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Abstract 
The ACT-R cognitive theory models forgetting in general with a 
constant “decay due to passage of time” parameter. However, this is 
not sufficient to predict learning for frequently executed tasks in 
dense arrangements of items. Prominent examples are two-
dimensional location learning in finding keys on a keyboard or 
clicking on items on a web page or in a graphical user interface. Our 
work presents a new way to theoretically model the effect of 
Proactive Interference, i.e. the effect of the history of events on 
location learning, through an extension to ACT-R’s mathematical 
model of declarative memory strength. It predicts that each time an 
item is searched for and found, the item gets “stronger”, i.e. easier to 
remember. However, this strength diminishes not only through the 
passage of time, but also due to interference from other (non-target) 
items that have been encountered in the past. We tested the 
predictions of our new model against empirical measurements from 
two previous studies that involve simple visual search and selection. 
The predictions fit the experimental data very well. 
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Introduction 
Forgetting occurs not only due to passage of time but also through 
interference from information learned at other times (Wickens & 
Hollands, 2000, p. 252). Proactive interference (PI) is one 
explanation for this phenomenon, where some activity prior to 
encoding the target disrupts the retrieval of that target (Underwood, 
1957; Keppel & Underwood, 1962).  

Proactive Interference (PI) effects have been shown to be 
relevant for two-dimensional spatial memory tasks (Leung & Zhang, 
2004). Spatial knowledge in two-dimensional spaces is built up 
primarily through interaction. That is, people remember locations 
after having had experience with that location (Darken and Sibert, 
1996). When people are completely new to a spatial layout, such as a 
new grid-like arrangement of characters on a keyboard or a new 
arrangement of city names in a list, they will resort to visual search 
for the target stimulus. In the process of searching for the target, they 
may come across multiple non-target stimuli, i.e. irrelevant characters 
or city-names before they arrive at the target. These irrelevant stimuli 
get visually encoded during the visual search for the target. As a 
consequence, these non-target items, often called distractors, will 
interfere with the encoding of the memory for the target item. 

The aim of our work is to model the effect of this PI together 
with the effect of the passage of time on the learning of spatially 
stable, two-dimensional layouts. More precisely, we limit ourselves 
to grid layouts in graphical user interfaces or keyboards. We choose 
the ACT-R cognitive theory (Anderson & Lebiere, 1998) as our 
mathematical modeling foundation.  

The current ACT-R theory models PI through the probability of 
recall using a soft-max equation (Altmann & Schunn, 2002). 
However, previous work has established that latency to recall, i.e. 
reaction time, is a more sensitive indicator of proactive interference 
(Wixted & Rohrer, 1993, p. 1034) or interference in general 

(Anderson, 1983, pp. 271-272). Motivated by this fact, we modify 
ACT-R to generate better predictions of PI through a new model. We 
accomplish this as follows: 1) we replace the standard decay constant 
of the base-level activation equation of ACT-R theory with two 
terms – a constant term and a varying term. The constant term models 
the decline of memory strength with time, thereby preserving the 
standard notion of decay in ACT-R theory. The new varying term 
adds a function that depends on the proportion of distractor items that 
get visually encoded prior to encoding the target item. Thus, this 
newly extended model of base-level memory activation accounts for 
the decline of memory strength of a target item not only due to 
passage of time but also due to the number of distractors visually 
encoded while searching for the target. The result of this new 
activation function, later called PI activation equation, is then used by 
ACT-R to predict the (recognition or recall) reaction time, and 
therefore we generate more accurate predictions. 2) we compare the 
fit of reaction time responses, as opposed to recall probability 
responses, arising from the newly extended model of memory 
strength against empirical data from two previous studies involving 
visual search in two-dimensional layouts. This is a first step towards 
validating the new model. We choose studies involving visual search 
since repeated search for items leads to learning of the respective 
locations, and this learning process is impeded by the PI phenomenon 
owing to attention given to distractor items during that search. 

We calculate the theoretical predictions for the empirical data as 
described by the equations presented in this paper through an Excel 
spreadsheet. 

 
ACT-R Theory 

The ACT-R cognitive theory (Anderson and Lebiere, 1998) describes 
a modular system that aims to replicate the human mind. It can be 
viewed from two perspectives: one, as a computer program that 
simulates the dynamic behavior of the mind; second, as a framework 
of mathematical equations that models the neural computations in 
order to realize human dynamic behavior. 

Viewed from the perspective of a computer program, the ACT-R 
system is composed of memory, perceptual, and motor modules. The 
memory modules consist of a procedural memory and a declarative 
memory. The procedural memory is a subsystem that consists of a set 
of production rules and a computational engine for interpreting those 
rules. The production rules coordinate cognition, perception and 
motor actions. The declarative memory module contains chunks. 
Each chunk represents the memory trace of an item. A chunk can be 
retrieved or updated by the production rules. The activities of the 
memory modules together with the actions of the perceptual and 
motor modules enable ACT-R to simulate several dynamic aspects of 
the human mind. 

Viewed from the perspective of a mathematical framework, 
ACT-R consists of independent sets of equations, each set driving the 
neural computation for the relevant ACT-R module. In this work, we 
choose to pursue this mathematical perspective. We replicate the PI 
effect in location learning by manipulating some of the equations 
embedded in the declarative memory module. We focus our 
upcoming discussion solely on those parts of the theory behind the 
declarative memory that are relevant for our objective.  
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ACT-R Equation of Base Level Learning 
In declarative memory, chunks, i.e. memory traces of items, have 

different levels of activation to reflect their past use: chunks that have 
been used recently or chunks that are used very often receive a high 
activation. This activation decays over time if the chunk is not used. 
The activation of a chunk controls both its probability of being 
retrieved and its speed of retrieval. In the case where there are 
multiple candidates for retrieval, the chunk with the highest 
activation has the highest probability of being retrieved. A retrieval 
threshold sets the minimum activation a chunk can have and still be 
retrieved successfully. 

The equation describing the base-level activation of a chunk i 
(representing item i) is given by 
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where n is the number of practices of item i completed so far, tj is the 
age of the j-th practice of the item, and d denotes the constant time-
based decay parameter. More specifically, Ai is the strength of the 
memory trace of item i after n practices of that item. A practice of an 
item occurs whenever a trace of that item is presented to the 
declarative memory. Presentation may happen because of either 
recognition or recall of that item.  
 
ACT-R Equation of Reaction Time of Declarative Memory 
The time required for  the declarative memory to respond to a request 
(recognition or recall) for an item i (represented by the chunk i) is 
given by the following equation: 

           
igA

i FeT −=       Reaction Time Equation 
where Ai is the activation of chunk i and g is the latency exponent 
scale parameter. F is called the latency scale parameter, and maps 
activation to time. Traditionally, a constant term reflecting the fixed 
time cost of visual encoding and motor response has also been added 
to the right-hand-side of this equation. Since the effect of that 
constant term as well as the latency scale parameter, F, is only to 

scale the critical quantity igAe− onto the range of the latencies 
(Anderson et al. 2004, p. 1044), we drop the constant term in favor of 
modeling simplicity. Instead, we account for the constant term by 
adjusting F, whenever necessary. 

Given that the equation depends mainly on the activation of the 
chunks, any differences in activation will result in different times to 
respond to different tasks or trials. 
 

Type Of User Interface, Task,  
User, And User Behavior 

In this work, we consider only user interfaces, which contain items in 
a grid layout based on rows and columns. We assume that the user is 
initially not familiar with the layout of the items. In this case, it is not 
easy for a person to discriminate a target item from all distractors. 
We further limit ourselves to layouts that have only one item per 
location in this grid. Also, when we refer to an item on an interface, 
we are also referring to its location and vice versa. Examples of such 
interfaces include keyboards with an unfamiliar layout, Personal 
Digital Assistants (PDAs) that show a grid layout of similar looking 
textual or graphical items/icons, or an unfamiliar graphical 
application menu with items arranged in a list. 

The task we consider is a simple visual search of items in such an 
interface, followed by a selection of the target item using a finger, a 
stylus, or a mouse pointer depending on the input device used. 

Our aim is to mathematically model the gradual transition of 
novices – who do not have knowledge of item locations on the layout 
 – to experts – who can recall multiple items and their locations 

successfully and ideally can do this for all items. We stay within the 
core mathematical framework of ACT-R’s declarative memory.  

With regards to learning of interface layouts by novice users, we 
point to the arguments of Nilsen (1991), Lee & Zhai (2004), and 
Cockburn, Gutwin et al. (2007). All of them describe in one form or 
the other that visual search and recall of item locations are of primary 
concern in spatial knowledge acquisition on a two-dimensional 
interface since these factors play a significant role in the early stages 
of skill development in such location learning. 

A fundamental assumption behind our work is that at any given 
instant, the user will have zero or more items in a user interface that 
she can recall. Moreover, there will be zero or more items that she 
cannot recall and therefore she needs to visually search the interface 
to find and select them. 
 

Model Extension For PI Effect 
We next propose our extension to the base-level activation equation 
of ACT-R in order to account for the PI effect. We explain our model 
extension within the domain of tasks involving simple visual search 
and selection of items in user interfaces. 
 
Decay Rate as a function of number of distractors 
One way to predict the cost of searching for a target item in an 
interface with several similar looking items is through tracking the 
number of distractor items visually encoded before arriving at the 
target item. The number of visually encoded distractor items during a 
search contributes to the PI effect: The lower the number of 
distractors visually encoded during a search for a target item, the 
lower should be the decay of activation of the memory trace of the 
target item. Hence, the next recall of that item will be affected by the 
higher activation of its memory trace, leading to the lowering of its 
retrieval time. This will result in an improvement in the search-and-
selection time during the use of the corresponding user interface. The 
effect of the number of visually encoded distractor items in a search 
task discussed here is analogous to the primary research results of 
Underwood (1957), Wickens (1972), and Wixted and Rohrer (1993) 
on Proactive Interference. Namely, they describe the effect that the 
number of previously learned similar items has on the recall of a 
target item: The higher (lower) the number of previously learned 
similar items is, the higher (lower) is the forgetting effect and 
therefore the higher (lower) is the recall latency for the target item. 

In order to account for the PI effect in visual search-and-selection 
tasks in user interfaces, we propose a decay rate, dj, for an item, after 
j practices of this item have been completed, as follows: 

        )( 1−+= jj Xfad            Decay Rate Equation 
where a represents the decay-due-to-time constant replicating the 
portion of decay that occurs with passage of time, and f represents a 
decay-due-to-PI function which we will discuss shortly. Xj-1 is the 
number of distractors visually encoded, at the time of jth practice. 
Naturally, j has to be larger or equal to 1. X0 denotes the number of 
distractors visually encoded during the first practice and is assumed 
to be the total number of items on the user interface. When Xj-1 is 0, 
i.e. when user is able to complete the task by direct recall, without 
going through any explicit visual search, the decay rate equation 
degenerates to dj = a. This implies that in the absence of the impact 
of distractors, the decay in activation of the item will occur only with 
the passage of time as in case of the traditional base-level activation 
equation discussed earlier.  

Let us now turn to the decay-due-to-PI function, f. We introduce 
this function as one that replicates the memory decay due to proactive 
interference. As such, its job is to transform the number of 
distractors, Xj-1, to a valid decay-due-to-PI value. We assume valid 
decay-due-to-PI values to be between 0 and 0.5, both inclusive, i.e. 
0.0 <= f(Xj-1) <= 0.5. Since 0 implies no decay, it can be considered 
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as a valid lower bound on decay-due-to-PI values. The decay value of 
0.5 is widely used as the decay constant in the traditional ACT-R 
literature and therefore can be safely considered as a valid upper 
bound on decay-due-to-PI values.  

We assume that the maximum possible number of distractors in 
an interface is equal to the total number of items on it. The maximum 
possible number of distractors is therefore equivalent to X0, the 
number of distractors visually encoded at the first practice. Hence, we 
set f(X0) = 0.5, using the upper bound on decay-due-to-PI. On the 
other hand, f(0) = 0.0 implies the absence of the impact of distractors, 
and hence the absence of PI effect as a consequence. This occurs 
when the user is able to complete the task by direct recall. 
 
Modified ACT-R equation of Base-level Activation 
With the decay rate equation now in place, we modify the base-level 
activation equation to 
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where the decay dj is not a single constant anymore, but a 
combination of the traditional decay-due-to-time constant and decay-
due-to-PI function. The latter is a function of the number of 
distractors that builds up the PI effect on the recall of an item during 
the next practice. The factor q in the equation acts as the strength 
scale parameter. The usage of such a strength scale parameter, albeit 
in a different form and context, has been suggested previously by 
Anderson (1983, p. 277) as well as Stewart and West (2007, p.235). 

Note that when dj = a and q = 1, the PI Activation equation 
collapses to the traditional base-level activation equation.  

Our proposal for combining the effect of decay-due-to-time 
constant and decay-due-to-PI function is analogous to the results of 
experiment 3 of Keppel and Underwood (1962). There, the authors 
concluded that forgetting is a combined effect of the passage of time, 
i.e. the ‘retention interval’, and the number of previously visually 
encoded items, i.e. ‘proactively interfering items’. 
 
Activation boosts on distractors 
The distractors visually encoded on the way to finding a target should 
be considerably less salient than the target itself. Hence, their base-
level activations should receive considerably less boost compared to 
that of the target. Since our main interest is in replicating PI effect on 
the learning of target item and its location, we focus on the effect of 
the number of distractors rather than the negligible increments in 
strength they receive, as they are considerably less salient. For 
convenience of modeling, we set the reference level of activation 
boost to zero and consider the relative difference in boost between a 
target and every distractor involved during the search. We let the 
target get its full quota of boost during a given trial of search and 
selection, but set the activation boosts of distractors to the reference 
level, i.e. zero. This helps us to keep our analysis simple during 
model validation, as we will see in the next section. 
 

Validation of Model Extension 
We validate our new extension against two empirical studies on 
location learning in user interfaces. In order to adapt the observed 
data to the goal of analyzing only the PI effect, we first make a few 
assumptions. These assumptions help us to get an estimate of the 
number of distractors at any given instant. We then validate our 
extension by fitting it to the Reaction Time equation discussed 
earlier, using the data from those experiments. More precisely, we 
predict the average reaction time per item and per trial.  

Note that the reaction time is dependent only on activation, as 
determined by the PI Activation Equation. All fits in this article are 

performed using the R2 and root mean square deviation (RMSD) 
statistics. 
 
Assumptions for adaptation of observed data 
The heart of our extension lies in the term Xj-1 of the decay rate 
equation. This term denotes the number of distractors seen at the time 
of jth practice. In order to extract this information from the empirical 
data, we make the following assumptions: (i) Target items are always 
visible in the user interface. (ii) Target items are not easy to 
discriminate from the distractors. (iii) The position of an item on the 
interface layout does not change. (iv) We expect the user to search all 
items that cannot be directly recalled before finding the desired target 
item. This exhaustive search strategy is based on the findings of 
MacGregor et al. (1986). There, the authors carried out a visual 
search study on (database) menus and found that 59% of all visual 
searches were exhaustive in nature. (v) At any given instant, the 
searchable set of items is the set of all non-recallable items on the 
interface at that instant. (vi) On average, the visual search time is 
linearly proportional to the number of all items that the user cannot 
recall. This is warranted, since the visual search time is roughly a 
linear function of a given searchable set of items in the tasks where 
the target is not easy to discriminate from the distractors (Wolfe, 
2000). 

We compute Xj-1 as follows: We first obtain the average search 
time per item corresponding to each session from the empirical data. 
Then, we use the formula  

    NIS = NISPS ∗ ST         Distractor Computation Equation 
where NIS is a rough estimate of Xj-1, i.e. the number of items 
searched before finding the target, NISPS expresses the number of 
items searched per second, and ST is the search time for NIS number 
of items. We later show a sample use of this formula during our 
discussion of model validation. Note that in the strictest sense, NIS 
for a given trial includes the target as well. However, considering that 
throughout the model validation process we deal only with values 
that are relative and average in nature, using NIS as an estimate for 
Xj-1 is an acceptable compromise. 

Next, we show how we compute the PI-caused decay from Xj-1 
values using the decay-due-to-PI function f.  In order to simplify our 
model validation process, we define f as a simple linear formula 
             f (Xj-1) = DVD ∗ Xj-1              Decay-due-to-PI Equation 
where DVD is the decay value per unit distractor. The linear nature of 
this decay-due-to-PI equation makes it a closed-form approximation 
of PI on location learning. This, in turn, makes the decay rate dj 
a closed-form expression as well. We later show a sample use of the 
decay-due-to-PI equation during our discussion of model validation. 
 
Location Learning on a Graphical Virtual Keyboard 
Cockburn, Kristensson et al. (2007, fig. 2, p. 1574) carried out an 
experiment that tests how well users learn the location of keys on a 
graphical virtual keyboard with one label per key. The labels were 
iconic symbols chosen from the Microsoft Webdings font. For the 
validation of our model, we focus only on the condition where the 
labels on the keys are always visible, i.e. the Visible Interface 
condition in that study.  

All participants trained for 5 minutes through 10 iterations of 
searching and selecting symbols on the interface containing 18 iconic 
symbols, which were pre-cued in a separate target-cuing region. For 
our validation, we had to make a few assumptions, as the 
corresponding information was not given explicitly in that paper. 
These assumptions are as follows: An iteration consists of a sequence 
of trials. Each of the 10 iterations takes roughly equal time and each 
of them gets completed in 30 seconds on average – since 10 iterations 
took 5 minutes or 300 seconds as stated in that paper. We also 
assume inter-trial, and inter-iteration periods to be constant. Also, 
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except for the target-precue, we assume that environmental context 
cuing is minimal and can be ignored for our purposes. 

Based on this, we now detail a sample computation of Xj-1 using 
our Distractor Computation Equation. For iteration #1, we assume 
that the user exhaustively searches all 18 keys before hitting the 
target, i.e. the NIS corresponding to iteration #1 is 18. From the 
measured data we see that the search time, ST, corresponding to 
iteration #1 is 2.4 sec. Consequently the number of items searched 
per second, NISPS, is 7.5. Next, using NISPS = 7.5, we compute the 
NIS value corresponding to the ST for each iteration. These NIS 
values are then used for Xj-1 (j = 1 to 10) in the Decay-due-to-PI 
Equation.  

Note that for a given iteration or session, it is sufficient to use the 
average number of distractors, Xj-1, directly for computing an average 
activation per target through the PI Activation equation. This is 
possible since we consider the relative activation boost for distractors 
to be zero at any given trial, as mentioned previously. 

We now detail a sample computation of f using our Decay-due-
to-PI Equation. For iteration #1, we use the boundary condition 
f(X0) = 0.5, which implies DVD ∗ X0 = 0.5. Since X0 = 18, the decay 
value per unit distractor, DVD, is 0.028. Using this value for DVD, 
we compute the f value based on the Xj-1 for each iteration. 

Table 1 shows the NIS and the corresponding f(Xj-1) values for 
each iteration. Note that for simplicity, we assume the average NISPS 
to be same over all iterations. The same holds for the average DVD as 
well. The assumptions are warranted since the average NIS and DVD 
values themselves are only relative in nature. 

 
Table 1.  Relative estimate of the number of distractor items 

searched before finding the target item, in each iteration (for 
NISPS = 7.5) and the corresponding decay-due-to-PI value 
(for DVD = 0.028). 

Iteration 
j 

ST 
(observed 

search time 
per item, in 

secs) 

NIS  
(approx. 

number of 
distractor 

items 
searched, Xj-1) 

f(Xj-1)  
decay-due-to-

PI 

1 2.400 18 0.500 
2 2.031 15 0.417 
3 1.892 14 0.389 
4 1.708 13 0.361 
5 1.673 13 0.361 
6 1.592 12 0.333 
7 1.569 12 0.333 
8 1.431 11 0.305 
9 1.465 11 0.305 

10 1.408 11 0.305 
 

Figure 1 shows our model fit to the observed data. We have set 
the values for the model fit parameters as follows: (i) The decay-due-
to-time constant a in the decay rate equation is 0.058. In absence of 
any inter-trial and inter-iteration data in this empirical study, we 
assume that there have been insignificant pauses between any two 
consecutive trials or between any two consecutive iterations. Hence, 
we choose a relatively small value for the decay-due-to-time 
constant, implying that the decay due to passage of time had been 
minimal. (ii) The latency scale F is 0.96. This maps an activation 
value to its corresponding time value. Further, it also takes the fixed 
costs associated with visual encoding and motor response into 
account. (iii) The strength scale q is 150. (iv) The latency exponent 
scale g is 0.2. The last two parameters help in an overall adjustment 

of the activation value. With R2 = 0.992 and RMSD = 0.074 for our 
prediction, our model extension closely agrees to the observed data.  

 
As evident from Figure 1, the prediction from our modified 

equations with a RMSD of 0.074 is significantly better than the 
prediction of reaction based on  the standard ACT-R declarative 
memory equations with a RMSD of 0.824. In case of the standard 
ACT-R based calculations, the constant time-based decay parameter 
d in the base-level activation equation was left at its default value of 
0.5 and the latency exponent scale parameter g in the reaction time 
equation was left at its default value of 1. 

It should be noted that our choice of 0.058 for the decay-due-to-
time constant a is so small that the term can be removed without 
incurring any significant change in the shape of the predicted curve. 
With this simplification, we can claim that we have introduced only a 
single new parameter into ACT-R theory of declarative memory, 
namely the strength scale q (see the PI Activation Equation). 

 
Learning of Static and Unfamiliar Menu 
Cockburn, Gutwin et al. (2007, fig. 2, p. 632) carried out an 
experiment that tests how well users learn the location of menu items 
in a single column, single level menu where the items are never 
relocated and all items are displayed at the same time to the user. The 
menu items were words that were unfamiliar to the user in this study. 
We are thus referring to the “Static+Unfamiliar” menu condition in 
that study.  

The menu-item search and selection trials were executed by the 
participants in a series of 7 blocks. Participants began each trial by 
clicking on a ‘Menu’ button, which caused the menu to be shown and 
also the name of the target to appear beside it. For our model 
validation, we assume a menu of 8 items. We use this length since it 
is the next highest integer to the average of the menu lengths studied.  

For our model validation and due to the lack of more accurate 
information, we assume the following: Each block consisted of a 
collection of trials. Each of the 7 blocks takes roughly equal time and 
gets completed in 10 seconds on average. We also assume inter-trial, 
inter-block periods to be constant. Again, except for the target-
precue, environmental context cuing is assumed to be minimal and 
therefore ignored for our purposes. 

We compute the Xj-1 for the 7 blocks using the same technique as 
in the previous study. For block #1, let us assume that the user 

 
Figure 1. Mean Reaction Time, RT (in secs) per item (label) 
selected on a graphical keyboard, as observed in (Cockburn, 
Kristensson et al. 2007, fig. 2, p. 1574), named C-K-A-Z, the 
solid line with filled circles. Our prediction is the dashed line 
with unfilled circles (R2=0.992, RMSD=0.074). Prediction by 
Standard ACT-R at d=0.5 (fixed default decay), g=1, q=1, is 
the dashed line with filled triangles (R2= 0.952, RMSD= 
0.824). 
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exhaustively searches roughly all 8 menu-items before hitting the 
target, i.e. NIS corresponding to block #1 is 8. In figure 2, we see that 
the observed search time, ST, corresponding to block #1 is 0.819 sec. 
Therefore, the number of items searched per second, NISPS is 
roughly 10. Using NISPS = 10, we compute the NIS value 
corresponding to the ST for each block. These NIS values become the 
values for Xj-1 (j = 1 to 7) in the Decay-due-to-PI Equation. 

 
Next we compute f using our Decay-due-to-PI Equation. For 

block #1, we use the boundary condition f(X0) = 0.5, which implies 
DVD ∗ X0 = 0.5. Since X0 = 8, therefore the decay value per unit 
distractor, DVD, is 0.0625. Using this value for DVD, we compute 
the f value based on the Xj-1 for each block. 

Figure 2 shows the fit of our model to the observed data. We 
have set values for the model fit parameters following similar 
arguments as in the previous example:  (i) The decay-due-to-time 
constant, a, in the decay rate equation is 0.058. (ii) The latency scale, 
F = 0.362. (v) Strength scale, q = 150. (vi) Latency exponent scale, 
g = 0.2. 

As evident from Figure 2, with R2 = 0.978 and RMSD = 0.026, 
our adapted model shows good correspondence to the observed data. 
Also, the prediction generated from our modified equations is much 
better than the prediction based on the standard ACT-R declarative 
memory equations, with an RMSD of 0.264. Similar to the previous 
example and for the standard ACT-R based calculations, the constant 
time-based decay parameter d and the latency exponent scale 
parameter g were left at their default values of 0.5 and 1 respectively. 
 

Discussion 
General Comments 
Our proposed mathematical extension to the ACT-R theory of 
declarative memory model closely predicts the PI effect on location 
learning in user interfaces. The model is based on the number of 
distractor items visually encoded on the way to finding the target 
item. Our proposal directly quantifies the PI effect on location 
learning at a high level of abstraction, and is based on well 
established results from PI studies. There are few potential concerns 
with the analysis described above that we enumerate below. 

In our model, we implicitly assume that the number of distractors 
visually encoded at the time of jth practice, i.e. the value for the term 
Xj-1 in the decay rate equation, will be estimated by some visual 
search module whose implementation lies beyond the scope of this 
work. 

We set the latency scale parameter F to different values for the 
two predicted curves; one being relevant to our model extension and 
the other being relevant to the original ACT-R equations of 
declarative memory. We decided to do this in order to match their co-
ordinates for the first session (i.e. iteration #1 in the first example and 
block #1 in the second example) to the co-ordinates of the first 
session of the observed data. Such adjustment merged the session #1 
co-ordinates of the three curves (two predicted and one empirical) 
into a single reference point thereby making visual as well as 
quantitative comparison of data easier. Since the effect of F in the 

reaction time equation is only to scale the critical quantity igAe− onto 
the range of the latencies (Anderson et al. 2004, p. 1044), we can 
safely consider that changing F has a negligible effect on the shape of 
the curve. Hence, we can state that our decision to set F to different 
values for different predicted curves was an acceptable compromise. 

We set the value of the strength scale q to 150 and the latency 
exponent scale g to 0.2 in order to match the shape of our predicted 
curves to the corresponding observed data as closely as possible. 
While traditionally q and g have been left at their default values of 1, 
still our choice of the same value for q and g across both the studies, 
albeit different from the default, avoids compromising the fidelity of 
our new model to a considerable extent. 

In order to validate our model, we needed to extract the number 
of distractors at a given practice (i.e. Xj-1 in decay rate equation) from 
the empirical studies, which did not report this information directly. 
Hence we were forced to make assumptions that enable us to extract 
a rough average estimate of the number of distractors per practice, at 
a given session, from those studies. Although these relative estimates 
seem sufficient to demonstrate our model’s ability to replicate the PI 
effect, we feel that a future empirical study that directly measures the 
number of distractors visually encoded by a novice user on the way to 
finding a target item in a given layout would be worthwhile. 
However, this would involve eye tracking and a very carefully 
constructed experiment. Such an effort would enable us to identify 
more accurate values of Xj-1, thereby increasing the fidelity of our 
model extension further. 

 
Comments on computational design: A suggestion 
We now briefly suggest one possible way to implement the 
computation model to simulate the PI effect as presented here. 

We assume that we are given a visual search module that is based 
on the attentional vision module of standard ACT-R software. We 
use this module as a black box and assume that it is able to return us a 
list of distractors for every time the layout in question is scanned for 
a pre-cued target item. We also assume that the positions of items in 
the layout do not change; the target item always exists in the layout 
and is found whenever searched for. 

The distractors visually encoded on the way to finding a target 
should be considerably less salient than the target itself. Hence their 
memory strengths should get significantly smaller boosts than the 
target. For simplicity of our design, we assume that, every distractor 
gets zero boost in its memory strength, while in comparison the target 
gets the full quota of boost it deserves, at every execution of the 
visual search and selection task. One way to realize this would be 
through exercising appropriate control on buffer clearing in the 
productions. The other way to realize this would be through explicitly 
using the getter and setter functions for manipulating base-level 
activations of the chunks from within the productions. 

In the Lisp implementation of ACT-R, there are many side-
effects, i.e. situations where code in the model that explicitly does 

 
Figure 2. Mean Reaction Time, RT (in secs) per item selected 
on a graphical menu, as observed in (Cockburn, Gutwin et al. 
2007, fig. 2, p. 632), named C-G-G, the solid line with filled 
circles. Our prediction is the dashed line with unfilled circles 
(R2= 0.978, RMSD= 0.026). Prediction by Standard ACT-R 
at d=0.5 (fixed default decay), g=1, q=1, is the dashed line 
with filled triangles (R2= 0.969, RMSD= 0.264). 
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one thing also causes other actions to be performed that are not 
explicitly represented in the model code (Stewart and West, 2007).  
In order to avoid such side-effects, we recommend to avoid 
manipulating the attributes of visual location chunks or the visual 
object chunks of the vision module; instead, we recommend to 
maintain a parallel set of user-defined chunks, each containing 
information related to an item on the layout. Whenever a pre-cued 
target item is found and the distractors involved in the search are 
identified by the aforementioned visual search module, the memory 
strength of the user-defined chunks representing the target and its 
distractors can then be updated appropriately. 
 
Summary 

The work reported in this paper developed a model extension that 
captures the proactive interference effect on two-dimensional 
location learning. The extension was added to ACT-R’s model of 
declarative memory strength and recognition/recall reaction times. 
The model was then validated by fitting the data of two previous 
experiments that tested location learning on a graphical virtual 
keyboard and a graphical menu. The new model resulted in a 
significantly better fit to the observed times. 
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Appendix 
We show values from few functions corresponding to the first study, Location Learning on a Graphical Virtual Keyboard. Constant parameters are 
a=0.058, F=0.96, q=150, g=0.2. All are average values per target.  Xj-1 values are from Table 1. Human data (search time) is rightmost. 

Iteration#  j Xj-1 dj tj  (sec) e-gA T = F * e-gA    (sec) Observed search time (sec) 

1 18 0.558 30 2.556 2.454 2.400 
2 15 0.475 60 2.097 2.013 2.031 
3 14 0.447 90 1.889 1.813 1.892 
4 13 0.419 120 1.745 1.675 1.708 
5 13 0.419 150 1.661 1.595 1.673 
6 12 0.391 180 1.577 1.514 1.592 
7 12 0.391 210 1.521 1.460 1.569 
8 11 0.363 240 1.458 1.400 1.431 
9 11 0.363 270 1.413 1.356 1.465 
10 11 0.363 300 1.377 1.322 1.408 
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