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We propose and evaluate a memory-based model of Hick’s law, the
approximately linear increase in choice reaction time with the log-
arithm of set size (the number of stimulus–response alternatives).
According to the model, Hick’s law reflects a combination of asso-
ciative interference during retrieval from declarative memory and
occasional savings for stimulus–response repetitions due to non-
retrieval. Fits to existing data sets show that the model accounts
for the basic set-size effect, changes in the set-size effect with prac-
tice, and stimulus–response-repetition effects that challenge the
information-theoretic view of Hick’s law. We derive the model’s
prediction of an interaction between set size, stimulus fan (the
number of responses associated with a particular stimulus), and
stimulus–response transition, which is subsequently tested and
confirmed in two experiments. Collectively, the results support
the core structure of the model and its explanation of Hick’s law
in terms of basic memory effects.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Choice reaction time (RT) has been of interest to cognitive psychologists for well over 50 years. In a
typical choice RT paradigm, a set of stimuli is associated with a set of responses, usually with a one-to-
one mapping of stimuli onto responses. A stimulus is presented on each trial and the task is to choose
the corresponding response, with correct RT serving as the primary dependent measure. Research
involving this paradigm has revealed that as set size (the number of stimulus–response alternatives)
increases, RT becomes longer (e.g., Hick, 1952; Hyman, 1953; Merkel, 1885; for reviews, see Luce,
1986, chap. 10; Smith, 1968a; Teichner & Krebs, 1974; Welford, 1960). More specifically, there is an
approximately linear increase in RT with the logarithm of set size (n):
RT ¼ aþ b log2ðnÞ: ð1Þ
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Fig. 1 shows fits of Eq. (1) to four representative data sets. The close match between Eq. (1) (or vari-
ants of it) and the empirical set-size effect has led to both being referred to interchangeably as Hick’s
law (after Hick, 1952). Hick’s law seems to be one of the few ‘‘laws’’ that exist in cognitive psychology
and it is a benchmark effect in the study of choice RT (Luce, 1986; Smith, 1968a; Teichner & Krebs,
1974; Welford, 1960).

In this article we propose a memory-based model of Hick’s law. At the core of the model is the idea
that Hick’s law reflects a combination of associative interference during retrieval from declarative
memory and occasional savings for stimulus–response repetitions due to non-retrieval. Following
an overview of past research on Hick’s law and its interpretation in terms of information theory, we
describe our mathematical model, which is based on the Adaptive Control of Thought-Rational
(ACT-R) cognitive architecture (Anderson, 2007; Anderson et al., 2004). We show that our model pro-
duces a set-size effect that closely resembles Hick’s law, accounts for changes in the set-size effect
with practice, and explains stimulus–response-repetition effects that challenge the information-the-
oretic view of Hick’s law. We then derive a prediction of the model concerning an interaction between
set size, stimulus fan (the number of responses associated with a particular stimulus), and stimulus–
response transition (whether the stimulus repeats or switches across consecutive trials), which is
tested and confirmed in two experiments. We conclude by discussing generalizations of the model
and how it relates to other recent models.
2. Hick’s law

Hick’s law gained prominence during the early days of cognitive psychology because it afforded an
interpretation in the context of information theory (Hick, 1952; Hyman, 1953; for an accessible
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Fig. 1. Data sets illustrating Hick’s law, the approximately linear increase in choice reaction time with the logarithm of set size
(n). Points represent data, gray lines represent linear fits (i.e., fits of Eq. (1)), and black lines represent memory-based model fits.
Merkel’s (1885) data are from a table in Woodworth and Schlosberg (1954). The other data were estimated from figures in their
respective sources. Hyman’s (1953) data come from conditions with equiprobable alternatives. Venables’ (1958) data come
from his normal subjects.
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introduction to information theory, see Fitts & Posner, 1967, chap. 5). Information refers to the knowl-
edge that can be gained in an uncertain situation, with the amount of information reflecting the
amount of uncertainty. For example, a die roll conveys more information than a coin flip because there
are six possible outcomes for the die roll but only two for the coin flip; there is more uncertainty with
the former than with the latter. The information (H, measured in bits) associated with an outcome can
be defined as:
1 The
directio
H ¼ log2ð1=pÞ; ð2Þ
where p is the probability of the outcome. The average amount of information in a series of events
(e.g., several die rolls) is given by:
H ¼
Xn

i¼1

pilog2ð1=piÞ; ð3Þ
where the information associated with each individual outcome (i) in the set of possible outcomes (n)
is weighted by its probability of occurrence. When all outcomes in a set are equiprobable, then
pi ¼ 1=n and Eq. (3) can be rewritten as:
H ¼ log2ðnÞ: ð4Þ
Eq. (4) indicates that information varies with the logarithm of set size for a set of equiprobable out-
comes. However, the average amount of information in a series of outcomes can also vary in ways that
do not depend on set size (see Hyman, 1953; Kornblum, 1969; Luce, 1986). One way is to manipulate
the unconditional probabilities of the outcomes for a fixed set size (e.g., make one outcome more prob-
able than the others). Another way is to manipulate the first-order conditional probabilities of the out-
comes for a fixed set size (e.g., make one outcome more probable following another particular
outcome). For the sake of brevity, we will not present the information calculations for these cases,
but we note that the manipulation of conditional probabilities will become relevant later in this
section.

Given that choice RT varies with the logarithm of set size for a set of equiprobable stimulus–re-
sponse alternatives (Eq. (1)), it is possible to relate RT to information by substituting Eq. (4) into
Eq. (1):
RT ¼ aþ bH; ð5Þ
where the reciprocal of the slope (i.e., 1/b) corresponds to the rate of information transmission
(assuming errorless performance). The simple and elegant relation between RT and information
expressed in Eq. (5) motivated a great deal of research on the variables affecting information transmis-
sion in choice behavior (for reviews, see Luce, 1986, chap. 10; Smith, 1968a; Schweickert, 1993;
Teichner & Krebs, 1974; Welford, 1960). This research revealed that the slope of the linear function
describing Hick’s law (i.e., b in Eqs. (1) and (5)) is affected predominantly by two variables: practice
and stimulus–response compatibility.1

Regarding practice, the slope of Hick’s law tends to decrease as the number of trials increases (e.g.,
Davis, Moray, & Treisman, 1961; Hale, 1968; Mowbray & Rhoades, 1959). This change with practice
can be seen in the left panel of Fig. 2, which shows data from a study by Hale (1968) in which RTs
for set sizes of 2, 4, and 8 are plotted for five successive blocks of 1000 trials. The set-size effect
was attenuated with practice but still substantial even after 5000 trials. Based on an analysis of several
studies, Teichner and Krebs (1974) estimated that it would take about one million trials for choice RT
to be independent of set size (i.e., a linear function with a slope of zero).

Regarding stimulus–response compatibility, the slope of Hick’s law can be close to zero for highly
compatible stimulus–response combinations. For example, Brainard, Irby, Fitts, and Alluisi (1962)
manipulated stimulus type (numbers or lights), response type (vocal or manual), and set size (2, 4,
or 8) in a factorial design and found that all the stimulus–response combinations except for the num-
ber–vocal pairing (e.g., responding ‘‘four’’ to the stimulus 4) yielded large set-size effects. Longstreth,
intercept of the linear function (i.e., a in Eqs. (1) and (5)) is typically either unaffected or shows small changes in the same
n as the slope.
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Fig. 2. Hick’s law as a function of practice. Left panel: Data from Hale (1968) for correct responses only, estimated from his
figure. Right panel: Memory-based model fit.
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El-Zahhar, and Alcorn (1985) summarized the results of several studies in which there was little or no
set-size effect for numbers or letters as stimuli when their familiar names were used as vocal re-
sponses (see also Berryhill, Kveraga, Webb, & Hughes, 2005). The main explanation for these results
is that highly compatible stimulus–response combinations receive much more pre-experimental prac-
tice than less compatible combinations (Brainard et al., 1962; Davis et al., 1961; Fitts & Posner, 1967;
Longstreth et al., 1985; Teichner & Krebs, 1974; but see Morin, Konick, Troxell, & McPherson, 1965).
This suggests that stimulus–response compatibility effects on the slope of Hick’s law might be labeled
more accurately as practice effects.

This suggestion should not be taken to imply that all stimulus–response compatibility effects are
eliminated with practice because one must distinguish between different senses of the term compat-
ibility (e.g., see Kornblum, Hasbroucq, & Osman, 1990). In the sense used here, compatibility refers to
the naturalness of the stimulus–response combination. For example, a number–vocal pairing is con-
sidered more compatible than a number–manual pairing because it is more natural to name a number
than to press a key in response to it. Another sense of compatibility refers to the specific mapping of
stimuli onto responses in terms of the alignment of salient features or dimensions. For example, press-
ing left and right keys in response to left- and right-positioned stimuli, respectively, is considered
more compatible than pressing left and right keys in response to right- and left-positioned stimuli,
respectively, because the stimuli and responses are spatially aligned in the former case but not in
the latter case. There is evidence that compatibility effects (in this second sense) persist even after ex-
tended practice (Dutta & Proctor, 1992), although it is unclear how those effects relate to Hick’s law.
For example, practice might reduce the slope of Hick’s law for an incompatible stimulus–response
pairing, but overall RT for that pairing could still be longer than RT for a more compatible pairing.
However, such a result would not undermine the suggestion that compatibility effects (in the first
sense) on the slope of Hick’s law may be practice effects.

The information-theoretic view of Hick’s law arguably describes these effects better than it
explains them (e.g., it is unclear why the rate of information transmission would change with practice;
see also Jamieson & Mewhort, 2009; Schweickert, 1993). However, one might question the validity of
the description itself, asking whether Eq. (5) is the best descriptor of the empirical set-size effect
(Longstreth et al., 1985; but see Welford, 1987). As we discuss later, one approach to modeling Hick’s
law involves showing that a particular model approximates the linear model of Eq. (5) under certain
conditions (e.g., McMillen & Holmes, 2006; Usher & McClelland, 2001; Usher, Olami, & McClelland,
2002), but this approach is premised on the assumption that Eq. (5) is the best target for modeling
purposes. We do not make that assumption in the present study; instead, we focus on how well
empirical set-size effects can be modeled.

One might also question whether the relationship between RT and information is as straightfor-
ward as implied by Eq. (5). Kornblum (1968, 1969) indicated that it is not. He noted that set size is
confounded with the probability of stimulus–response repetition in most demonstrations of Hick’s
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law: as set size (n) increases, the probability of stimulus–response repetition (which equals 1/n for
equiprobable alternatives) decreases. This confound is problematic because there are robust repetition
effects in choice RT data, with shorter RTs for stimulus–response repetitions than for stimulus–re-
sponse switches (e.g., Bertelson, 1961, 1963, 1965; Campbell & Proctor, 1993; Hale, 1969; Kornblum,
1967, 1975; Pashler & Baylis, 1991; Rabbitt, 1968; Smith, 1968b; for reviews, see Kornblum, 1973;
Luce, 1986, chap. 10). Given that overall RT is a weighted sum of the RTs for repetitions and switches,
the confound can result in a set-size effect that is an artifact of changing the relative contribution of
repetition effects to RT. Although this set-size effect may not necessarily conform to Hick’s law (i.e., Eq.
(1)), it is most likely a part of those data sets that do, which is a complication for the information-the-
oretic view.

Another complication arises from the aforementioned fact that information can be varied by
manipulating the first-order conditional probabilities of the outcomes for a fixed set size. In a typical
choice RT paradigm, this involves manipulating the probability of stimulus–response repetition in a
trial sequence. Kornblum (1968, 1969) observed that the function relating the average information
in a trial sequence to the probability of stimulus–response repetition is curvilinear (see Fig. 1 in
Kornblum, 1969). Consequently, it is possible to create pairs of trial sequences with the same average
information but different probabilities of stimulus–response repetition. For example, with a fixed set
size of 4, trial sequences with probabilities of repetition of .03 and .53 are each associated with an
average of 1.73 bits of information (see Kornblum (1969), for the relevant information calculations
involving conditional probabilities). The information-theoretic view predicts equivalent RTs for such
equal-information sequences (see Eq. (5)), but this is not what Kornblum found: The sequence with
the higher probability of repetition (in a pair of equal-information sequences) had a shorter RT. As
noted above, overall RT is a weighted sum of the RTs for repetitions and switches, and the left panel
of Fig. 3 shows Kornblum’s data separated into repetitions and switches as a function of the probabil-
ity of repetition.2 There was a large repetition effect, with repetitions becoming faster and switches
becoming slower as the probability of repetition increased, which resulted in the overall differences be-
tween equal-information sequences with different probabilities of repetition. These results are inconsis-
tent with the information-theoretic view of Hick’s law (but see Hyman & Umiltà, 1969).

Further research revealed additional inconsistencies associated with the application of information
theory to choice RT in general and to Hick’s law in particular (for overviews, see Laming, 2001; Luce,
2003; Schweickert, 1993). As a result, the information-theoretic view of Hick’s law, despite offering a
simple characterization of set-size effects in choice RT (viz., Eq. (5)), has fallen out of favor and opened
the door to alternative views. A satisfactory alternative would have to account for the basic set-size
effect (Fig. 1), changes in the set-size effect with practice (Fig. 2), and stimulus–response-repetition
effects (Fig. 3). In the next section we introduce a model of Hick’s law that meets these criteria.
3. A memory-based model

An important aspect of the typical choice RT paradigm in which set-size effects have been observed
is that it requires retention of a set of stimulus–response associations in memory (e.g., Brainard et al.,
1962; Hick, 1952; Hyman, 1953; Leite & Ratcliff, 2010; Merkel, 1885; Venables, 1958; for a summary
of several studies, see Teichner & Krebs, 1974). When a stimulus is presented on a trial, its associated
response has to be retrieved from memory (e.g., retrieving the identity of the response key associated
with an alphanumeric stimulus). As discussed below, we contend that set-size effects partly arise from
this act of memory retrieval.

This idea is supported by studies showing that set-size effects are absent or negligible in conditions
that do not depend on memory for stimulus–response associations but they are present in other con-
ditions that likely require access to associations in memory. Kveraga, Boucher, and Hughes (2002)
found no set-size effect for saccadic eye movements toward stimulus locations (see also Kveraga &
Hughes, 2005; Saslow, 1967; for similar results with smooth pursuit eye movements, see Berryhill,
Kveraga, Boucher, & Hughes, 2004) but they obtained set-size effects for antisaccades and keypress
2 The left panel of our Fig. 3 differs from the left panel of Kornblum’s (1969) Fig. 3 because we plotted the switch RTs as a
function of the probability of repetition whereas he plotted them as a function of the conditional probability of a specific switch.
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Fig. 3. Stimulus–response-repetition effects that challenge the information-theoretic view of Hick’s law. Left panel: Data from
Kornblum (1969), estimated from his figure. Right panel: Memory-based model fit. Gray lines represent linear fits to the data for
comparison with the memory-based model fit.
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responses. Lawrence (2010) actually found a reversed set-size effect for saccades toward locations
occupied by stimuli (see also Lawrence, St. John, Abrams, & Snyder, 2008) but she obtained a typical
set-size effect for saccades in response to centrally presented arrow stimuli that pointed to the target
locations. Dassonville, Lewis, Foster, and Ashe (1999) found no set-size effect when a joystick was
used to move a cursor to a location occupied by the stimulus (see also Berryhill, Kveraga, & Hughes,
2005) but they obtained set-size effects when target locations were indicated by symbolic stimuli
(letters indicating compass directions). Wright, Marino, Belovsky, and Chubb (2007) found negligible
set-size effects for visually-guided manual movements of a stylus to stimulus locations (for relevant
finger-pointing data, see Kveraga, Berryhill, & Hughes, 2006) but they obtained large set-size effects
for keypress responses. Leonard (1959) found no set-size effect when the stimulus was mechanical
vibration against a fingertip and the response was to depress the vibrating armature with the
stimulated finger (see also Ten Hoopen, Akerboom, & Raaymakers, 1982). Collectively, the results of
these studies indicate that set-size effects are often not observed for tasks that do not require access
to stimulus–response associations in memory.3

The central role of memory in choice RT tasks where set-size effects are commonly observed led us
to hypothesize that Hick’s law might be explainable in terms of basic memory effects. More specifi-
cally, we propose that Hick’s law reflects a combination of associative interference during retrieval
from declarative memory and occasional savings for stimulus–response repetitions due to non-retrie-
val. Below we describe each of these components and their implementation in a mathematical model,
but first we introduce the ACT-R cognitive architecture and its conception of memory, which served as
the basis for our model.
3.1. Memory in ACT-R

ACT-R is a theory of cognition in which a production system coordinates the activity of modules
associated with perception, memory, and action (Anderson, 2007; Anderson et al., 2004). Our model
is based on the declarative memory module in ACT-R, which is a repository of knowledge ranging from
world facts (e.g., Ottawa is the capital of Canada) to experimental instructions (e.g., Press the left key
when the letter F appears). Knowledge is represented in units called chunks. Retrieval from declarative
memory involves retrieving a chunk and placing it in the module’s buffer, making it available to the
rest of the ACT-R system.
3 An exception was reported by Brown, Steyvers, and Wagenmakers (2009), who studied a task where subjects observed ‘‘bricks’’
falling onto accumulators to form columns. The goal was to determine which accumulator had the highest accumulation rate and
subjects responded by clicking a button below the chosen accumulator. Brown et al. found large set-size effects in RT and accuracy.
However, given that this task differs markedly from the typical choice RT tasks for which Hick’s law has been demonstrated, it is
unclear whether the set-size effects in this case reflect the same underlying mechanisms.
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The mechanism for retrieving chunks from declarative memory is formally specified in ACT-R
(Anderson, 2007; Anderson & Lebiere, 1998). The time it takes to retrieve a particular chunk (tretrieve)
depends on its activation (A):
tretrieve ¼ Fe�A; ð6Þ
where F is a latency scaling parameter. The total activation of chunk i (Ai) is:
Ai ¼ Bi þ
X

j

WjSji; ð7Þ
where Bi is the chunk’s base-level activation and the second term is the chunk’s associative activation
from all sources j that are used as retrieval cues.

Base-level activation reflects the frequency and recency with which the chunk has been used in the
past, which provides an indication of how likely the chunk will be needed in the future (Anderson &
Schooler, 1991). The base-level activation of chunk i is:
Bi ¼ ln
XN

k¼1

t�d
k

 !
; ð8Þ
where tk is the time since the kth use of the chunk, N is the total number of uses, and d is a decay
parameter that has a default value of 0.5 in ACT-R but can take on different values if chunk use occurs
over a long time period (Pavlik & Anderson, 2005). In the present study, we found it simpler to express
base-level activation with the following equation, which Anderson and Lebiere (1998) showed
approximates Eq. (8) under uniform spacing of chunk use:
Bi � ð1� dÞ lnðNÞ: ð9Þ
Eqs. (8) and (9) indicate that a chunk becomes more active the more often it is used. Base-level acti-
vation accounts for changes in retrieval that occur with learning, capturing both the power law of
practice and the power law of retention (Anderson, Fincham, & Douglass, 1999).

Associative activation reflects the strength of association between a chunk and other chunks in
declarative memory. The strength of association between chunks j and i (Sji) is:
Sji ¼ S� lnðfanjÞ; ð10Þ
where S is the maximum associative strength and fanj reflects the number of chunks associated with
chunk j. Eq. (10) indicates that as chunk j becomes associated with more and more chunks (i.e., its fan
increases), the strength of association with each of those chunks decreases. In Eq. (7), the amount of
associative activation is determined by weighting the strength of association (Eq. (10)) by the amount
of activation allocated to each source j (Wj) that is used as a retrieval cue for chunk i. The activation
from all sources is constrained to sum to a constant (W), which has a default value of 1.0 in ACT-R
(Anderson, Reder, & Lebiere, 1996) but can take on different values under some circumstances (Daily,
Lovett, & Reder, 2001; Lovett, Reder, & Lebiere, 1999). Source activation is typically partitioned equally
among all sources (i.e., Wj = W/J, where J is the total number of sources) though it need not be (see
Danker, Fincham, & Anderson, submitted for publication; Sohn, Anderson, Reder, & Goode, 2004).

Associative activation underlies differences in retrieval due to variation in the fan of the retrieval
source. As fan increases, less source activation goes to each associated chunk, thereby prolonging re-
trieval time. This fan effect produced by ACT-R is consistent with empirical fan effects (e.g., Anderson,
1974; Pirolli & Anderson, 1985; for a review, see Anderson & Reder, 1999). For example, in experi-
ments involving the fact-retrieval paradigm (Anderson, 1974), subjects learn a set of facts such as:

A hippie is in the park.
A hippie is in the church.
A lawyer is in the cave.

Some items appear in only one fact (e.g., lawyer appears in only the third fact) whereas other items
appear in more than one fact (e.g., hippie appears in the first and second facts). The number of facts in
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which an item appears is the fan of that item. After learning the facts, subjects are given a recognition
test in which they have to distinguish between studied and novel facts. The chief result is that recog-
nition takes longer for items with larger fans. Empirical fan effects of this sort guided the development
of ACT-R (e.g., Anderson, 1976), which is why its mechanism for declarative memory retrieval is sen-
sitive to associative fan. More generally, empirical fan effects provide support for the principle of cue
overload in memory, which is the idea that a retrieval cue becomes less effective as it becomes asso-
ciated with more items in memory (Surprenant & Neath, 2009; Watkins & Watkins, 1975). The way in
which the strength of association between chunks in declarative memory varies with associative fan
in ACT-R represents a formal instantiation of this principle.

3.2. Associative interference during retrieval

The fan effect can be interpreted as a form of associative interference during retrieval because each
additional chunk that becomes associated with a source dilutes the activation that goes to other asso-
ciated chunks. This interference becomes more and more pronounced as the set of associated chunks
increases in size. We propose that this kind of interference also occurs in choice RT paradigms as the
set of stimulus–response alternatives increases in size. In other words, we propose that Hick’s law is
partly a fan effect.

The key to this proposal is the idea that the stimulus is not the only cue used to retrieve a response
by accessing the set of stimulus–response associations in declarative memory. We suggest that the set
context also serves as a retrieval cue. Set size is often blocked in experiments demonstrating Hick’s
law, which means that only those stimulus–response alternatives in the relevant set have to be acces-
sible in memory. A context cue associated with each alternative in the set would provide a way of
accessing the relevant alternatives while ignoring the irrelevant alternatives.

The idea of using set context to guide processing has precedent in many areas of cognitive psychol-
ogy. Set context is used as a retrieval cue in the ACT-R models for list memory to enable retrieval of
items from the relevant list (Anderson, Bothell, Lebiere, & Matessa, 1998; Anderson & Matessa, 1997;
see also Anderson, 1981; Jones & Anderson, 1987). In the Stroop task, which involves naming the ink
color in which a color word is printed (MacLeod, 1991; Stroop, 1935), subjects show less interference
from color words outside the response set compared with color words inside the response set (e.g.,
Klein, 1964; Proctor, 1978), and this effect has been modeled by assuming selective allocation of atten-
tion to the relevant response set (Cohen, Dunbar, & McClelland, 1990). In letter and word identifica-
tion tasks, performance is facilitated when the set of choice alternatives is reduced, with modeling
results suggesting that subjects are somewhat efficient at implementing set restrictions (Rouder,
2004).

We contend that set context is used as a retrieval cue in experiments related to Hick’s law regard-
less of whether set size is manipulated within or between subjects. For a within-subjects manipula-
tion, where larger sets often include the stimulus–response alternatives of smaller sets (e.g., Hick,
1952; Hyman, 1953), a set context cue would distinguish between relevant and irrelevant alternatives
across blocks or sessions. For a between-subjects manipulation, even though subjects are instructed
about only one set of stimulus–response alternatives, a set context cue would distinguish between
experimentally relevant and irrelevant alternatives. In our experience, it is rare for subjects in choice
RT experiments to make responses that are completely irrelevant to the experimental context (e.g.,
pressing an uninstructed key), suggesting that set context is involved even in single-set situations.

The role of set context as a retrieval cue in our model is illustrated in Fig. 4 for a within-subjects
manipulation of set size. Fig. 4 shows several stimulus–response chunks in declarative memory for
an experiment in which set size is either 2 or 4 in separate blocks. Each stimulus–response chunk
is associated with a set context (as indicated by arrows), with some chunks associated with both
set contexts because the larger set includes the stimulus–response alternatives of the smaller set.
On a given trial, a stimulus is presented in the context of a specific set (e.g., stimulus 1 in set size
2). We assume that the stimulus and the relevant set context both serve as sources of activation,
whereas the irrelevant set context is not a source of activation (black and gray outlines indicate active
and inactive sources, respectively, in Fig. 4). Consequently, the stimulus and the relevant set context
both serve as cues for retrieving a stimulus–response chunk from declarative memory. The chunk that
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Fig. 4. Schematic illustration of stimulus (S) and set sources and their associations (denoted by arrows) with stimulus–response
(S–R) chunks in declarative memory. Black and gray outlines indicate active and inactive elements, respectively, for a situation
in which stimulus 1 from set size 2 is presented.
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is the target of retrieval is the one that is associated with both the stimulus and the set context (the
S1–R1 chunk in Fig. 4). The activation of that particular chunk (i) is based on an expanded form of
Eq. (7):
Ai ¼ Bi þ pwWSset�i þ ð1� pwÞWSstim�i; ð11Þ
where pw is the proportion of W (the total source activation) allocated to the set source, Sset�i is the
strength of association between the set source and chunk i, and Sstim�i is the strength of association
between the stimulus source and chunk i. As indicated in Eq. (10), the strength of association varies
with the fan of the source. For the stimulus and set sources, respectively:
Sstim�i ¼ S� lnðfanstimÞ ¼ S� lnð1Þ ¼ S; ð12Þ
and
Sset�i ¼ S� lnðfansetÞ ¼ S� lnðnÞ: ð13Þ
The stimulus source has a fan of 1 because most experiments concerning Hick’s law involve a one-
to-one mapping of stimuli onto responses. Consequently, the strength of association between the
stimulus source and chunk i is equal to the maximum associative strength (S). The set source has a
fan equal to the set size (n) because it is associated with all stimulus–response alternatives in the
set. We assume that whenever the set of stimulus–response alternatives changes, the set source
changes to reflect the currently relevant set context. As set size increases, the fan of the set source in-
creases, which decreases the strength of association between the set source and each chunk (Eq. (13)).
The decreased strength of association leads to less source activation emanating from the set source,
which reduces the total activation for the relevant chunk (Eq. (11)) and prolongs the time it takes
to retrieve that chunk (Eq. (6)). The ultimate result is a set-size effect on retrieval time (for similar
results, see Anderson & Matessa, 1997; Anderson et al., 1998; Jones & Anderson, 1987). Note that this
effect arises from the set context changing with set size, not from a comparison of contexts between
different set-size conditions.

Eqs. (6)–(13) specify the nature of declarative memory retrieval in our model. The key idea is that
the stimulus and the relevant set context both serve as sources of activation for retrieving a stimulus–
response chunk from declarative memory. Retrieval time is sensitive to the associative fan of the set
source, which varies directly with set size because it reflects the changing set context. Associative
interference during retrieval is sufficient to produce a set-size effect, but it does not provide a
complete account of Hick’s law because it does not address stimulus–response repetitions, which
we consider next.
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3.3. Non-retrieval for stimulus–response repetitions

When a chunk is retrieved from the declarative memory module in ACT-R, it is placed in the mod-
ule’s buffer, making it available to the rest of the ACT-R system. Typically, a chunk is cleared from the
buffer after it is used, but ACT-R can strategically choose to keep the chunk in the buffer. In our model,
we allow the stimulus–response chunk retrieved on a trial to remain in the buffer until the next trial.
As a result, it is possible to reuse the chunk if it is relevant on the next trial, obviating the need for
retrieval from declarative memory (for a similar idea, see Theios, 1975).

This aspect of our model has different consequences for stimulus–response switches and repe-
titions across consecutive trials. In the case of a switch, the chunk in the buffer from the previous
trial is not the relevant chunk for the current trial, making it necessary to retrieve a new stimulus–
response chunk from declarative memory in the manner described earlier. However, in the case of
a repetition, the chunk in the buffer from the previous trial remains relevant for the current trial,
making retrieval unnecessary. We propose that on a given trial, regardless of whether it is a rep-
etition or a switch, there is some probability of a check (pcheck) as to whether the current stimulus
matches the stimulus associated with the chunk in the buffer from the previous trial (for similar
ideas, see McElree & Dosher, 1989; Williams, 1966). If the check indicates a match, then retrieval
does not occur and the response associated with that chunk is made. If the check indicates a mis-
match, then retrieval occurs and that chunk is replaced with a new chunk from declarative
memory.

Under this proposal, stimulus–response repetitions involve non-retrieval on some trials (with
probability pcheck) and retrieval on other trials (with probability 1 � pcheck), whereas stimulus–re-
sponse switches always involve retrieval because the check—if it is performed—always fails.
Allowing for the possibility that it takes some time to check (tcheck) and including a term for
the time it takes to complete residual processes such as stimulus encoding and response execu-
tion (tresidual), overall RT for stimulus–response repetitions and switches, respectively, can be
expressed as:
RTrepetition ¼ pcheckðtcheck þ tresidualÞ þ ð1� pcheckÞðtretrieve þ tresidualÞ; ð14Þ
and
RTswitch ¼ pcheckðtcheck þ tretrieve þ tresidualÞ þ ð1� pcheckÞðtretrieve þ tresidualÞ; ð15Þ
where tretrieve is the time it takes to retrieve a chunk from declarative memory, as specified in
Eqs. (6)–(13). Note that if tcheck < tretrieve, then RT for repetitions will become progressively shorter than
RT for switches as pcheck increases because retrieval will occur less often for repetitions. Thus, there are
occasional savings for stimulus–response repetitions due to non-retrieval, resulting in a repetition
effect. As a corollary, the set-size effect produced by associative interference during retrieval will
contribute less to RT for repetitions than to RT for switches, meaning that repetitions will be faster
and less affected by set size than switches.

The preceding discussion and Eqs. (6)–(15) cover the core structure of our memory-based model of
Hick’s law. The two key elements of the model are associative interference during retrieval from
declarative memory and occasional savings for stimulus–response repetitions due to non-retrieval.
Both elements contribute to set-size effects, but for different reasons. Retrieval produces a set-size
effect because the associative fan from the set source varies with set size. Non-retrieval produces a
set-size effect because the contribution of repetition effects varies with the probability of repetition,
which is typically confounded with set size. The net effect of these elements may be difficult to infer in
the abstract; therefore, in the next section we fit our model to several data sets and explain how it
accounts for the main findings related to Hick’s law.



Table 1
Model parameter values and fit indices.

Merkel
(1885)

Hick
(1952)

Hyman
(1953)

Venables
(1958)

Hale
(1968)

Kornblum
(1969)

Experiment
1

Experiment
2

Parameter
S 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50
W 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F 773 669 1116 551 2687 457 592 1199
tresidual 102 71 43 342 221 154 323 464
pw 0.50 0.50 0.50 0.50 0.50 0.50 0.67 0.50
pcheck prepetition prepetition prepetition prepetition prepetition prepetition 0.62 0.87
tcheck 50 50 50 50 50 50 50 50
d – – – – 0.80 – – –

Fit index
RMSD 13 7 19 9 5 6 28 51
r .992 .997 .990 .989 >.999 .989 .984 .986

Note. RMSD = root mean squared deviation. Free parameters are indicated in bold font. See text for description of parameters.

D.W. Schneider, J.R. Anderson / Cognitive Psychology 62 (2011) 193–222 203
4. Model evaluation

4.1. Hick’s law

To evaluate the ability of our model to account for the basic set-size effect, we fit it to the four data
sets in Fig. 1.4 We fixed several parameters to avoid excessive model flexibility and to show that the ef-
fect arises from the core structure of the model. We set S (the maximum associative strength, used in Eqs.
(12) and (13)) equal to 1.5, which is within the range of typical values used in ACT-R modeling.5 We set
W (the total amount of source activation, used in Eq. (11)) equal to 1.0, which is the default value in ACT-
R (e.g., Anderson et al., 1996). We set pw (the proportion of W allocated to the set source, used in Eq. (11))
equal to 0.5, which corresponds to the typical equal partitioning of W among sources (of which there are
only two, the stimulus source and the set source). Given that there were no practice effects to be mod-
eled for these data sets, we set B (base-level activation, used in Eq. (11)) equal to 0 rather than computing
it, which meant that d was not a parameter in these fits.6 We set tcheck (the time to check for a stimulus
match, used in Eqs. (14) and (15)) equal to 50 ms, which is the default time for firing a production in
ACT-R (Anderson, 2007). Finally, we set pcheck (the probability of checking for a stimulus match, used
in Eqs. (14) and (15)) equal to the expected probability of repetition (prepetition), which varied with set size
(prepetition = 1/n). Consequently, we assumed that subjects engaged in probability matching, checking less
often as set size increased because the lower probability of repetition meant that checking would fail
more often.

Given these parameter settings, there were only two free parameters in fitting our model to the
data: F (the latency scaling parameter) and tresidual (residual processing time). These parameters are
roughly analogous to the slope and intercept parameters, respectively, in linear fits based on
Eq. (1). Thus, our memory-based model is no more complex than a simple linear model in terms of
number of free parameters. We fit both models to each data set by minimizing the root mean squared
deviation (RMSD) between model and data.

Fig. 1 shows the fits of our memory-based model as black lines and the linear fits as gray lines. The
best-fitting parameter values and fit indices for our model are provided in Table 1 for each data set.7 It
is evident from Fig. 1 that the two kinds of fits are almost indistinguishable in reproducing the empirical
4 The model fits reported in the present study are available under the reference for this article in the Models section of the ACT-R
website: http://act-r.psy.cmu.edu/

5 The reported fits do not depend on a specific value of S because changes in S are accommodated by changes in F. For example, if
S is doubled to 3.0, then equivalent fits can be obtained if F is multiplied by 4.48.

6 If base-level activation does not vary among conditions, then it gets absorbed into the estimation of F.
7 The estimated values of tresidual are low for some of the fits. Constraining tresidual to have some minimum value (e.g., 150 ms)

results in only a small increase in RMSD without affecting the correlation between data and model.

http://act-r.psy.cmu.edu/
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set-size effects. Indeed, for both fits, the average RMSD (across the four data sets) equals 12 ms and the
average correlation equals .992. However, the two kinds of fits are not equivalent, and this result moti-
vates a brief comment on the aim of our modeling effort. Unlike other recent attempts to model Hick’s
law that we discuss later (e.g., McMillen & Holmes, 2006; Usher & McClelland, 2001; Usher et al., 2002),
our aim was not to create a model that approximates the linear model of Eq. (1). Instead, our aim was to
create a model that accounts for the empirical set-size effect in real data. Thus, we evaluate our model on
its ability to fit data rather than its ability to conform to Eq. (1).

Our model produces the basic set-size effect in the data for the two reasons discussed earlier. First,
associative interference during retrieval contributes to the set-size effect because the associative fan
of the set source increases with set size and prolongs retrieval time. For example, in the fit to Merkel’s
(1885) data, retrieval time goes from 244 to 546 ms as set size increases from 2 to 10. Second, non-
retrieval for stimulus–response repetitions contributes to the set-size effect because non-retrieval
(which is faster than retrieval) occurs less often as set size increases because the probability of check-
ing for a stimulus match varies with the probability of repetition—which decreases as set size in-
creases. The probability of repetition goes from .50 to .10 as set size increases from 2 to 10,
meaning that repetition effects contribute less to RT for larger set sizes.

Even though the linear and memory-based model fits in Fig. 1 are not equivalent, their close cor-
respondence suggests some degree of model mimicry. The mimicry is not perfect, however, because
our model actually produces a slightly curvilinear set-size effect when its predictions are plotted
against log2(n). The exact form of our model’s set-size effect is related to how retrieval time varies
with the associative fan of the set source. As we discuss in more detail later, when B = 0, W = 1.0,
and pw = 0.5 (as is the case here; see Table 1), and each stimulus is associated with a single response
(fanstim = 1), then Eq. (6) for retrieval time can be rewritten as:
tretrieve ¼ Fe�S
ffiffiffiffiffiffiffiffiffiffiffiffi
fanset

q
: ð16Þ
Thus, our model predicts that retrieval time is linear with the square root of set size under these
circumstances. It turns out that

ffiffiffi
n
p

and log2(n) are highly correlated across set sizes 2–10 (r = .993),
which is why the linear and memory-based model fits are similar. The similarity is increased by occa-
sional non-retrieval for stimulus–response repetitions, which reduces the probability of retrieval for
smaller set sizes. For example, the probability of retrieval equals .75 for set size 2 because non-retrie-
val occurs for half of the stimulus–response repetitions, which comprise half of all trials (recall that
pcheck = prepetition). If retrieval time is weighted by the probability of retrieval (e.g., :75

ffiffiffi
n
p

for set size
2), then the correlation between the contribution of retrieval time to RT and log2(n) is very high across
set sizes 2–10 (r = .999), yielding the close correspondence between model fits.

The aforementioned correlations are based on setting W = 1.0 and pw = 0.5, which are the default
values for those parameters in ACT-R (e.g., Anderson et al., 1996). To investigate the extent to which
the form of the set-size effect produced by our model depends on those parameter values, we
conducted parameter space partitioning analyses (Pitt, Kim, Navarro, & Myung, 2006; Pitt, Myung,
Montenegro, & Pooley, 2008; see also Schneider & Logan, 2009). Parameter space partitioning is a
method for assessing model flexibility that involves identifying regions of the parameter space that
produce qualitatively different data patterns. A model is not overly flexible if it produces only a few
of the possible data patterns and if the empirical data pattern is produced over a large region of its
parameter space.

To determine whether this is true of our memory-based model, we computed its predictions for set
sizes of 2, 4, and 8 as W was varied from 0 to 2 in increments of 0.001 and pw was varied from 0 to 1 in
increments of 0.001. S, tcheck, and pcheck remained unchanged from the values in Table 1. We set F and
tresidual equal to 777 and 139 ms, respectively, which are the means of the best-fitting values of those
parameters in the fits to the four data sets in Fig. 1. The results reported below depend on the specific
value of F used for this analysis but they do not change with different values of tresidual. Given that our
model has a simple analytic solution (Eqs. (6)–(15)), it was feasible to do brute-force mapping of the
entire parameter space instead of using the sampling method developed by Pitt et al. (2006). Model
predictions were computed for each combination of W and pw, and the resulting data pattern was clas-
sified as one of the 13 types reflecting all possible orderings of RTs for set sizes 2, 4, and 8. Six data
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Fig. 5. Parameter space partitioning results for modeling Hick’s law with variation in total source activation (W) and the
proportion of the total source activation allocated to the set source (pw).
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patterns reflect all set sizes having unequal RTs (e.g., 2 < 4 < 8, 2 < 8 < 4, etc.). Another six data patterns
reflect two of the set sizes having equal RTs, both of which differ from the third set size (e.g., 2 = 4 < 8,
2 < 4 = 8, etc.). The remaining data pattern reflects all set sizes having equal RTs (2 = 4 = 8). Following
Pitt et al. (2006), we adopted a non-zero criterion for judging equality because in empirical data it is
rare for two conditions to have identical RTs. We classified two conditions as ‘‘equal’’ if their RTs did
not differ by more than 20 ms (other criteria produced similar results).

Fig. 5 shows the results of this analysis. Our model produced only four of the 13 possible data pat-
terns, indicating that its flexibility is limited because it cannot produce any arbitrary data pattern. For
example, the model never produced a reversed set-size effect (8 < 4 < 2) or an improper ordering of
conditions (e.g., 2 < 8 < 4). The typical set-size effect (2 < 4 < 8) was produced by over 88% of the
parameter space, indicating that it is a general prediction of the model.8 The other three data patterns
produced by the model (2 = 4 = 8, 2 = 4 < 8, and 2 < 4 = 8) were present only when pw was less than 0.3,
with a greater trend toward equality of conditions as pw decreased to 0 and W increased from 1 to 2. This
finding can be understood best in the context of Eq. (11). As pw decreases, the amount of source activa-
tion allocated to the set context decreases, thereby reducing the influence of set fan on retrieval time. In
the most extreme case (pw = 0), set context plays no role in retrieval, resulting in no set-size effect
(2 = 4 = 8) when W is high enough to outweigh the contribution of stimulus–response-repetition effects.
Collectively, these results indicate that the model is not overly flexible and its prediction of the basic set-
size effect is not strongly contingent on specific values of W and pw.

We continued this analysis one step further by partitioning the region of the parameter space asso-
ciated with the 2 < 4 < 8 data pattern into three nested data patterns based on whether the difference
between set sizes 4 and 2 was less than, equal to, or greater than the difference between set sizes 8
and 4. The motivation for looking at these nested data patterns was that the linear model of Eq. (1)
predicts only one of the patterns, (4–2) = (8–4), but there was a numerical trend in three of the four
data sets in Fig. 1 for an alternative pattern, (4–2) < (8–4).9 Using the model predictions computed
earlier, the 2 < 4 < 8 data patterns were classified further as one of the three nested types. Following
the earlier criterion setting for judging equality, the difference between (4–2) and (8–4) was classified
as ‘‘equal’’ if it did not exceed 20 ms.

Fig. 5 shows the results of the nested partitioning. The model could produce all three data patterns,
with the smallest region (for (4–2) = (8–4)) occupying 22% of the parameter space associated with the
general 2 < 4 < 8 data pattern. Interestingly, the largest region (45%) was associated with the
8 Some readers may have intuited from Eq. (16) that our model can only produce data patterns of the general form 2 6 4 6 8
(assuming F > 0).

9 The differences between (8–4) and (4–2) were 51, 50, 35, and �14 ms for the data sets of Merkel (1885), Hick (1952), Hyman
(1953), and Venables (1958), respectively.
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(4–2) < (8–4) pattern that tended to be present in the empirical data sets. The model’s predictions
gradually shifted from the greater-than to the less-than pattern (passing through the equal-to pattern)
as W increased, with the location of the shift dependent on pw. Thus, although our memory-based
model can produce the same nested data pattern as the linear model, it is sufficiently flexible to
produce other nested data patterns that may correspond more closely with empirical data.

4.2. Changes in Hick’s law with practice

To evaluate the ability of our model to account for changes in the set-size effect with practice, we
fit it to Hale’s (1968) data set in the left panel of Fig. 2. Parameters were fixed as in the preceding fits
except for one difference. To produce practice effects, we computed B (base-level activation, used in
Eq. (11)) rather than setting it equal to 0. We computed B with Eq. (9), setting N (the total number
of uses of a particular chunk) to a value corresponding to the midpoint of the appropriate level of prac-
tice. For example, for the first block of 1000 trials in Hale’s experiment, N = 125 for set size 4 because
in the first 500 trials, each of the four alternatives would have occurred 500/4 = 125 times. We allowed
d (the decay parameter, used in Eq. (9)) to be a free parameter. Thus, there were only three free param-
eters (d, F, and tresidual) in fitting our model to the 15 data points.

The right panel of Fig. 2 shows the fit of our memory-based model. The best-fitting parameter
values and fit indices are provided in Table 1. The model produces the basic set-size effect (including
the slight curvilinear trend in the data) for the same reasons discussed earlier. Critically, the model
produces the overall speed-up in performance and the progressive flattening of the set-size effect with
practice. These changes in performance are entirely due to the increase in base-level activation with
practice, which shortens retrieval time. For example, for set size 8, base-level activation goes from 0.83
to 1.27 from Blocks 1 to 5, which shortens retrieval time from 739 to 476 ms. Practice effects are
weaker for the smaller set sizes because each alternative is practiced more often during a block
(i.e., N is higher), which means that base-level activation saturates more quickly. As a result, retrieval
time is less than 300 ms at all levels of practice for set size 2.

4.3. Stimulus–response-repetition effects

To evaluate the ability of our model to account for stimulus–response-repetition effects, we fit it to
Kornblum’s (1969) data set in the left panel of Fig. 3. Parameters were fixed as in the preceding fits to
the basic set-size effect. Thus, there were only two free parameters (F and tresidual) in fitting our model
to the 15 data points.

The right panel of Fig. 3 shows the fit of our memory-based model. The best-fitting parameter val-
ues and fit indices are provided in Table 1. As indicated in Fig. 3, the model produces the strong linear
speedup for repetitions and the weaker linear slowdown for switches that occur as the probability of
repetition increases. The model produces the overall repetition effect because the time to check
(tcheck = 50 ms) is shorter than the time to retrieve (tretrieve = 204 ms) and the probability of checking
varies directly with the probability of repetition. Consequently, as the probability of repetition in-
creases, checking occurs more often, which results in fast non-retrieval happening more often than
slow retrieval for repetitions. This accounts for the progressive shortening of repetition RT as the prob-
ability of repetition increases. In the case of switches, checking always fails and the model must
engage in retrieval. Given that it takes some time to check, frequent checking only serves to prolong
RT. Consequently, as the probability of repetition increases, time-consuming checking occurs more of-
ten for switches. This accounts for the progressive lengthening of switch RT as the probability of rep-
etition increases.

4.4. Summary

In this section we demonstrated that our memory-based model of Hick’s law accounts for the basic
set-size effect (Fig. 1), changes in the set-size effect with practice (Fig. 2), and stimulus–response-rep-
etition effects that challenge the information-theoretic view of Hick’s law (Fig. 3). It produced these
effects with no more than three free parameters—two of which (F and tresidual) merely scaled the model
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values to obtain better quantitative fits. Moreover, parameter space partitioning analyses revealed
that our model is not overly flexible and its prediction of the basic set-size effect is not strongly con-
tingent on specific values of W and pw. Consequently, the results speak to the merits of the model and
its core structure in a way that goes beyond tenuous considerations of goodness of fit (Roberts &
Pashler, 2000). Another way to assess the merits of the model is to evaluate the validity of its predic-
tions. In the next section we derive a novel prediction of our model and test it in two experiments.

5. A predicted interaction

An interesting aspect of the associative interference that occurs during retrieval in our model is
that the fan effect is linked to the set source (fanset = n) rather than to the stimulus source (fanstim = 1).
This is in contrast with previous studies (e.g., Anderson, 1974; Anderson & Reder, 1999; Pirolli &
Anderson, 1985) in which the fan effect was linked to the stimulus source because there was no set
source. Returning to the earlier example of the fact-retrieval paradigm, stimulus fan can be manipu-
lated by having some stimuli appear in only one fact (e.g., fanstim = 1 for lawyer) and other stimuli
appear in more than one fact (e.g., fanstim = 2 for hippie). In the context of a choice RT paradigm,
stimulus fan can be manipulated by having some stimuli appear in only one set of stimulus–response
alternatives and other stimuli appear in more than one set but mapped onto different responses. For
example, in the experiments reported below, we used a choice RT paradigm in which letter stimuli
were mapped onto numbered response keys, with three unique sets of stimulus–response alternatives
of sizes 2, 4, and 6. The manipulation of stimulus fan is illustrated in Fig. 6. Half of the stimuli in a
given set appeared only in that set (fanstim = 1), whereas the other half of the stimuli appeared in
two sets but mapped onto different responses (fanstim = 2).

The experimental design in Fig. 6 allowed for simultaneous manipulation of set size (2, 4, or 6) and
stimulus fan (1 or 2), which was important because our model predicts an interaction between the
two variables that affects retrieval time. The predicted interaction is perhaps best understood by using
Eqs. (6), (11), (12), and (13) to derive an equation for retrieval time that is directly related to set size
and stimulus fan. Recall that the strengths of association that the stimulus and set sources have with
chunk i are:
Fig. 6.
numbe
appeare
Sstim�i ¼ S� lnðfanstimÞ; ð12Þ
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Sset�i ¼ S� lnðfansetÞ; ð13Þ
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Schematic illustration of the stimulus–response alternatives used in Experiments 1 and 2. Letters were stimuli and
r keys were responses. Fan-1 stimuli (outlined in gray) appeared in only one set whereas fan-2 stimuli (outlined in black)
d in two sets but mapped onto different responses.
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respectively. The associative activation from each source is determined by multiplying its strength of
association by the proportion of the total source activation (W) allocated to it. Associative activation is
summed with base-level activation to give the total activation:
Ai ¼ Bi þ pwWSset�i þ ð1� pwÞWSstim�i; ð11Þ
which is then mapped onto retrieval time:
tretrieve ¼ Fe�A: ð6Þ
If Eq. (11) is substituted into Eq. (6) with Bi = 0, W = 1.0, and pw = 0.5 (as in our model fits to the
basic set-size effect; see Table 1), then Eq. (6) can be rewritten as:
tretrieve ¼ Fe�ð0:5Sset�iþ0:5Sstim�iÞ:
If Eqs. (12) and (13) are substituted into the above equation, then algebraic reworking results in an
expanded form of Eq. (16):
tretrieve ¼ Fe�S
ffiffiffiffiffiffiffiffiffiffiffiffi
fanset

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
fanstim

q
: ð17Þ
Eq. (17) indicates that retrieval time varies with the product of the set and stimulus fans, implying an
interaction between the two variables. To provide a numerical example of the interaction, assume that
S = 1.5 (as in our model fits; see Table 1) and F = 600 ms (an arbitrary value). For stimulus fan 1, retrie-
val time equals 189, 268, and 328 ms for set sizes 2, 4, and 6, respectively. For stimulus fan 2, retrieval
time equals 268, 379, and 464 ms for set sizes 2, 4, and 6, respectively. Notice that retrieval time gets
longer as set size increases, reflecting the basic set-size effect produced by the model, and that for a
given set size, retrieval time gets longer as stimulus fan increases, reflecting the stimulus-fan effect
observed in previous research (e.g., Anderson, 1974; Anderson & Reder, 1999; Pirolli & Anderson,
1985). Critically, the magnitude of the stimulus-fan effect changes with set size, increasing from 78
to 111 to 136 ms as set size increases from 2 to 4 to 6. Thus, our model predicts an interaction between
stimulus fan and set size for retrieval time.

We conducted two experiments based on the design in Fig. 6 to test this prediction. The main dif-
ference between the experiments concerned the set-size manipulation. In Experiment 1, set sizes were
blocked, as is typically done in studies of Hick’s law. In Experiment 2, all set sizes were intermixed.
This was accomplished by coloring the stimuli in each set in both experiments. For example, the stim-
uli for set sizes 2, 4, and 6 appeared in red, green, and blue font, respectively. Given that each fan-2
stimulus appeared in two sets (by definition), set color served as a cue for identifying the set-relevant
response. In Experiment 2, set color was a necessary cue, whereas in Experiment 1, it was redundant
with the block context. However, our model assumes that set context—whether it is indicated by color
or block—serves as a retrieval cue for accessing stimulus–response chunks in declarative memory (see
Fig. 4).

Despite the difference in the set-size manipulation, our model predicts the same qualitative inter-
action between stimulus fan and set size in both experiments. However, given that the prediction con-
cerns retrieval time, the interaction should be manifest only when retrieval occurs. In our model,
retrieval occurs for all stimulus–response switches but for only a proportion of stimulus–response
repetitions (as determined by pcheck; see Eq. (14)). Consequently, our model actually predicts a
three-way interaction between set size, stimulus fan, and stimulus–response transition: The magni-
tude of the stimulus-fan effect should increase with set size to a greater extent for stimulus–response
switches than for repetitions. In the case of repetitions, the strength of the interaction between stim-
ulus fan and set size depends on pcheck, with a high value resulting in a weak interaction because re-
trieval would occur rarely.

Besides the three-way interaction, our model also predicts an overall set-size effect in both exper-
iments, even though set size—defined as the number of stimulus–response alternatives—is technically
constant in Experiment 2 because all 12 alternatives (see Fig. 6) are intermixed within each block.
Observing a set-size effect nonetheless (where set size is defined by having different numbers of stim-
uli appear in different colors) would reinforce the role of the set source as a retrieval cue in our model.
The set-size effect is predicted to be larger for stimulus–response switches than for stimulus–response
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repetitions because of the aforementioned differences in the frequency of retrieval for each transition.
This last prediction is consistent with results reported by Kornblum (1975).

5.1. Method

5.1.1. Subjects
A total of 48 students from Carnegie Mellon University (30 in Experiment 1 and 18 in Experiment

2) participated for either course credit or $10. All subjects reported having normal or corrected-to-nor-
mal vision and normal color vision.

5.1.2. Apparatus
The experiments were conducted using Tscope (Stevens, Lammertyn, Verbruggen, &

Vandierendonck, 2006) on computers that displayed stimuli on monitors and registered responses
from QWERTY keyboards.

5.1.3. Materials
The stimuli were the letters C, F, H, J, L, M, R, T, and X. The responses were the number keys 1–6

along the top row of the keyboard. Stimuli were mapped onto responses in sets of 2, 4, and 6 such that
half of the stimuli in a given set appeared only in that set (fan-1 stimuli), whereas the other half of the
stimuli appeared in two sets but mapped onto different responses (fan-2 stimuli). An example of the
stimulus–response mappings and set assignments is shown in Fig. 6. Six different assignments of stim-
ulus fans to specific responses were used, counterbalanced across subjects. For each set within an
assignment, stimulus fans were assigned to consecutive number keys in alternating order (e.g., stim-
ulus fans of 1, 2, 1, 2, 1, 2, for keys 1–6, respectively). Whether the alternation started with stimulus
fan 1 or 2 differed between the three sets, which meant that 23 = 8 assignments were possible. To
avoid having the same stimulus fans associated with the same keys across all sets within an assign-
ment (e.g., a fan-1 stimulus always mapped onto the 3 key), we excluded the two assignments for
which the fan alternation was perfectly synchronized across sets, resulting in the six assignments used
in each experiment. The assignment of letters to conditions was randomized for each subject. Stimuli
were presented in 14-point Courier font and were colored red, green, or blue depending on the rele-
vant set. The assignment of colors to sets was randomized for each subject.

5.1.4. Procedure
Subjects were seated at computers in private testing rooms after providing informed consent. Writ-

ten instructions were presented to subjects and explained by the experimenter. Subjects then com-
pleted several blocks of trials separated by self-paced rest periods. The block structure differed
between experiments but the trial structure was essentially identical. Each trial began with the pre-
sentation of a single stimulus in the center of a black screen. In Experiment 2, the stimulus was sur-
rounded by a small outlined rectangle of the same color to make the relevant set more salient. Subjects
had to respond by pressing the number key onto which the stimulus was mapped. They were in-
structed to respond quickly while minimizing errors and to use their left ring, left middle, left index,
right index, right middle, and right ring fingers to press the 1–6 keys, respectively, regardless of which
keys were potentially relevant during the block. RT was measured from stimulus onset to the registra-
tion of the keypress response. After a correct response, the screen was cleared immediately, whereas
after an incorrect response, the message ‘‘ERROR: #’’ (where # indicated the correct number key) was
displayed below the stimulus for 1000 ms, then the screen was cleared. In both cases, the next trial
then commenced after 500 ms.

Experiment 1 was divided into 20 blocks, each consisting of three mini-blocks, one for each set size.
The order of the mini-blocks was randomized for each block. Prior to each mini-block, the relevant set
of stimulus–response alternatives was displayed onscreen in its designated color for memorization
purposes. When ready, the subject pressed a key to initiate the mini-block. There were 6n trials in each
mini-block, where n is set size. The first n trials involved all n stimuli presented in random order as
warm-up trials, then the remaining 5n trials involved all n stimuli each presented five times in random
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order. Note that by varying mini-block size with set size, each stimulus–response alternative occurred
equally often regardless of set size.10

Experiment 2 was divided into 15 blocks, each of which included all stimulus–response alterna-
tives from all set sizes. Prior to each block, all sets of stimulus–response alternatives were displayed
onscreen in their designated colors for memorization purposes. When ready, the subject pressed a key
to initiate the block. There were 60 trials in each block. The first 12 trials involved all 12 stimuli pre-
sented in random order as warm-up trials, then the remaining 48 trials involved all 12 stimuli each
presented four times in random order. Note that with the intermixing of sets within each block, each
stimulus–response alternative occurred equally often.

5.2. Results and discussion

The first four blocks in Experiment 1, the first two blocks in Experiment 2, and all warm-up trials
were excluded from analysis. RTs exceeding three standard deviations of the means within each set-
size condition (calculated separately for each subject) were also excluded (2.2% and 2.0% in Experi-
ments 1 and 2, respectively). Error rates were low (4.0% and 1.8% in Experiments 1 and 2, respectively)
and did not contradict the RT patterns, so we do not discuss them further. In Experiment 1, all trials
were set repetitions, whereas in Experiment 2, there was a mix of set repetitions and set switches. To
facilitate comparison between experiments, we focus on the set-repetition data from Experiment 2
(for completeness, set-transition effects are reported in Appendix A).

Mean correct RTs are plotted as a function of the logarithm of set size, stimulus fan, and stimulus–
response transition in the left panels of Fig. 7.11 The three-way interaction predicted by our model—a
greater increase in the magnitude of the stimulus-fan effect with set size for stimulus–response switches
than for repetitions—was present in both experiments. Indeed, the effects of stimulus fan and set size
were largely restricted to switches, with only a small set-size effect occurring for repetitions in
Experiment 1. Note that there was a set-size effect for switches in Experiment 2, as predicted, even
though set size was technically constant and defined only by the color of the stimuli. There were large
stimulus–response-repetition effects for all set sizes except for set size 2 in Experiment 1. These results
generally confirm the predictions of our model, which links the effects of stimulus fan and set size (and
their interaction) to retrieval, which occurs more often for switches than for repetitions, and the effects
of stimulus–response repetition to non-retrieval, which occurs for repetitions but not for switches.

These observations are supported by the results of repeated-measures analyses of variance (ANO-
VAs) with set size (2, 4, or 6), stimulus fan (1 or 2), and stimulus–response transition (repetition or
switch) as factors. All main effects and two-way interactions except for the interaction between set
size and stimulus fan were significant (ps < .05) in both experiments. However, these effects were
qualified by a significant three-way interaction between set size, stimulus fan, and stimulus–response
transition, F(2, 58) = 3.21, MSE = 1941.70, p < .05, g2

p = .10, in Experiment 1, and F(2, 34) = 6.59,
MSE = 27746.34, p < .01, g2

p = .28, in Experiment 2. Separate ANOVAs for stimulus–response switches
and repetitions revealed a significant interaction between set size and stimulus fan for switches,
F(2, 58) = 4.96, MSE = 2799.70, p < .05, g2

p = .15, in Experiment 1, and F(2, 34) = 6.11, MSE = 29916.48,
p < .01, g2

p = .26, in Experiment 2, but not for repetitions, F(2, 58) = 0.02, MSE = 2219.02, p = .98,
g2

p = .00, in Experiment 1, and F(2, 34) = 2.38, MSE = 14255.26, p = .11, g2
p = .12, in Experiment 2.

To evaluate the ability of our model to account for the results quantitatively, we fit it to the data
sets in the left panels of Fig. 7. As in the preceding fits, we fixed S = 1.5, W = 1.0, and tcheck = 50 ms.
The value of pw (the proportion of W allocated to the set source) differed between experiments to re-
flect the difference in the number of retrieval cues available as sources of activation. Stimulus identity
10 Even though the frequency of each stimulus–response alternative was controlled across set size, the stimulus-fan
manipulation resulted in fan-2 stimuli occurring twice as often as fan-1 stimuli. We regard this as a non-issue for three reasons.
First, if stimulus frequency and not stimulus fan was the critical variable, then one would expect a reversed fan effect (i.e., slower
responses to fan-1 stimuli than to fan-2 stimuli), which is not what we found (see Section 5.2). Second, fan effects have been
observed in past research where stimulus frequency has been controlled (Danker, Gunn, & Anderson, 2008). Third, there is
evidence that the frequency of each stimulus–response alternative (which we controlled) has a greater influence on the fan effect
than the frequency of individual stimuli (Anderson, 1976).

11 The data patterns shown in Fig. 7 do not change if the analyses are restricted to the two response keys (3 and 4) that were
common to all set sizes; therefore, we included the data from all response keys.
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Fig. 7. Left panels: Data from Experiments 1 and 2 (top and bottom panels, respectively) as a function of stimulus–response
transition (repetition or switch), stimulus fan (1 or 2), and the logarithm of set size (n). For Experiment 2, the data are for set
repetitions only. Right panels: Memory-based model fits for Experiments 1 and 2 (top and bottom panels, respectively). Note
that the y-axis scales differ between Experiments 1 and 2 to enable better visualization of the three-way interaction in each
experiment.
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and set color were stimulus and set sources, respectively, in both experiments, but block context was
an additional, redundant set source in Experiment 1. Given that total source activation is typically par-
titioned equally among all sources in ACT-R, we set pw = .67 for Experiment 1 (because two of the three
sources were set sources) and kept pw = .50 for Experiment 2. To obtain a better quantitative fit, we
allowed pcheck to be a free parameter because the large repetition effects and the lack of an interaction
between stimulus fan and set size for repetitions in the data suggested to us that checking was occur-
ring more often than would be expected on the basis of matching the probability of repetition. In-
creased checking may emerge as a consequence of the ambiguity introduced into retrieval by the
stimulus-fan manipulation in these experiments. A fan-2 stimulus is associated with two responses
(by definition), making it necessary to use the set context as an additional retrieval cue to resolve
the ambiguity. However, subjects may try to avoid this ambiguity by engaging in retrieval less often,
and increased checking would be a way of accomplishing this objective (in the case of repetitions). To
avoid excessive model flexibility, we estimated a single value of pcheck for modeling all conditions.
Thus, there were three free parameters (pcheck, F, and tresidual) in fitting our model to the 12 data points
in each experiment.

One additional detail concerns modeling the lack of a repetition effect for set size 2 in Experiment
1. This is a curious result because large and robust repetition effects were observed in Experiment 2
and in many previous studies involving set size 2 (e.g., Bertelson, 1961, 1965; Cho et al., 2002; Hale,
1969; Kirby, 1972; Kornblum, 1975; Rabbitt, 1968; Remington, 1969; Soetens, Boer, & Hueting, 1985;
but see Kornblum, 1967). The reason for the result is unclear, but one possibility is that subjects in
Experiment 1 took advantage of a unique opportunity afforded by the blocking of set size 2. In this
situation, the failure of the check for a stimulus match on a stimulus–response switch trial technically
allows one to infer the appropriate response. For example, consider the set size 2 stimuli shown in
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Fig. 6 and a switch from L to J. The check for a stimulus match will fail, but that leaves only one other
possible response, which happens to be assigned to the homologous finger on the alternate hand as
the previous response (recall that subjects pressed the 3 and 4 keys with their left and right index fin-
gers, respectively). Thus, it is possible to infer the correct response for a switch in this case, making
retrieval unnecessary. If checking occurs equally often for repetitions and switches, as we assume
by default, then the result would be no repetition effect for set size 2 in Experiment 1. Kornblum
(1967) made a similar argument to account for differences in repetition effects between set size 2
and other set sizes in a blocked context.

To implement this idea in the model, we allowed non-retrieval to occur for switches in the same
manner as for repetitions when modeling the set size 2 condition in Experiment 1. We did not allow
non-retrieval to occur for switches when modeling Experiment 2 because set sizes were intermixed
rather than blocked. In that context, a failed check for a set size 2 stimulus does not readily permit
inference of the correct response. We also did not allow non-retrieval to occur for switches in our ear-
lier model fits to data sets involving a blocked set size 2 condition. There was no evidence that the
subjects in those previous studies used the inferential strategy described above, in part because rep-
etition effects were not analyzed. However, if one implements the inferential strategy when modeling
those data sets, fits equivalent to those shown in Fig. 1 can be obtained by including a free parameter
that represents the time to make the inference on switch trials.

The right panels of Fig. 7 show the fits of our memory-based model. The best-fitting parameter val-
ues and fit indices are provided in Table 1. Not surprisingly, the model produces the three-way inter-
action between set size, stimulus fan, and stimulus–response transition that it predicted. It slightly
overestimates the strength of the two-way interaction between set size and stimulus fan for stimu-
lus–response switches in Experiment 1, whereas it underestimates the strength of the interaction
for switches in Experiment 2. The model produces the lack of a two-way interaction between set size
and stimulus fan for stimulus–response repetitions in both experiments because the estimated pcheck

values (.62 and .87 for Experiments 1 and 2, respectively) are higher than would be expected from
matching the probability of repetition. Given that pcheck is less than 1, the model produces a small
set-size effect and a small stimulus-fan effect for repetitions. The model produces large repetition ef-
fects because of the high pcheck values. It produces no repetition effect for set size 2 in Experiment 1
because of the aforementioned change to allow non-retrieval by means of inference for switches in
that context. Adding a free parameter that represents the time to make the inference does not change
the fit for Experiment 1 because the estimated inference time is close to 0 ms.
5.3. Summary

In this section we derived a prediction of our memory-based model of Hick’s law and tested it in
two experiments. We observed the predicted interaction between set size, stimulus fan, and stimu-
lus–response transition in both experiments and our model provided acceptable quantitative fits to
the data (see Fig. 7 and Table 1). Although the fits involved parameter estimation, the key prediction
of the model emerged from its core structure, as indicated by the derivation of the prediction (see Eq.
(17)). Consequently, the results speak to the merits of the model by showing that it can generate a
novel, testable prediction that is subsequently supported by experimental data.
6. General discussion

The purpose of this article was to propose and evaluate a memory-based model of Hick’s law.
According to the model, Hick’s law reflects a combination of associative interference during retrieval
from declarative memory (i.e., a fan effect) and occasional savings for stimulus–response repetitions
due to non-retrieval. Fits to existing data sets showed that the model accounts for the basic set-size
effect (Fig. 1), changes in the set-size effect with practice (Fig. 2), and stimulus–response-repetition
effects that challenge the information-theoretic view of Hick’s law (Fig. 3). We derived the model’s
prediction of an interaction between set size, stimulus fan, and stimulus–response transition, which
was subsequently tested and confirmed in two experiments (Fig. 7). In all its fits, the model’s core
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structure was sufficient to produce the qualitative data patterns and few free parameters were re-
quired to obtain acceptable quantitative fits (Table 1).12 Collectively, the results support the model’s
explanation of Hick’s law in terms of basic memory effects. In the remainder of this article we discuss
generalizations of the model and how it relates to other recent models.

6.1. Generalizations of the model

Despite the present successes of our model, it is limited in certain respects: it does not produce
errors or RT distributions, its account of repetition effects is restricted to stimulus repetition, and it
produces only first-order sequential effects. As we discuss below, subjects do occasionally make
errors, there is variability in their RTs, there are response-repetition effects separate from stimulus-
repetition effects, and there are higher-order sequential effects in choice RT. In this section we
describe how our model can be generalized to account for these phenomena.

6.1.1. Errors
Subjects rarely achieve perfect accuracy in choice RT experiments. Lapses of attention, fatigue, and

noise in the external environment or within the cognitive system can all contribute to the occasional
production of errors. Although accuracy is often near ceiling in experiments demonstrating Hick’s law
(and perfect in some cases; e.g., Hyman, 1953), there are studies in which accuracy was more modest
and shown to vary with set size. For example, Leite and Ratcliff (2010) and Brown et al. (2009)
observed considerable decreases in accuracy with increasing set size in their experiments.

A generalization of our model that includes noise in the retrieval process can produce errors. In-
stead of assuming that the relevant stimulus–response chunk is always retrieved successfully from
declarative memory (yielding perfect accuracy), noise can be introduced to affect the probability of
successful retrieval (psr) as follows:
12 The
differen
activati
activati
psr ¼
1

1þ exp s�A
s

� � ; ð18Þ
where A is the activation of the stimulus–response chunk (from Eq. (11)), s is the activation threshold
for a chunk to be retrieved, and s is a noise parameter. Eq. (18) is the default equation for probabilistic
chunk retrieval in ACT-R (Anderson, 2007). As s increases, psr decreases because it becomes less likely
that a chunk’s activation will exceed the threshold. When s = A, psr equals 0.5. As s increases, psr de-
creases (assuming A > s) because noise makes retrieval more sensitive to changes in activation. When
s � 0, the psr function is approximately a step function (i.e., retrieval always fails when activation is
below threshold and retrieval always succeeds when activation is above threshold), whereas when
s > 0, the psr function is a sigmoid function with gradual variation in retrieval success. When retrieval
succeeds, the time to retrieve the chunk (tretrieve) is given by Eq. (6). We assume that the retrieved
chunk is always the correct chunk, so successful retrieval leads to accurate performance. When retrie-
val fails, the time to indicate the failure is given by:
tfailure ¼ Fe�s; ð19Þ
which is a variant of Eq. (6) in which s replaces A. We assume that a retrieval failure makes the model
resort to guessing, where the probability of choosing the correct response equals 1/n. Consequently,
errors can arise from retrieval failures. Note that a retrieval failure is different than the non-retrieval
associated with checking for a stimulus match across consecutive trials. When the check is successful,
retrieval is not attempted because the stimulus–response chunk in the buffer from the previous trial is
reused on the current trial. We assume that checking for a stimulus match and reusing the previous
chunk are error-free processes (although they need not be). Thus, all errors arise from noise in the re-
trieval process that leads to occasional retrieval failures and guessing.
estimated values of the free parameters do not vary much among the fits (see Table 1). Differences in tresidual may reflect
ces in the particular stimuli and responses used in the experiments. Differences in F partly reflect whether base-level
on was computed (see Footnote 6), which is why F for the fit to Hale’s (1968) data—which involved computing base-level
on—differs substantially from the Fs for the other fits.
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Fig. 8 shows mean correct RT and mean accuracy predictions (left and right panels, respectively) of
the generalized model across set sizes 2–10 for different levels of noise (s). To generate the predictions,
we set the S, W, pw, tcheck, and pcheck parameters equal to their respective default values in Table 1. As in
the parameter space partitioning analyses, we set F and tresidual equal to 777 and 139 ms, respectively,
which are the means of the best-fitting values of those parameters in the fits to the four data sets in
Fig. 1. We arbitrarily set s = 0 and varied s from a value near 0 (viz., 0.00001) to 0.2 to 1.0. The left
panel of Fig. 8 shows that the model produces the basic set-size effect in RT at each noise level. The
right panel of Fig. 8 shows that when s > 0, accuracy is less than perfect and decreases as set size in-
creases, consistent with the results of Brown et al. (2009) and Leite and Ratcliff (2010). Thus, adding
noise to the retrieval process is sufficient to make our model produce errors. When s � 0 (no noise),
retrieval always succeeds and accuracy is perfect, under which circumstances the generalized model
reduces to the original model and yields the same fits as shown in Figs. 1–3, with the same parameter
values as in Table 1.

6.1.2. RT distributions
The factors that contribute to error production in choice RT experiments (e.g., lapses of attention,

fatigue, and noise) also lead to variability in RTs. An empirical choice RT distribution is typically uni-
modal and positively skewed, with the tail reflecting a small proportion of very long RTs (e.g., see Luce,
1986). The same generalization of our model that produces errors can also produce RT distributions of
this form (see Anderson & Lebiere, 1998, chap. 3). Noise in the retrieval process will result in a distri-
bution for tretrieve (and, by extension, RT) that depends on how the noise is distributed. The default in
ACT-R is for noise to be distributed logistically (Anderson, 2007), in which case the mean of the tretrieve

distribution will be the mean of a log–logistic distribution:
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lðtretrieveÞ ¼ Fe�A p s
sinðp sÞ
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; ð20Þ
where s is the noise parameter from Eq. (18) and the variance (r2) of the logistic distribution for noise
is related to s as follows:
r2 ¼ p2

3
s2:
However, it is typical in other models (e.g., the sequential sampling models discussed below) for
noise to be distributed normally, in which case the mean of the tretrieve distribution will be the mean
of a log-normal distribution:
lðtretrieveÞ ¼ Fe�A exp
r2

2

� �
; ð21Þ
where r2 is the variance of the normal distribution for noise. Log–logistic (with s < 1) and log-normal
distributions are both unimodal and positively skewed, consistent with the general shape of RT
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distributions (for consideration of other distributions for retrieval time, see Anderson & Lebiere, 1998,
chap. 3).13 An interesting aspect of Eqs. (20) and (21) is that the mean of the tretrieve distribution equals
the basic equation for tretrieve (Eq. (6)) multiplied by a constant for the noise. This noise constant can be
absorbed in the estimation of F, which means that Eqs. (20) and (21) reduce to Eq. (6) and yield the
same tretrieve predictions as our original model.14

6.1.3. Response-repetition effects
With a one-to-one mapping of stimuli onto responses, stimulus repetition is confounded with

response repetition, making it unclear which kind of transition is responsible for repetition effects.
One way to address the confound is to use a many-to-one mapping of stimuli onto responses (e.g.,
stimuli 1 and 2 mapped onto response 1; stimuli 3 and 4 mapped onto response 2), which creates
three types of transitions across trials: identical (stimulus and response both repeat; e.g., stimulus
1 followed by stimulus 1), equivalent (stimulus switches but response repeats; e.g., stimulus 1 fol-
lowed by stimulus 2), and different (stimulus and response both switch; e.g., stimulus 1 followed
by stimulus 3). Stimulus-repetition effects can be isolated by comparing identical and equivalent tri-
als, whereas response-repetition effects can be isolated by comparing equivalent and different trials.
The RT pattern typically observed is identical < equivalent < different, implying that the repetition ef-
fect found with the usual one-to-one mapping of stimuli onto responses (reflecting the difference be-
tween identical and different trials) is composed of stimulus- and response-repetition effects (e.g.,
Bertelson, 1965; Eichelman, 1970; Kornblum, 1973; Rabbitt, 1968; Smith, 1968b). An analogous pat-
tern has been observed for cue- and task-repetition effects in several recent task-switching studies
involving a many-to-one mapping of cues onto tasks (e.g., Logan & Bundesen, 2003; Logan &
Schneider, 2006a, 2006b; Mayr & Kliegl, 2003; Schneider & Logan, 2005, 2006, 2007, 2010, in press).

A generalization of our model that includes a second act of retrieval can produce both stimulus-
and response-repetition effects. The first act of retrieval is part of the original model: using the stim-
ulus and set context to retrieve a stimulus–response chunk from declarative memory. Checking for a
stimulus match determines whether this retrieval occurs for stimulus repetitions, and this produces a
stimulus-repetition effect because time-consuming retrieval occurs for all stimulus switches but for
only some stimulus repetitions. The second act of retrieval involves using the response (e.g., a repre-
sentation of the key to be pressed) and set context (e.g., the set of potentially relevant response keys)
to retrieve a response–motor-program chunk from declarative memory (e.g., to respond with the 3
key, depress the left index finger). Checking for a response match (i.e., whether the same key is re-
quired as on the previous trial) determines whether this retrieval occurs for response repetitions,
and this produces a response-repetition effect because time-consuming retrieval occurs for all re-
sponse switches but for only some response repetitions.

In the case of a one-to-one mapping of stimuli onto responses, both acts of retrieval are formally
identical in the generalized model. Response fan replaces stimulus fan in Eq. (12), but given that both
fans equal 1, the strengths of association for the stimulus and the response sources are equal. Likewise,
set fan equals set size in Eq. (13) for the set of stimulus–response chunks and for the set of response–
motor-program chunks, resulting in the same strengths of association for the set sources. It follows
that total activation (Eq. (11)) and retrieval time (Eq. (6)) are identical for both acts of retrieval. Con-
sequently, the generalized model reduces to the original model and yields the same fits as shown in
Figs. 1–3, with the same parameter values as in Table 1 (except for the value of F, which is halved).

6.1.4. Higher-order sequential effects
Although most studies of repetition effects focus on first-order sequential effects (i.e., from the imme-

diately preceding trial to the current trial), there is evidence of higher-order sequential effects in choice
13 The tretrieve distributions associated with Eqs. (20) and (21) would contribute to the overall RT distribution for correct trials.
Variability in the activation threshold (s) would yield a related tfailure distribution that would contribute to the overall RT
distribution for errors.

14 This correspondence between Eqs. (6), (20), and (21) holds only for error-free performance because Eqs. (20) and (21) are
based on the entire tretrieve distribution, which requires that retrieval always succeeds. Retrieval failures will result in cutting off
part of the tail of the distribution, but as long as the failures are infrequent, such truncation will have little impact on mean
retrieval time (see Liu, Lu, Kolpin, & Meeker, 1997).
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RT that extend across several trials. The RT pattern typically observed (mostly in two-choice situations
with a long intertrial interval) is that repetition RT becomes shorter as the number of consecutive repe-
titions increases, whereas switch RT becomes shorter as the number of consecutive switches increases
(e.g., Cho et al., 2002; Hale, 1969; Kirby, 1972; Remington, 1969; Soetens et al., 1985).

A generalization of our model that includes dynamic adaptation of the probability of checking
(pcheck) can produce higher-order sequential effects. Instead of a fixed pcheck value for an entire block
of trials, pcheck can be allowed to vary with the recent history of repetitions and switches, changing
in the following manner after every trial:
15 Ush
this typ
et al. (2
Dpcheck ¼ kðh� pcheckÞ; ð22Þ
where k scales the rate of change and h equals 1 after a repetition and 0 after a switch. Eq. (22) rep-
resents a simple integrator model (e.g., Bush & Mosteller, 1955) and corresponds to the utility learning
equation for productions in ACT-R (Anderson, 2007). For a series of repetitions, pcheck increases with
each additional repetition, resulting in successively shorter RTs because tretrieve contributes to RT less
often. For a series of switches, pcheck decreases with each additional switch, resulting in successively
shorter RTs because tcheck contributes to RT less often. In the case of equiprobable stimulus–response
alternatives, a property of Eq. (22) is that pcheck quickly converges to prepetition across trials. This conver-
gence, in conjunction with the confound between prepetition and set size, results in pcheck being tailored
to each set-size condition when set size is blocked. Given that we set pcheck = prepetition in most of our fits
(see Table 1), the generalized model reduces to the original model and yields the same fits as shown in
Figs. 1–3, with the same parameter values as in Table 1.

6.2. Relationship to other models

Our model provides an interesting contrast to other recent models that address choice among mul-
tiple alternatives (e.g., Albantakis & Deco, 2009; Bogacz, Usher, Zhang, & McClelland, 2007; Brown
et al., 2009; Churchland, Kiani, & Shadlen, 2008; Leite & Ratcliff, 2010; McMillen & Holmes, 2006;
Usher & McClelland, 2001; Usher et al., 2002). Many of these models are variants of sequential sam-
pling models for choice RT tasks (for reviews, see Luce, 1986; Ratcliff & Smith, 2004; Schweickert,
1993; Townsend & Ashby, 1983). In these models, evidence is sampled successively from the stimulus
display and accumulates for the different responses according to a diffusion process (Ratcliff, 1978; for
an overview, see Ratcliff, 2001), the rate of which depends on the quality of the stimulus input and its
association with each response. Evidence accumulation continues until a response criterion is reached,
at which point the response with the most evidence has been chosen. Although sequential sampling
models are typically applied to two-choice RT tasks (e.g., Ratcliff & Smith, 2004), there have been re-
cent efforts to develop models that can accommodate any number of choices (e.g., Brown & Heathcote,
2008; Leite & Ratcliff, 2010; Usher & McClelland, 2001).

Schweickert (1993) suggested that sequential sampling models may represent a viable alternative
to the information-theoretic view of Hick’s law. Indeed, recent work involving two related approaches
has established that sequential sampling models can produce Hick’s law. One approach involves
showing that a particular model approximates the linear model of Eqs. (1) or (5) under certain condi-
tions (e.g., McMillen & Holmes, 2006; Usher & McClelland, 2001; Usher et al., 2002). For example, Ush-
er et al. analyzed a model in which n stochastic accumulators race against each other toward a
common response criterion. Given the stochastic nature of the model, evidence accumulates not just
for the correct response (due to the stimulus input) but also for the incorrect responses (due to noise).
As accumulators are added to accommodate increases in set size, there is a greater chance that one of
the n – 1 incorrect accumulators will spuriously reach the response criterion before the correct accu-
mulator. Consequently, with a fixed response criterion the model produces more errors as set size in-
creases. Usher et al. showed that the model can maintain a constant level of accuracy if the response
criterion increases logarithmically with set size.15 Increasing the response criterion has the effect of
er et al. (2002) assumed that subjects try to maintain a constant level of accuracy across set sizes, but it is unclear whether
ically occurs (a point acknowledged by Usher and McClelland (2001)). As noted earlier, Leite and Ratcliff (2010) and Brown
009) observed considerable decreases in accuracy with increasing set size in their experiments.



D.W. Schneider, J.R. Anderson / Cognitive Psychology 62 (2011) 193–222 217
prolonging the time it takes to reach the criterion, and a logarithmic increase results in a set-size effect
that approximates Eq. (1) for Hick’s law. Given that criterion shifting is an adaptive control process by
which sequential sampling models trade speed for accuracy (Luce, 1986; Ratcliff & Smith, 2004), Usher
et al.’s analysis suggests that Hick’s law reflects a speed–accuracy tradeoff. Moreover, it implies that
Hick’s law is a cognitive-control phenomenon, which contrasts with our interpretation of it as a memory
phenomenon (see also Jamieson & Mewhort, 2009).

A related approach to modeling Hick’s law involves determining how a particular model can be
parameterized to fit the empirical set-size effect in real data. For example, Leite and Ratcliff (2010)
analyzed several variants of the leaky competing accumulator model (Usher & McClelland, 2001)
and found that their empirical set-size effects (in experiments with n = 2, 3, and 4) were modeled best
by increasing the criterion or prolonging non-decision time (a parameter analogous to tresidual in our
model) with increasing set size. In contrast, our model naturally produces a set-size effect from its
core mechanisms. Its parameters do not have to be adjusted for different set sizes and its prediction
of a typical set-size effect (i.e., 2 < 4 < 8) does not depend strongly on a specific combination of param-
eters, as indicated by our parameter space partitioning analyses (see Fig. 5). Our model also naturally
produces repetition effects whereas many sequential sampling models do not. However, there are
ways in which sequential sampling models might be extended to produce repetition effects (e.g., by
having the accumulators on the current trial start at non-zero values that reflect residual evidence
from the previous trial).

Our memory-based model also differs from sequential sampling models in terms of breadth and
depth in the domain of Hick’s law. Our model has considerable breadth in that it accounts for the
basic set-size effect, changes in the set-size effect with practice, stimulus–response-repetition ef-
fects, and interactions with stimulus fan. However, our model has limited depth in that its predic-
tions evaluated in this study concerned mean RT only. We have discussed how the model can be
generalized to produce errors and RT distributions, but the paucity of detailed empirical data—
especially for repetitions and switches within each set-size condition—makes it difficult to test spe-
cific model predictions. In contrast, sequential sampling models have considerable depth in that
they go beyond mean RT and account for RT distributions for correct and error responses (e.g.,
Leite & Ratcliff, 2010). However, sequential sampling models have limited breadth in that they
have been applied to the basic set-size effect but not to any of the related effects discussed above,
although we acknowledge that subsequent application of sequential sampling models to those ef-
fects may be possible (e.g., practice effects; see Dutilh, Vandekerckhove, Tuerlinckx, & Wagenmak-
ers, 2009).

Despite their differences, an important aspect of our model and the models discussed in this
section is that they all represent broader modeling frameworks that address topics besides Hick’s
law. Sequential sampling models have been developed for memory, categorization, decision mak-
ing, signal detection, and perception (for an overview, see Ratcliff, 2001), showing that their basic
mechanisms (e.g., stochastic accumulation of evidence to a criterion) have wide-ranging applica-
tions. The ACT-R cognitive architecture, which served as the basis for our model, has been used
to develop models of memory, attention, perception, decision making, and problem solving (for
overviews, see Anderson, 2007; Anderson & Lebiere, 1998), showing that its basic mechanisms
(e.g., for declarative memory retrieval) also have wide-ranging applications. Moreover, the two
modeling frameworks are not incompatible with each other (see Anderson, 2007; Anderson & Betz,
2001; Van Maanen & Van Rijn, 2007, 2010). For example, Van Maanen and Van Rijn (2007, 2010)
demonstrated how a sequential sampling process could be integrated within ACT-R to model the
dynamics of declarative memory retrieval. Anderson (2007) discussed how retrieval-time effects
may reflect the accumulation of evidence for a specific memory and he related this idea to accu-
mulator models of decision making. Thus, ACT-R might be viewed as providing a higher-level
description of evidence accumulation that is associated with memory in our model of Hick’s
law. Given this compatibility, a possible avenue for future research could be an integration of
the two modeling frameworks to build a hybrid model of Hick’s law that has greater breadth
and depth than any of its precursors.
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6.3. Concluding remarks

The take-home message of this discussion is twofold. First, our model can be generalized to pro-
duce errors, RT distributions, response-repetition effects, and higher-order sequential effects without
changing its core mechanisms or compromising its current fits. Second, even though our model ac-
counts for Hick’s law in a different way than other recent models, it shares the virtue of being
grounded in a broader modeling framework. These two points highlight a valuable approach to cog-
nitive modeling: cumulative model development. The essence of the approach is that new models
are built on existing models, inheriting their successes while extending them to explain more phe-
nomena (e.g., Anderson, 2007; Logan, 2002, 2004; Perry, Ziegler, & Zorzi, 2007; Shiffrin, 2003). The
modeling work presented in this article is an example of the approach: We took the well-established
mechanism for declarative memory retrieval in ACT-R and supplemented it with a mechanism for pro-
ducing repetition effects to create a memory-based model that accounts for the main findings related
to Hick’s law. The idea that our memory-based model could be integrated with sequential sampling
models to produce a hybrid model with great breadth and depth represents a way in which the ap-
proach could be continued. Cumulative model development of this sort enables progress without dis-
carding what has been done before, ultimately paving the way toward a richer and more integrated
understanding of human cognition.

Acknowledgments

This research was supported by Office of Naval Research Grant N00014-03-1-0115 and National
Institute of Mental Health Grant MH068243. The model fits reported in the present study are available
under the reference for this article in the Models section of the ACT-R website: http://act-r.psy.cmu.
edu/.

Appendix A

Here we report the set-transition effects in Experiment 2. Mean correct RTs are plotted as a func-
tion of the logarithm of set size, stimulus fan, and response transition for set switches in Fig. A1. The
set-repetition data appear in the bottom-left panel of Fig. 7. Note that for set repetitions, a response
repetition is a stimulus repetition and a response switch is a stimulus switch, whereas for set switches,
a response repetition is a stimulus switch and a response switch could be either a stimulus repetition
(for a fan-2 stimulus) or a stimulus switch. There was a large set-transition effect reflecting longer RTs
for set switches than for set repetitions. This effect is analogous to task-transition effects in task-
switching experiments (for reviews, see Kiesel et al., 2010; Monsell, 2003; Vandierendonck, Liefooghe,
& Verbruggen, 2010) because set switches and task switches both involve changing the relevant set of
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stimulus–response mappings. The large response-repetition effect for set repetitions was small and
numerically reversed for set switches. An analogous result has also been found in task-switching
experiments (e.g., Hübner & Druey, 2006; Kleinsorge, 1999; Rogers & Monsell, 1995; Schuch & Koch,
2004). There was a stimulus-fan effect for response switches at the larger set sizes for both set tran-
sitions, whereas the effect for response repetitions at the larger set sizes was present for set switches
but absent for set repetitions.

These observations are supported by the results of repeated-measures ANOVAs with set size
(2, 4, or 6), stimulus fan (1 or 2), response transition (repetition or switch), and set transition (repetition
or switch) as factors. For brevity, we report only the significant effects involving set transition. There was
a significant main effect of set transition, F(1, 17) = 130.71, MSE = 369513.55, p < .001, g2

p = .88. There
were several significant interactions involving set transition. Notably, the interaction between set tran-
sition and response transition was significant, F(1, 17) = 172.19, MSE = 51281.59, p < .001, g2

p = .91,
reflecting the reversal of the response-repetition effect from set repetitions to set switches. This inter-
action and all others were subsumed under a significant four-way interaction, F(2, 34) = 4.02,
MSE = 36282.98, p < .05, g2

p = .19, reflecting the aforementioned differences involving the stimulus-fan
effect.

Appendix B. Supplementary material

The memory-based model fits reported in this article can be found, in the online version, at
doi:10.1016/j.cogpsych.2010.11.001.
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