completing individual 
commands seems a good criterion; however, in doing this it 
is important to identify where cognitive effort is made. In 
the case of FireChief relevant cognitive effort for e.g., 
placing a new section of barrier, is traced to the time a 
sequence of actions is initiated prior to the final successful 
movement being executed, and not just when that final CF 
command is issued (that is, there is a causal link between 
the CF command and those actions previously taken).  

The process by which a barrier is created is only one 
amongst many others that occur during a model run. A 
similar analysis based on utility comparisons can be carried 

out for other strategies by identifying the rules that govern 
them. Understanding strategy selection as a consequence of 
previously learned utility also offers a means to understand 
more about performance differences. Worst performers 
reflect a different pattern of utility values in rules used for 
the creation of the fire barrier, owing to impoverished 
attention to the dynamic problem solving state and apparent 
lack of care in issuing commands. Overall the work 
presented demonstrates that complex dynamic tasks can be 
fruitfully explored through a cognitive modeling approach. 
By providing a loose strategy definition the model is able to 
implement complex patterns of behaviour which in turn are 
able to successfully stop the fire while replicating many 
other aspects of the human study data. 
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