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Abstract 

Circadian rhythms cause alertness declines at night, 
producing performance decrements across cognitive domains 
and tasks. Building on the learning mechanisms for 
declarative knowledge instantiated in the ACT-R cognitive 
architecture, this research seeks to explain the effects of 
circadian rhythms on performance of an orientation task 
performed repeatedly across two weeks by participants 
working either day or night shifts. The differences in 
performance between the two groups are best explained by 
varying the decay rate in declarative knowledge as a function 
of the time of day the task was performed. The model 
accounts well for task learning reflected in decreases in 
response times across days, as well as differences in learning 
between the day and night shift conditions. 

Keywords: sleep; circadian rhythm; fatigue; learning; shift 
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Introduction 

Variations in alertness due to circadian rhythms and sleep 

loss have been shown to affect various components of 

cognitive functioning (e.g. Jackson & Van Dongen, in 

press). For example, vigilant attention (Lim & Dinges, 

2008), perceptual learning (Mednick, Nakayama & 

Stickgold, 2003), and motor learning (Walker, Brakefield, 

Morgan, Hobson & Stickgold, 2003) are all affected by 

fluctuations in alertness associated with time awake and 

circadian rhythms. 

Despite well-documented behavioral changes, it is not 

well understood how nighttime operations affect learning in 

different contexts. Most research on night and shift work 

has focused on how shift differences affect sleep and 

frequency of accidents (e.g. Åkerstedt, 1988). The affect of 

changes in alertness (e.g., as associated with work shift 

differences) on learning is one area of research where a 

better understanding of the mechanisms involved is needed. 

More detailed explanations hold the promise of enabling 

predictions about how learning experiences at different 

times of the day may differ, and how this may impact 

eventual task performance. 

Previous cognitive modeling efforts have explored some 

effects of moderators on cognitive processes. In fact, several 

studies have examined such effects in the context of 

declarative knowledge. For instance, the effects of caffeine 

on memory retrieval have been modeled by increasing the 

activation of declarative knowledge (Kase, Ritter & 

Schoelles, 2009). Conversely, the effects of sleep loss on 

memory retrieval have been explained using decreases in 

declarative activation (Gunzelmann, Gluck, Kershner, Van 

Dongen & Dinges, 2007). The negative effect of time-on-

task on response accuracy has been explained by increasing 

noise, making misretrievals more common (Fu, Gonzalez, 

Healy, Kole & Bourne Jr, 2006).  

These research efforts focused on processes associated 

with retrieving declarative knowledge by impacting the 

availability or confusability of chunks when they are 

requested. In contrast, the effects of alertness on the learning 

and retention of declarative knowledge have not been 

addressed. 

In the research presented here, we investigate how long-

term learning may be affected by fluctuations in alertness 

resulting from circadian rhythms during laboratory-

simulated shift work. This is accomplished within the 

context of a spatial direction task based on Gunzelmann, 

Anderson, and Douglass (2004), which was performed 

repeatedly by participants over two weeks. A computational 

cognitive model is presented that accounts for changes in 

observed response times across successive days of the study, 

including differences in learning rates as a function of 
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simulated work shift. Differences in performance between 

shift conditions are explained by manipulating the decay 

rate parameter in ACT-R’s declarative knowledge activation 

function. Increased decay (reduced learning) in the night 

shift condition leads to performance decrements that match 

the human data. The details of the task, the human 

performance data, and the model are described in the 

following sections. 

Orientation Task 

This experiment was conducted as part of a larger study to 

understand how circadian rhythms and sleep disruption 

affect performance in a variety of domains. The participants 

were screened to be healthy and without sleep disorders, 

with no evidence of brain damage or learning disabilities, 

and free of drugs of abuse. Participants gave written 

informed consent, and were paid for their participation. 

Figure 1 shows the orientation task used in this study. 

There are 8 possible target locations (left) and 8 possible 

misalignments (right; 45 degree intervals). Twenty-five 

randomly ordered trials were presented per session — 5 

target locations (bottom, near, middle, far, and top) crossed 

with 5 misalignments (0, 45, 90, 135, and 180 degrees). 

Because performance is roughly equivalent for right-left 

mirrored stimuli for both target location and misalignment 

(see Gunzelmann, Anderson & Douglass, 2004), the 

location was selected at random from the left or right 

positions. 

Participants received instructions that encouraged them to 

mentally rotate the relative positions of the viewpoint 

(indicated by the ―You‖ arrow) and the target on the 

overhead view (left side filled circle) to align them with the 

viewpoint indicated on the map view (right side arrow). 

Specifically, they were taught to imagine an angle that 

connects the viewpoint to the target on the overhead view, 

with the vertex at the center of the field (a 90 degree angle 

in Figure 1). They were then told to mentally shift to the 

map view, and to rotate the angle so that the arrow in the 

overhead view was aligned with the arrow in the map view 

(a rotation of 90 degrees clockwise in the trial shown in 

Figure 1). At this point, the answer could be determined by 

finding the target end of the angle. 

Participants responded using the numeric keypad portion 

of a computer keyboard, which was spatially mapped to the 

possible response locations on the map view. So, if the 

target was in the bottom position on the map (as it is in the 

sample trial shown in Figure 1), participants responded by 

pressing the ―2‖ on the numeric keypad. 

 

Method Thirteen participants, ranging in age from 22 to 

39 years old (mean = 28), were in the laboratory for 

fourteen consecutive days. The first day was a baseline day 

with 10 hours in bed for sleep (22:00–08:00). Subsequently, 

some of the participants (n = 6) changed to a simulated 

night shift. Night shift participants were given five hours in 

bed (15:00–20:00) on the second baseline day, before 

starting five consecutive work days with 10 hours in bed 

during the daytime (10:00–20:00) on each day. On the 

seventh and eighth day, night shift participants had a 

simulated ―day off‖ during which they had 5 hours in bed 

(10:00–15:00), 7 hours awake, 10 hours in bed during the 

night (22:00–08:00), 7 hours awake, and then 5 hours in bed 

(15:00–20:00), before resuming their night shift schedule 

for the next 5 days. This schedule represented a common 

schedule for individuals working a 

night shift, who frequently switch 

back to a nighttime sleep schedule 

during weekends. After the last night 

shift day, night shift participants 

received 5 hours in bed (10:00–

15:00), 7 hours awake, and then, on 

the final day of the study, were given 

10 hours in bed at night (22:00–

08:00) for recovery. 

Participants on the day shift (n = 7) 

were subjected to the same pattern of 

two baseline days, five consecutive 

work days, a ―day off‖, another five 

consecutive work days, and a 

recovery day. They maintained the 

same sleep schedule throughout the 

study, however, with 10 hours in bed 

(22:00–08:00) each night. Note that 

participants on the day shift and night 

shift schedules were given the same 

amount of time in bed over the 

course of the experiment; it was 

merely distributed differently.  

Figure 1: An example trial. The target on the overhead ego-oriented view (left side), 

indicated by the filled circle, is at middle distance to the right of center. The 

perspective on the map view (right side), indicated by the arrow, is misaligned by 

90° clockwise. The correct response in this example trial is ―2.‖ 
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Over the course of the study, participants completed fifty-

one test sessions of the spatial direction task, with 2 to 4 

sessions per day. Before the first session, participants were 

presented with instructions for the task. 

Eight to sixteen days prior to the first session (mean = 14 

days), participants were given baseline training on the 

spatial direction task. This included a set of instructions for 

the task and four training sessions (these data are not 

modeled here).  

Observed Data 

Average response times for each day of the study are 

presented in Figure 2 for both the day and night shift 

conditions. Performance during the baseline days of the 

study (days 1 and 2) was similar for the two groups, and 

there was no significant difference in mean RT at that point. 

However, when the conditions diverged, so did performance 

on the spatial direction task. The performance of the night 

shift group did not recover during the simulated ―day off‖, 

and differences in mean response time remained at the end 

of the experiment. 

To evaluate the differences between shift conditions, we 

compared response times on the days when they were awake 

for different shifts (ten days; excluding the baseline, day off, 

and recovery day) using a linear mixed-effect model with 

subject as a repeated-measure grouping factor. This was 

planned a priori to most effectively evaluate the impact of 

shift on performance. However, for the model comparisons 

later in the paper, all of the observed data was used. See 

Halverson, Gunzelmann, Moore, and Van Dongen (in press) 

for more complete analyses of the human data. 

Figure 2 shows the mean participant response times (solid 

lines) as a function of day in study and simulated work shift. 

There was a steady decrease of response time between days 

1 and 14, as corroborated by a main effect of day, F(9, 

7769) = 112.2, p < .001. While there was no evidence of an 

overall effect of shift, F(1, 11) = 0.8, p = .37, there was an 

interaction between shift and day, F(9, 7769) = 2.1, p = .03. 

Response times did not improve as quickly when a 

participant was on the night shift. Observed error rates were 

low (M = 4%, SD = 3%) and are not addressed in this work. 

Mental Rotation Model 

A computational cognitive model of the orientation task was 

developed using the ACT-R 6.0 cognitive architecture 

(Anderson et al., 2004). The model behavior is primarily 

driven by mental rotations and learning. The mental rotation 

operation is implemented using ACT-R’s imaginal module 

and the imaginal-action buffer. Learning in the model 

occurs both in the declarative module and through the 

compilation mechanisms in procedural knowledge. The task 

procedure implemented in the model was based on the 

instructions given to the participants in the empirical study. 

Model Overview 

The model executes the task as follows: In the overhead 

view, the model encodes the angle defined by the target 

(blue circle), the center of the overhead view, and the 

viewpoint (circle nearest the ―You‖ arrow) by visually 

attending those locations and encoding their coordinates in 

the imaginal buffer. The model then switches to the map 

view, encoding the vector defined by the viewpoint (circle 

Figure 2: Observed and predicted mean response times as a function of day and simulated work shift (night or day). The 

shaded regions indicate simulated ―days off‖ in which night shift participants (and the model) performed the task during the 

day at the same time as day shift participants. Shaded days are not included in the human data analysis. 

Error bars indicate ±1 standard error. 



 

82 

nearest the arrow) and center of the map view by attending 

those locations and encoding their coordinates. 

The angle that was encoded in the overhead view is then 

translated to center it on the map view (an imaginal action; 

200 ms) and rotated to align the viewpoints of the overhead 

and map views. The model visually attends the response 

location closest to the transformed location of the target, 

encodes the response digit, and presses the corresponding 

keyboard key. 

Mental rotations were implemented using the ACT-R 

imaginal module. The time to perform the rotation was 

based on previous mental rotation research (e.g. Bethell-Fox 

& Shepard, 1988) and was a linear function of the angle of 

rotation. The slope of the linear function was a free 

parameter, as the slope can vary by task depending on the 

relative complexity of the object to be rotated. 

Learning 

The model’s performance improves over time by learning 

in three ways. First, the angle from the overhead view is 

encoded in declarative memory when the first subtask is 

completed. In subsequent trials, the model attempts to 

retrieve an existing chunk based on the target’s location. If a 

chunk exists and gets retrieved before the model completes 

the process of visually encoding the angle, then the 

information from the chunk that was retrieved from 

declarative knowledge is used. Over time, retrievals become 

more likely and faster than explicitly encoding the angle 

using perceptual and imaginal actions. This leads to a speed-

up in the model’s execution of the task. 

In addition to an increasing reliance on declarative 

representations for target location information, the second 

step of the solution process is also stored in declarative 

knowledge once the response is made. These chunks contain 

information about the target location from the overhead 

view as well as the perspective on the map view (i.e., the 

misalignment). Consequently, with experience the model 

can attempt to retrieve the response based on the target 

location and map view perspective location. Like encoding 

the target location on the overhead view, if a chunk is 

retrieved before the model completes the mental 

transformations on the map view, the response is based 

upon the chunk retrieved from declarative knowledge. 

The final learning process in the model involves ACT-R’s 

production compilation (i.e. proceduralization). Production 

compilation is a process by which new productions are 

created dynamically to represent in one step the 

consequences of two productions that execute 

consecutively. With experience, it becomes increasingly 

likely that the new production will be used, as the model 

learns that the utility of the new production is greater than 

the utility of the original, separate productions. However, 

due to the many constraints imposed on production 

compilation by the architecture and the structure of this 

model, the only compilation that occurs in the current model 

involves encoding the mental rotation into productions 

specific to each pair of overhead target and map view 

perspective locations. Therefore, the only savings 

introduced by production compilation were the infrequent, 

but substantial, time savings from the mental rotation of trial 

layouts that were only seen once per session. 

Explaining Night Shift Performance Decrements 

Several alternatives were explored to explain the 

decrement in performance observed for participants on the 

night shift. The solution that resulted in the best explanation 

of the data was a variation of the decay rate of declarative 

chunks activation as a function of simulated work shift. 

Alternative solutions that did not explain the observed 

trends as well are described in the Results and Discussion 

section. 

By default, the decay rate parameter is not allowed to 

vary in the implementation of ACT-R. That is, the decay 

rate can be set, but it assumes the same value for the 

duration of a model run. There have been various efforts to 

implement more dynamic mechanisms for decay in ACT-R. 

Most of these have been related to accounting for the 

spacing effect (Anderson, Fincham & Douglass, 1999; 

Jastrzembski & Gluck, 2009; Pavlik & Anderson, 2005). 

In our case, we utilize the decay rate to represent 

differences in the effectiveness of learning as a function of 

when during the day the task was performed. To implement 

the mechanisms, the equation to calculate the base-level 

activation of declarative chunks was modified (Equation 1). 

The only change to the standard ACT-R base-level learning 

equation is that the value of the decay rate parameter can 

vary according to the time when a chunk was added to 

declarative memory or when the chunk was rehearsed (dj), 

as opposed to a constant decay rate across all rehearsals (d) 

in the original equation. This modification does not change 

the effect of decay for current ACT-R models. 



Bi  ln( t j
d j

j1

n

 ) i              (1) 
 

The current model was implemented with the simplifying 

assumption that the level of alertness, and thus the value of 

dj, is constant across all hours of a work shift (day or night). 

It is well known that alertness due to circadian rhythms 

varies throughout the day and night (Van Dongen & Dinges, 

2005). However, while the model executed the task the 

same number of times as the participants did through a 

simulated workday, we aggregated the data across each day 

to reduce noise. We have not yet evaluated the capacity of 

the mechanism to account for finer grained circadian rhythm 

fluctuations or varying inter-session intervals. 

The model was fit to the day shift data using the retrieval 

threshold (best fit = 1.2), retrieval latency factor (8.0), and 

rotation slope (0.009 ms/degree) parameters. The rotation 

slope is similar to the slope found in previous research for 

simple rotations (Bethell-Fox & Shepard, 1988). The base 

level learning, which controls the rate of activation decay 

(dj), was left at the ACT-R default (0.5) during sessions 

when participants were on the day shift. For predicting the 

night shift data, the declarative chunk decay rate was 
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allowed to vary. The best fitting decay parameter for the 

night shift sessions was 0.6.  

Results and Discussion 

Figure 2 shows observed (solid lines) and best fitting model 

(dashed lines) mean reaction times as a function of day in 

the study and simulated work shift (night or day). For both 

shifts, the observed behavior is well predicted (RMSD = 65 

ms, r
2 

= .98 for day shift; RMSD = 79 ms, r
2
 = .98 for night 

shift). The night shift predictions are particularly 

noteworthy, as only one parameter was varied relative to the 

day shift model. 

The model is able to predict the observed response times 

well across fourteen days, including differences across work 

shifts (i.e. the interaction of day and shift). The model is 

able to predict the effects of work shift changes well with 

variations in declarative memory decay rates based on the 

time at which the tasks are performed. While the declarative 

decay mechanism explains the observed decrements well, 

several alternative mechanisms for explaining the trends 

were considered. 

One alternative mechanism involves manipulating overall 

declarative chunk activation at the time of retrieval, as was 

done in Gunzelmann et al. (2007). This model did fit the 

observed data on most days, but did not correctly predict the 

effect on the overall learning rate when the participants in 

the night shift condition temporarily switched to the day 

shift on days 8 and 14. On these days, the model predicts 

that the performance of participants in the night shift group 

is nearly equivalent to that of participants in the day shift 

group. This is because the model assumes that the 

participants’ alertness recovers when performing the task 

during the day. There is some evidence in associated data 

(not reported here) to support this, although we do not have 

conclusive evidence. Regardless, if the impact of degraded 

alertness were only on activation levels, then the knowledge 

should be more available during the day. As the human data 

illustrate, however, the deficits associated with performing 

the task on the night shift persisted. 

Another alternative mechanism for explaining the 

decrements of alertness is a decrement to utility values 

associated with production selection and execution. This 

mechanism has been used to predict performance 

decrements due to decreased alertness in vigilance tasks 

(e.g. Gunzelmann, Moore Jr, Salvucci & Gluck, 2009). 

However, such a mechanism in the model presented here 

does not explain the observed data for the current task. The 

same issue is encountered as with the previous alternative 

— the model recovers to day shift levels of performance on 

the ―day off‖ and ―recovery‖ days. This is likely a result of 

the current task requiring constant engagement, over short 

periods, and thus mechanisms employed for sustaining 

attention throughout the task would not be stressed. 

A third alternative mechanism that was explored is a 

variation in procedural learning as a function of shift. The 

model presented in this paper has both procedural and 

declarative learning enabled. It may be that the observed 

night shift decrement resulted from a slowing of procedural 

learning rather than a slowing of declarative learning. To 

test this, the rate of learning for productions rule utilities 

was varied. This made little difference in the predicted 

results. This lack of predictive power may result from either 

the way in which the model was constructed, with an 

emphasis on declarative knowledge, or a result of the study 

design, with most of the procedural learning occurring early 

in the protocol when all participants performed the task 

during the day.  

Thus, the model presented here provides support for the 

hypothesis that variations in alertness have an impact on 

learning that may persist beyond immediate task 

performance. This is consistent with previous research that 

has indicated that sleep loss causes deficits in encoding 

declarative knowledge (see Jackson & Van Dongen, in 

press, for a review). In the ACT-R theory of memory, decay 

rate is arguably the parameter that most closely corresponds 

to encoding and rehearsal, as this parameter determines how 

much the previous exposures to knowledge will affect future 

retrievals. While there is no conclusive evidence in the 

literature to attribute either encoding or retrieval deficits to 

the observations, the current modeling helps support the 

claim that decreased alertness affects encoding. 

A useful future extension to the proposed mechanism for 

predicting the effects of alertness on learning would be to 

account for the inter-session intervals. Currently the model 

does not specifically take into account the 2 to 26 hour 

intervals between consecutive sessions, which is 

problematic if we want to generalize the model to tasks in 

which the time between sessions varies. Incorporating 

mechanisms proposed in previous modeling to account for 

inter-session intervals (Anderson, et al., 1999) or practice 

spacing effects (Jastrzembski & Gluck, 2009) may allow the 

current model to predict these inter-session intervals. 

Conclusion 

Performance variations based on alertness have both 

theoretical and real-world importance. The present results 

illustrate how specific cognitive processes may be affected 

by circadian rhythms, and have implications for task 

training and performance in real-world contexts. 

The cognitive modeling presented here illustrates how 

learning rates may be impaired at night, during the nadir of 

circadian rhythms. Because degraded learning has potential 

consequences that extend beyond the immediate situation, 

brief transitions to day shift may not result in immediate 

recovery. While the benefit in response time was fairly 

small in this study (300 ms), the modeling suggests that the 

effects of learning under conditions of lower alertness may 

accumulate over time and thus the benefit of training during 

the day will grow. Moreover, tasks in which exposures to 

declarative facts are less frequent, as seen in many real 

world tasks, are expected to encounter an even greater effect 

of decreased alertness due to a greater time between 

rehearsals and a greater (exponential) decay rate. 
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Several mechanisms were explored to explain the 

observed night shift response time decrement. Some 

mechanisms that have been used previously to explain 

observed decrements of alertness could not explain the 

results found in this research. We do not find this outcome 

particularly troublesome, or even surprising. Rather, in the 

current study and others, the tasks were specifically selected 

to ascertain the various ways in which reduced alertness 

may affect performance on particular mechanisms within 

the ACT-R architecture. 

Our goal is to identify a general set of mechanisms to 

account for the ways in which variations in alertness impact 

various components of cognitive functioning. Focusing on 

laboratory tasks allows us to better isolate various 

components and evaluate particular computational 

mechanisms. Such an understanding is necessary in order to 

predict performance in more complex tasks where various 

cognitive functions, and mechanisms, interact in complex 

ways. This represents the focus of this research in the long 

term (e.g. Gunzelmann & Gluck, 2009; Gunzelmann, 

Moore, Salvucci, & Gluck, 2009; Tucker et al., 2010). 

Acknowledgments 

The views expressed in this paper are those of the authors 

and do not reflect the official policy or position of the 

Department of Defense or the U.S. Government. The 

research was supported in part by the Air Force Research 

Laboratory’s Warfighter Readiness Research Division and 

grants 07HE01COR, 09RH06COR, and 10RH04COR from 

the Air Force Office of Scientific Research (AFOSR). The 

first author was supported by an appointment to the 

Postgraduate Research Participation Program at the U.S. Air 

Force Research Laboratory administered by the Oak Ridge 

Institute for Science and Education through an interagency 

agreement between the U.S. Department of Energy and 

USAFRL. The experimental research was supported by 

FMCSA grant DMC75-07-D-0006. The fourth author was 

supported by AFOSR grant FA9550-09-1-0136. 

References 

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., 

Lebiere, C., & Qin, Y. (2004). An integrated theory of the 

mind. Psychological Review, 111(4), 1036-1060. 

Anderson, J. R., Fincham, J. M., & Douglass, S. (1999). 

Practice and retention: A unifying analysis. Journal of 

Experimental Psychology. Learning, Memory, and 

Cognition, 25(5), 1120-1136. 

Åkerstedt, T. (1988). Sleepiness as a consequence of shift 

work. Sleep, 11(1), 17-34. 

Bethell-Fox, C. E. & Shepard, R. N. (1988). Mental 

rotation: Effects of stimulus complexity and familiarity. 

Journal of Experimental Psychology: Human Perception 

& Performance, 14(1), 12-23.  

Fu, W. T., Gonzalez, C., Healy, A. F., Kole, J. A., & Bourne 

Jr, L. E. (2006). Building predictive human performance 

models of skill acquisition in a data entry task. 

Proceedings of the Human Factors and Ergonomics 

Society Annual Meeting, 1122-1126. 

Gunzelmann, G., Anderson, J. R., & Douglass, S. (2004). 

Orientation tasks with multiple views of space: Strategies 

and performance. Spatial Cognition and Computation, 

4(3), 207-253. 

Gunzelmann, G. & Gluck, K. A. (2009). An integrative 

approach to understanding and predicting the 

consequences of fatigue on cognitive performance. 

Cognitive Technology, 14(1), 14-25. 

Gunzelmann, G., Gluck, K. A., Kershner, J., Van Dongen, 

H. P. A., & Dinges, D. F. (2007). Understanding 

decrements in knowledge access resulting from increased 

fatigue. Proceedings of the Annual Meeting of the 

Cognitive Science Society, Austin, TX, 329-334. 

Gunzelmann, G., Moore Jr, L. R., Salvucci, D. D., & Gluck, 

K. A. (2009). Fluctuations in alertness and sustained 

attention: Prediction driver performance. Proceedings of 

the International Conference of Cognitive Modeling, 

Manchester, UK. 

Halverson, T., Gunzelmann, G., Moore Jr, L. R., & Van 

Dongen, H. P. A. (in press). The effects of work shift and 

strategy on an orientation task. Proceedings of the Annual 

Meeting of the Cognitive Science Society. 

Jackson, M. L. & Van Dongen, H. P. A. (in press). 

Cognitive effects of sleepiness. In M. Thorpy & M. 

Billiard (Eds.), Sleepiness. Cambridge University Press. 

Jastrzembski, T. S. & Gluck, K. A. (2009). A formal 

comparison of model variants for performance prediction. 

Proceedings of the International Conference of Cognitive 

Modeling, Manchester, England. 

Kase, S. E., Ritter, F. E., & Schoelles, M. (2009). Caffeine's 

effect on appraisal and mental arithmetic performance: A 

cognitive modeling approach tells us more. Proceedings 

of the International Conference on Cognitive Modeling, 

Manchester, England, 174-179. 

Lim, J. & Dinges, D. F. (2008). Sleep deprivation and 

vigilant attention. Annals of the New York Academy of 

Science, 1129, 305-322. 

Mednick, S., Nakayama, K., & Stickgold, R. (2003). Sleep-

Dependent learning: A nap is as good as a night. Nature 

Neuroscience, 6(7), 697-698. 

Pavlik, P. I. & Anderson, J. R. (2005). Practice and 

forgetting effects on vocabulary memory: An activation-

based model of the spacing effect. Cognitive Science, 

29(4), 559-586. 

Tucker, A. M., Whitney, P., Belenky, G., Hinson, J. M., and 

van Dongen, H. P. A. (2010). Effects of sleep deprivation 

on dissociated components of executive functioning. 

Sleep, 33(1), 47-57. 

Van Dongen, H. P. A. & Dinges, D. F. (2005). Sleep, 

circadian rhythms, and psychomotor vigilance. Clinics in 

Sports Medicine, 24(2), 237-249. 

Walker, M. P., Brakefield, T., Morgan, A., Hobson, J. A., & 

Stickgold, R. (2003). Practice with sleep makes perfect: 

Sleep-Dependent motor skill learning. Neuron, 35(1), 

205-211. 


