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The Adaptive Nature of Human Categorization

John R. Anderson
Carnegie Mellon University

A rational model of human categorization behavior is presented that assumes that categorization
reflects the derivation of optimal estimates of the probability of unseen features of objects. A
Bayesian analysis is performed of what optimal estimations would be if categories formed a disjoint
partitioning of the object space and if features were independently displayed within a category. This
Bayesian analysis is placed within an incremental categorization algorithm. The resulting rational
model accounts for effects of central tendency of categories, effects of specific instances, learning of
linearly nonseparable categories, effects of category labels, extraction of basic level categories,
base-rate effects, probability matching in categorization, and trial-by-trial learning functions. Al-
though the rational model considers just 1 level of categorization, it is shown how predictions can
be enhanced by considering higher and lower levels. Considering prediction at the lower, individual
level allows integration of this rational analysis of categorization with the earlier rational analysis of
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memory (Anderson & Milson, 1989).

Anderson (1990) presented a rational analysis of human cog-
nition. The term rational derives from similar “rational-man”
analyses in economics. Rational analyses in other fields are
sometimes called adaptationist analyses. Basically, they are ef-
forts to explain the behavior in some domain on the assump-
tion that the behavior is optimized with respect to some criteria
of adaptive importance. This article begins with a general char-
acterization of how one develops a rational theory of a particu-
lar cognitive phenomenon. Then I present the basic theory of
categorization developed in Anderson (1990) and review the
applications from that book. Since the writing of the book, the
theory has been greatly extended and applied to many new
phenomena. Most of this article describes these new develop-
ments and applications.

A Rational Analysis

Several theorists have promoted the idea that psychologists
might understand human behavior by assuming it is adapted to
the environment (e.g., Brunswik, 1956; Campbell, 1974; Gib-
son, 1966; Marr, 1982). Shepard (1981,1987) has been a partic-
ularly articulate proponent of this approach. In 1981 he stated
the basic premise of such an approach: “We cannot gain a full
understanding by simply guessing at the form and level of orga-
nizational principles without recognizing their role in the adap-
tation of the species to its environment” (p. 307). There are six
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steps involved in a research program that attempts to under-
stand cognition in terms of its adaptation to the environment:

1. The first task is to specify what the system is trying to
optimize. Perhaps such models are ultimately to be justified in
terms of maximizing some evolutionary criterion like number
of surviving offspring. However, this is not a very workable
criterion in most applications. Thus, economics uses wealth as
the variable to be optimized; optimal foraging theory (Stephens
& Krebs, 1986) often uses caloric intake; and the rational
theory of memory (Anderson & Milson, 1989) uses retrieval of
relevant experiences from the past.

2. The second step requires making some assumptions
about the structure of the environment to which the system is
adapted. In my efforts to develop rational theories this is where
the real effort has gone. The environment in question is not the
experimental situation but rather the environment in which the
cognitive processes evolved. This is the role for “ecological valid-
ity” in such an application. The argument is not that re-
searchers should only study natural situations but rather that it
is the structure of the natural situation that drives the behav-
ioral phenomena in and out of the laboratory. A major charac-
teristic of the environments that are relevant to human cogni-
tion turns out to be that they are fundamentally probabilistic.
Given the cues in the environment one cannot know for sure
what to expect. What one can do is start out with some weak
assumptions about the environment and with experience make
these increasingly strong. This process of updating one’s proba-
bilistic model of the environment naturally leads one to a Baye-
sian statistical inference scheme.

3. The third step requires making some assumptions about
the nature of the costs that the system faces in achieving opti-
mal performance. These costs need to be integrated into the
solution to the optimization problem. Economic theories often
have been criticized for not considering the costs of decision
making (e.g., Hogarth & Reder, 1986). Optimal foraging the-
ories take into account the caloric cost of finding food in deriv-
ing their optimal solutions. Some such constraints are required
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in a cognitive model. Presumably, one could embed into a ratio-
nal model extremely complex assumptions about computa-
tional costs, which would amount to proposing a cognitive ar-
chitecture. I have tried to avoid this because I would like to see
the predictions flow as much as possible from the structure of
the environment.

4. Given a satisfactory specification in Steps 1-3, one can
then proceed to derive what the optimal behavioral functions
are. This derivation typically involves use of Bayesian decision
theory (e.g., Berger, 1985). Such derivations of optimal behavior
are often difficult. The goal of deriving predictions will often
force simplifying assumptions in Steps 1-3. Simplification for
purposes of analytic tractability is typical of scientific en-
deavors and is not unique to rational analyses.

5. One can then proceed to look at empirical results and see
if the predictions of the theory are confirmed. Thus, the princi-
pal way of testing a rational theory is no different than the
principal method in other psychological approaches. -

6. If the predictions are off, one can try recasting the as-
sumptionsin Stepsi-3. Such iterative approaches to adaptation-
ist theory construction have been criticized in other fields as
showing that these approaches are fatally flawed (Gould & Le-
wontin, 1979, but see Mayr, 1983). However, iterative theory
development is the way of science. In point of fact, my experi-
ence so far has been that I have needed little revision in the
initial assumptions. This reflects an advantage of the rational
approach, which will be discussed shortly.

Anderson (1990) has referred to the outcome of Steps 1-3,
from which the predictions flow, as the framing of the informa-
tion-processing problem. To the extent that the structure of this
framing lies in Step 2 and not Step 3, this becomes a very differ-
ent sort of theory than the mechanistic theories common in
cognitive psychology. The structure of such a theory is con-
cerned with the outside world rather than what is inside the
head. There are four advantages to such a theory over a mecha-
nistic theory:

1. To the extent that its claims about the environment are
independently verifiable, it is subject to the kind of converging
test that mechanistic theories find very difficult.

2. Because it rests on claims about the external world it
does not have the same identifiability problems that haunt
mechanistic theories (e.g., Anderson, 1978; Townsend, 1974).
The identifiability problems arise in mechanistic theories be-
cause alternative sets of mechanisms will produce the same
behavior.!

3. The search for scientific explanation is easier in this ap-
proach. In a mechanistic approach, we must consider any com-
bination of mechanisms as basically equivalent to any other,
and this creates an enormous search space of possible mecha-
nisms with no heuristics for searching it for an explanation. If
the goal of the system were known, the structure of the environ-
ment known, the computational limitations known, and opti-
mization perfect, there would be no search at all except the
intellectual search associated with solving the optimization
problem. In practice things are not always so transparent or
perfect. Nonetheless, the experience has been much less search
in finding rational theories than mechanistic theories. This ac-
counts for the relative lack of iterative effort in theory construc-
tion. Indeed most of the iterative work has been developing
better and better approximations to the ideal solution, that is,

getting better approximations to the predictions of a fixed
theory rather than changing the theory.

4. There is a sense in which rational explanations are more
satisfying than mechanistic explanations. A mechanistic expla-
nation treats the configuration of mechanisms as arbitrary. The
justification for the mechanisms is that they fit the facts at
hand. There is no explanation for why they have the form they
do rather than an alternative form. In contrast, a rational expla-
nation tells why the mind does what it does.

The previous remarks notwithstanding, it also needs to be
acknowledged that there is a sense in which mechanistic expla-
nations seem to be more satisfying. One wants to know what is
inside the black box, not just what it does and why it does it.
The rational and mechanistic approaches need not be in con-
flict. Marr (1982) argued for an approach in which one would
first do a rational analysis followed by work on mechanisms
that would implement the specification of the rational ap-
proach. This offers the mechanistic approach the advantage of
some guidance in the search for mechanisms (see the preceding
point 3). In fact, I have begun the enterprise of considering how
the rational derivations might inform the development of the
ACT theory of cognitive architecture (Anderson, 1983a). How-
ever, as evidence that a rational analysis can stand on its own
without aid of mechanistic considerations, this article does not
present such architectural considerations.

With these preliminary remarks out of the way, I turn to
developing a rational analysis of categorization. People appear
to organize objects into categories. This phenomenon has been
researched from many perspectives. I focus mainly on the exper-
imental research studying the acquisition of artificial categories
in the laboratory. The typical experiment presents a subject
with a series of training instances that vary on a number of
dimensions and looks at how subjects ext-apolate from this ex-
perience to new instances. For instance, in their classic experi-
ment, Posner and Keele (1968) trained subjects to categorize
dot patterns and then looked at how their classification of new
dot patterns varied as a function of the distance from the cate-
gory prototypes. To understand such laboratory experiments it
is important to understand the role of categorization in the
world at large. That is, the researcher must. pose a framing of the
information-processing problem involved in categorization.
This involves three components: specifying the goals of the sys-
tem in categorization, characterizing the relevant structure of
the environment, and considering computational costsand pos-
sible limitations.

The Goal of Categorization

Why do people form categories (assuming that they do)?
There are at least three views of the origins of categories:

Linguistic. A linguistic label provides a cue that a category
exists, and people proceed to learn to identify it. This is the
view at least implicit in most experimental research on categori-
zation.

! Equivalently, it is true that alternative physical laws might produce
the same environment, but from a psychological point of view we only
care about the resultant environment and not the mechanisms that
produce it. Those identifiability problems are the domain of other
sciences.
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Feature overlap. People notice that a number of objects
overlap substantially and proceed to form a category to include
these items. This seems essentially the position of Rosch
(Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976) and clos-
est to my own. There is experimental research (e.g., Fried &
Holyoak, 1984) to show that people can learn categories in the
absence of category labeling. Common experience also says this
is true. v

Similar function. People notice that a number of objects
serve similar functions and proceed to form a category to in-
clude them. This, for instance, is the position advocated by
Nelson (1974). It involves distinguishing the features of an ob-
ject into those that are functional (e.g., it can be used for sitting)
and those that are not (e.g., it has four legs).

These three views need not be in opposition. They are all
special cases of the predictive nature of categories. Categoriza-
tion is justified by the observation that objects tend to cluster in
terms of their attributes, be these physical features, linguistic
labels, functions, or whatever. Thus, if one can establish that an
object is in a category, one is in a position to predict a lot about
that object. From this point of view the linguistic label asso-
ciated with the category is just another feature to be predicted.
Perhaps certain features are more important to predict (ie., the
functional ones and linguistic labels) than others, but this turns
out to have no impact on the logic of how one goes about mak-
ing the statistical inferences underlying prediction.

Although it is easy to say prediction is the goal, it remains to
be precise about what the goal means. I have operationalized
this as minimizing mean squared error of prediction in a Baye-
sian inference scheme. The implications of this operationaliza-
tion will become clear as the article progresses.

The Structure of the Environment

It is an interesting question what kind of structure we can
assume of the enviroment in order to drive prediction. Ideally,
one would want to consider all the objects within the experi-
ence of evolving humans. However, I have focused on living
objects (arguably, the largest portion) because of the aid science
and biology gives in objectively specifying the organization of
these objects. In particular, the theory developed rested on the
structure of living objects produced by the phenomenon of spe-
cies. Species form a nearly disjoint partitioning of the natural
objects because of the inability to interbreed. Within a species
there is a common genetic pool, which means that individual
members of the species will display particular feature values
with probabilities that reflect the proportion of that phenotype
in the population. Another useful feature of species structure is
that the display of features within a freely interbreeding species
is largely independent. Thus, there is little relationship between
size and color in freely interbreeding species where those two
dimensions vary. Thus, the critical aspects of speciation are the
disjoint partitioning of the object set and the independent prob-
abilistic display of features within a species.

An interesting question is whether other types of objects dis-
play these same properties. The other common type of object is
the artifact. Artifacts approximate a disjoint partitioning, but
there are occasional exceptions—for instance, mobile homes,
which are both homes and vehicles. Other types of objects
(stones, geological formations, heavenly bodies, etc) seem to

approximate a disjoint partitioning, but here it is hard to know
whether this is just a matter of perceptions or whether there is
any objective sense in which they do. One can use the under-
standing of speciation for natural kinds and the understanding
of the intended function in manufacture in the case of artifacts
to objectively test the hypothesis of disjoint partitioning.

Psychologists have used this disjoint, probabilistic model of
categories as a framework within which to derive predictions
about object features. To maximize the prediction of features of
objects, we need to induce a disjoint partitioning of the object
set into categories and determine what the probability of fea-
tures will be for each category.

Computational Constraints

The basic goal of categorization is to predict the probability
of various unexperienced features of objects. The situation can
be characterized as one in which 7 objects have been observed,
they have an observed feature structure F,, and one wants to
predict whether a particular object will display some value jon
dimension i unobserved for that object. The ideal way to do this
would be to consider all the different ways that the objects seen
so far could be broken up into categories, determine the proba-
bility of each such partitioning, and use this to weight the proba-
bility that the object will display a particular feature if that were
the partition. Formally, this amounts to calculating

P,(jIF,) = 2 P(x| F,)Pi(j] x), (n

where P,;(j| F,) is the probability that an object will display a
value j on a dimension i given F,, the observed feature struc-
ture. The summation is across all possible partitionings x of the
n objects into disjoint sets, P(x| F,) is the probability of parti-
tioning x given the objects display feature structure F,, and
P,(j] x) is the probability that the object in question would
display value j on dimension i if x were the partition. The
problem with trying to calculate this quantity is that the num-
ber of partitions of n objects grows exponentially as the Bell
exponential number ( Berge, 1971).2 This makes the quantity in
Equation 1 impossible to compute in reasonable time for all but
very small n. Besides having acceptable computational cost,
there are two other “form” constraints I would like to place on
the nature of the computation that serve to limit possible catego-
rization algorithms.

The first constraint, which is perhaps controversial, is that
the algorithm commit to some specific hypothesis as to the
category structure of the objects seen. The ideal algorithm is
also objectionable on this score because it considers all possible
category structures. The motivation for this constraint is to
match the intuition that people tend to perceive objects as com-
ing from specific categories. It can also be seen as derivative
from the previous basic computational constraint in that by not
allowing alternative hypotheses it helps to minimize computa-
tional cost, which is linear in number of categories.

The second form constraint is that the algorithm be incre-

2 For example, there is 1 partitioning of one object, 2 partitionings of
two objects, 5 of three, 15 of four, and 52 of five. As an illustration, the
five possible partitionings of the objects a, b, and c are (abc), (a, bc),
(ab, ), (ac, b), and (a, b, ©).
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mental and commit to a hypothesis after every object seen. This
contrasts to a good many artificial intelligence programs
(Cheeseman et al., 1988; Michalski & Chilausky, 1980; Quinlan,
1986), which take in a large number of objects, process them,
and then deliver a set of categorical hypotheses. It is also in
contrast to typical clustering algorithms (Anderberg, 1973).
The reason for insisting on such an iterative algorithm is the
simple fact that people need to be able to make predictions all
the time not just at particular junctures after seeing many ob-
jects and much deliberation.

An Iterative Algorithm

These computational considerations strongly constrain the
kinds of categorization algorithms that can be used. At each
point in time, one needs to have a fixed set of categories, one
needs to update these categorical hypotheses as each object
comes in, and one needs to do so with a substantially bounded
amount of computation. There is a type of iterative algorithm
that has appeared in the artificial intelligence literature (e.g.,
Fisher, 1987; Lebowitz, 1987) that satisfies these constraints. I
have adapted this algorithm to fit the framework I have set
forth. Although I have no formal proof, I strongly suspect that
this is the optimal algorithm that satisfies these form con-
straints. The following is a formal specification of this algo-
rithm.

1. Before seeing any objects, the category partitioning of the
objects is initialized to be the empty set of no categories.

2. Given a partitioning for the first m objects, calculate for
each category k the probability P(k|F) that the m + Ist object
comes from category k given that the object has features F. Let
P(0] F) be the probability that the object comes from a com-
pletely new category.

3. Create a partitioning of the m + 1 objects with the m + Ist
object assigned to the category with maximum probability.

4. To predict value jon an unobserved dimension i for the
n + Ist object with observed features F, calculate .

P(j|F)= % P(k| F)P;(jlk), (2)

where P;( k| F) is the probability that the n + st object comes
from category k, and P,;(j|k) is the probability of an object
from category k displaying value j on dimension i.

The basic algorithm is one in which the category structure is
grown by assigning each incoming object to the category it is
most likely to come from. Thus, a specific partitioning of the
objects is produced. Note, however, that the prediction for the
new n + Ist object is not calculated by determining its most
likely category and the probability of j given that category.
Rather, a weighted average is calculated over all categories. This
gives a much more accurate approximation to the ideal
P,(j| F,) because it handles situations where the new object is
ambiguous among multiple categories. It will weight these com-
peting categories approximately equally.

It is an interesting question just how much accuracy of pre-
diction is lost because of the iterative algorithm in Equation 2
over the ideal algorithm in Equation 1. Because of the computa-
tionaly intractable nature of the ideal algorithm it is not possi-
ble typically to answer this question. However, Anderson and
Matessa (in press) report explorations of the question for partic-

ular small samples and conclude that not much is lost. The
correlations with the ideal algorithm were well above .90.

It is also worth noting that this algorithm is order sensitive.
and different categorical structures can appear when instances
appear in different orders. However, it is important to realize
that the goal is to deliver cost-effective, accurate predictions and
not to discover the “true” categorical structure of the environ-
ment. Anderson and Matessa (1991) report a series of studies
that show that, although category structure can vary substan-
tially as a function of order, the predictions delivered from
those different categories do not differ much themselves.

As a final point it is worth commenting that no strong com-
mitments are being made as to the implementation details of
this algorithm. The P(k| F) could be calculated in parallel or
serial. In Anderson (1990, in press) 1 described a parallel net-
work for doing such calculations.

Probability Calculations

It remains to come up with a formula for calculating P(k| F)
and P;(j|k) in Equation 2. Because P;(j|k) turns out to be
involved in the definition of P(k| F). I will start with P(k| F).
In Bayesian terminology P(k| F) is a posterior probability that
the object belongs to category k given that it has feature struc-
ture F. Bayes’s formula can be used to express this in terms of a
prior probability P(k) of coming from category k before the
feature structure is inspected and a conditional probability
P(F|k) of displaying the feature structure F given that it comes
from category k.

P(k)P(F|k)

P(k|F)= =—"—+>, 3
“B) = 5 P PCFIR) 3
k

where the summation in the denominator is over all categories

k_currently in the partitioning including the potential new one.

This then focuses our analysis on the derivation of a prior proba-

bility P (k) and a conditional probability P(F|k).

Prior Probability

With respect to prior probabilities the critical assumption is
that there is fixed probability ¢ that two objects come from the
same category, and this probability does not depend on the
number of objects seen so far. This is called the coupling proba-
bility. If one take this assumption about the coupling probability
between two objects being independent of the other objects and
generalize it, one can derive a simple form for P(k) (see Ander-
son, 1990, for the derivation).

chy

POt +en

(4)
where c is the coupling probability, n, is the number of objects
assigned to category k so far, and  is the total number of objects
seen so far. Note that for large 7 this closely approximates n, /n,
which means that there is a strong base rate effect in these
calculations with a bias to put new objects into large categories.
Presumably the rational basis for this is apparent.

A formula is needed also for P(0), which is the probability
that the new object comes from an entirely new category. This is
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For large n this closely approximates (1 — ¢)/cn, which is
again a reasonable form (ie., the probability of a brand new
category depends on the coupling probability and number of
objects seen). The greater the coupling probability and the
more objects, the less likely it is that the new object comes from
an entirely new category.

P0) =

Conditional Probability

The probability of displaying features on various dimensions
given category membership is assumed to be independent of
the probabilities on other dimensions. Thus,

P(F|k) =TI Pi(jlk), (6)

where the values j on dimensions i constitute the feature set F.
The reader will recognize P;(j|k) from Equation (3), which is
the probability of displaying value j on dimension i given that
one comes from category k. This independence assumption is
reasonably justified for freely interbreeding species.’ It is less
clear how well justified it is for other categories.

This independence assumption does not prevent one from
recognizing categories with correlated features. Thus, one may
know that being black and retrieving sticks are highly corre-
lated for labradors. This would be represented by high probabili-
ties of the stick-throwing and the black features in the labrador
category.* What the independence assumption prevents one
from doing is representing categories where values on two di-
mensions are either both one way or both the opposite. Thus, it
would prevent one from recognizing a single category of ani-
mals that were either large and fierce or small and gentle, for
instance. Later in this article I discuss how serious a limitation
this really is.

The effect of Equation 6 is to focus on an analysis of the
individual P, ( jlk). Derivation of this quantity is itself an exer-
cise in Bayesian analysis. A special case derivation for a discrete
dimension is described in Anderson (1990). This article givesa
more general derivation. The major mathematical steps in this
derivation are given for the discrete case to show how the Baye-
sian analysis works. The mathematical detail is not given in the
derivation of the continuous case, which is more complex.
There the final result is stated.

Discrete Dimensions

There are three major steps in any Bayesian inference
scheme. The first is to specify some priors about the structure
of the world. The second is to specify how probable various
observations would be conditional on various structures. The
third is to combine these priors and conditional probabilities to

form posterior probabilities about the structure of the world. In
the case of discrete dimensions, one needs to start with some
prior probabilities that members of the category would display
various values on the dimension. For instance, what is the prior
probability of a member of a new species being brown, versus
yellow, versus black, and so forth? There is some probability, p;,
of displaying color, j, which represents the proportion of that
phenotype in the population. However, before experience with
the population p; is a random variable that takes on various
values with various probabilities. Note that one constraint on
the values of p;is that Zp,= 1. The typical prior density for the p;
is the Dirichlet density (Berger, 1985):

m
fD(ph D2 * pmlal’ Qz, **° am) = _’_'.]_:‘Q_O_)_ H Pj“’-l,
I1 T(ey) a
J=1
N
where g = Zo;and I'(8) = (B—-1)!in the case of integer 8. In this
distribution the expected value for p; is o;/atg. ctg is a measure of
the strength of belief in these priors. If one does not have very
strong expectations and does not have any expectations that
some values are more likely than others, it is common to use a
noninformative prior obtained by setting all &; = 1. This was
what was generally used in Anderson (1990), but other possibil-
ities are considered in this article.

The next step in a Bayesian analysis is to specify the condi-
tional probability of the observed distribution of values on di-
mension i given a set of probabilities p;. Let ¢, €3, =+ Cm be
frequency counts for the number of objects showing each of the
m values on dimension i. What we have observed is n multino-
mial trials corresponding to the objects, and the probability of
this sequence is described by

fM(Cl’CZ’""cm|p|7p27'-~7pm)=(

" ) ﬁ p;.

C1Cyy = 5 Cpl j=1°

(8)

The next step is to calculate the posterior distribution of the
p; given the observed c;. This is calculated above by the stan-
dard Bayesian formula for probability densities.

3 The major constraint on the validity of this independence assump-
tion for species is that the dimensions that we use to describe objects
must correspond to distinct phenotypic traits. If the description had
separate dimensions for color of left eye and color of right eye, for
instance, there would be a strong correlation.

4 As this example makes clear. human intervention has created the
breed (e.g., labrador).a specialization within the species (ie., dog). Itis
the breed and not the species that defines the freely interbreeding unit
and for the purposes of this aricle, the category.
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The posterior distribution of probabilities is also a Dirichlet
distribution but with parameters a; + c; (Berger, 1985).° This
implies that the mean expected value of displaying value jon
dimension i is (e + ¢,)/ Z;(a; + ¢;). This is P; (j| k) for Equation
6:

Pk = 2%
n + %)

(10)

where 7, is the number of objects in category k that have a value
on dimension i, and ¢, is the number of objects in category k
with the same value as the object to be classified. For large n,
this approximates ¢ /i, which one frequently sees promoted as
the rational probability. However, it has to have this more com-
plicated form to deal with problems of small samples. For in-
stance, if one has just seen one object in a category and it has
had the color red, one would not want to guess that all objects
are red. If there were seven colors equally probable on prior
grounds and the ; were 1, the formula would give one fourth as
the posteriori probability of red and one eighth for the other six
colors unseen as yet. Equation 10 can be seen as a weighted
combination of ones prior probability, a;/ay, and the empirical
proportion c;/n,. The rate of movement to the empirical pro-
portion from the prior is controlled by a,, which is a measure of
one’s strength of belief in these priors.

Continuous Dimensions

What follows here is probably the most useful Bayesian analy-
sis for continuous distributions (for details see Lee, 1989 ). The
natural assumption is that the variable is distributed normally
and the induction problem is to infer the mean and variance of
that distribution. In standard Bayesian inference methodology
one must begin with some prior assumptions about what the
mean and variance of this distribution are. It is unreasonable to
assume advance knowledge of precisely what the mean or vari-
ance will be. Prior knowledge must take the form of probability
densities over possible means and variances. This is basically
the same idea as in the discrete case where there was a Dirichlet
distribution giving priors about probabilities of various values.
The major complication is the need to separately state prior
distributions for mean and variance.

One suggestion for the prior distributions is that the variance
=2 is distributed according to an inverse chi-square distribu-
tion, or more specifically,

22 ~ aOUOZXao_Z’
where o,? reflects the mean prior variance and a, reflects the
confidence in that prior variance. The obvious suggestion for
the prior distribution of the mean, M, is that it has a normal

distribution. One manifestation of this is the following assump-
tion:

M~ N(po, V‘I)“’-) giventhat 3 = g,
0

where u, is the prior mean and )\, reflects confidence in this
prior. This makes M conditional on Z, which proves to be un-
avoidable in making inferences about a normal distribution
with both unknown mean and variance.

Given these joint prior distributions, the probability of dis-
playing value x on dimension i in category k after n observa-
tions has the following ¢ distribution (Lee, 1989):

Si(xlk) ~ to(u oYL+ 172, (11)

where ¢; are the degrees of freedom, 4, is the mean, and a.c(1+
1/N;)/(a; — 2) is the variance. This defines P, ( j| k) for purposes
of Equation 6. The parameters a.. y,, g;, and A; are defined as
follows:

A= Ao+ m, (12)
ai=a0+n, (13)
_xoﬂoﬂ"nf
i Ao‘:‘n B (14)
and
Y
ao* + (1= )5t + T2 (g — 572
2 oTn
o = , ,  (15)
a,+n

where X is the' mean of the n observations and 52 is the variance.,
These equations basically provide us a formula for merging the
prior mean and variance, pq and .2, with the empirical mean
and variance, X and 52, in a manner that is weighted by confi-
dences in these priors, A, and a,.

Equation 11 for the continuous case describes a probability
density in contrast to Equation 10 for the discrete case, which
gives a probability. The product of conditional probabilities in
Equation 6 can then be a mixture of probabilities and density
values if there are both continuous and discrete dimensions.
Equations 6, 10, and 1 1 give a basis for judging how similar an
object is to the category’s central tendency,.

Interpretation of the Theory

This completes the specification of the theory of categoriza-
tion. Before looking at its application to various empirical phe-
nomena, a word of caution is in order. The claim is not that the
human mind performs any of the Bayesian mathematics that
fill the preceding pages. Rather the claim of the rational analy-
sis is that, whatever the mind does, its output must be optimal
within the constraints of this iterative algorithm. The mathemat-
ical analyses of the preceding pages serve the function of allow-
ing theorists to determine what is optimal.

A second comment is in order concerning the output of the
rational analysis. It delivers a probability that an object will
display a particular feature. There remains the issue of how this
relates to behavior. The basic assumption will only be that there
is a monotonic relationship between these probabilities and
behavioral measures such as response probability, response la-
tency, and confidence of response. The exact mapping will de-
pend on such things as the subject’s utilities for various possible
outcomes, the degree to which individual subjects share the

3 Because the posterior distribution is of the same form as the prior
distribution, the Dirichlet distribution is referred to as the conjugate
prior for the multinomial.
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same priors and experiences, and the computational costs of
achieving various possible mappings from rational probability
to behavior. These are all issues for future exploration. What is
remarkable is how well the data can be fit without addressing
these issues.

Application of the Algorithm

This algorithm is potentially order sensitive in that different
partitionings may be uncovered for different orderings of in-
stances. In the presence of a strong categorical structure, the
algorithm picks out the obvious categories, and there usually is
little practical consequence to the different categories it extracts
in the case of weak category structure. The iterative algorithm is
also extremely fast. A Franz LISP implementation categorized
the 290 items from Michalski and Chilausky’s (1980) data set
on soybean disease (each with 36 values) in 1 central-processing
unit (CPU) minute on a Vax 780. An Allegro CommonLISP
implementation performed comparably on a Macintosh II.
This is without any special effort to optimize the code. It also
diagnosed the test set of 340 soybean instances with as much
accuracy as apparently did the specially crafted system of Mi-
chalski and Chilausky.

The first experiment in Medin and Schaffer (1978) is a nice
one for illustrating the detailed calculations of the algorithm.
They had subjects study the following six instances each with
binary features:

11111
10101
01011
00000
01000
10110.

The first four binary values were choices on visual dimensions
of size, shape, color, and number. The fifth dimension reflected
the category label. They then presented these six objects with-
out their category label plus six new objects without a label:
0111—, 1101—, 1110—, 1000—, 0010—, and 0001—. Sub-
jects were to predict the missing category label.

The experiment was simulated by running the program
across various random orderings of the stimuli and averaging
the results. Figure 1 shows one simulation run where the order
was 11111, 10101, 10110, 00000, 01011, and 01000; the cou-
pling probability ¢ was .5 (see Equations 4 and 5); and all o
were | (see Equation 10). What is illustrated in Figure | is the
search behavior of the algorithm as it considers various possible
partitionings. The numbers associated with each partition are
measures of how probable the new item is, given the category to
which it is assigned in that partition. These are the values
P(k)P(F|k) calculated by Equations 4-11. Thus, the algo-
rithm starts out with categorizing 11111 in the only possible
way, that is, assigning it to its own category. The probability of
this is the prior probability of a1 on each dimension, or (.5)° =
10313. Then, the two ways to expand this to include 10101, are
considered, and the categorization that has both objects in the
same category is chosen because that is more likely. Each new
object is incorporated by considering the possible extensions of
the best partition so far. The final choice is the partition (11111,
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10101, 10110), (00000, 01000), (01011), which has three cate-
gories. Note the system’s categorization does not respect the
categorization of Medin and Schaffer (1978).

Having come up with a particular categorization, the model
was tested by presenting it with the 12 test stimuli and assessing
the probabilities it would assign to the two possible values for
the fifth dimension, which is label. Figure 2 relates the behavior
of the algorithm to their data. Plotted along the abscissa are the
12 test stimuli of Medin and Schaffer (1978) in their rank order
determined by subjects’ confidence that the category label was
al. The ordinate is the algorithm’s probability that the missing
value was a 1. Figure 2 illustrates three functions for different
ranges of the coupling probability. The best rank order correla-
tion was obtained for coupling probabilities in the range of .3
and below. At these values the algorithm creates a separate cate-
gory for each stimulus, which is what, in effect, the Medin and
Schaffer theory claims. However, as shown later, the algorithm
does not create singleton categories for all types of experimen-
tal material at ¢ = .3.

Using a coupling probability of .3 the rank order correlation
was .87. Using a coupling probability of .3, rank order correla-
tions of .98 and .78 were obtained for two slightly larger experi-
mental sets used by Medin and Schaffer (1978). These rank
order correlations are as good as those obtained by Medin and
Schaffer with their many-parameter model. It also does better
than the ACT* simulation reported in Anderson, Kline, and
Beasley (1979). The coupling probability ¢ is set to .3 through-
out the applications in this article.

The reader will note that the actual probabilities of category
labels estimated by the model in Figure 2 only deviate weakly
above and below .5. This reflects the very poor category struc-
ture of these objects. With better structured material, much
higher prediction probabilities are obtained.

Survey of the Experimental Literature

Anderson (1990) provided a survey of the application of the
model to discrete dimensions. This article briefly reviews the
results and discusses in more detail some applications that in-
volve continuous dimensions.

Central Tendencies

The strongest phenomenon in the literature on human cate-
gorization is that the reliability with which an instance is classi-
fied decreases as a function of its distance from the central
tendency of the category. This trend is so well established now
that it is largely ignored in current research, which focuses on
the second-order effects. It should be clear that this analysis
does predict this main effect. The probability of an item com-
ing from a category is a function of its feature similarity (see
Equations 6, 10, and 11). Anderson (1990) described several
cases involving discrete dimensions; this article describes its
application to one of the original experiments of prototype for-
mation, that of Reed (1972).

Reed (1972) had subjects learn to categorize the 10 faces that
are illustrated in Figure 3. The first row of faces are in one
category and the second row of faces are in another category.
The two sets of faces are derivations from the prototypes illus-
trated in Figure 4. After studying these faces subjects went to a
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10110 10110 10110 10110
01000 00000 00000 00000
00000 01000 01011 01011
01011 01011 01000 01000
.0013 .0110 .0054 .0052

Figure 1. An illustration of the operation of the iteratiave algorithm in the material from the first

experiment of Medin and Schaffer (1978).

test condition where they had to try to classify these and other
faces. The critical data concern the probabilities with which
subjects assigned various faces to categories. As a general char-
acterization, their categorization varied with distance of the
face from the prototype.

The simulation treated these faces as five-dimensional stim-
uli where the dimensions were height of the forehead, which
ranged from 54 to 88 mm, distance separation of the eyes,
which ranged from 20 to 55 mm, length of the nose, which
ranged from 32 to 64 mm, height of the mouth, which ranged
from 28 to 60 mm, and category label, which was a binary-val-

ued discrete dimension. As in all the simulations, the coupling
probability c was set to be.3. For the discrete binary dimension,
the prior strengths «; were set to be 1 in most of the simulations.
The prior means of the continuous distributions were set to be
the halfway point of the range, and the prior variances were set
to be equal to the square of a quarter of the range. The strengths
of belief in the prior mean and variance, g, and Ao, were both
set to be 1.

The rational model identified two or more internal catego-
ries, depending on presentation order, that corresponded to the
experimenter’s categories. That is, sometimes it subdivided the
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Figure 2. Estimated probability of Category | for the 12 test stimuli in the first experiment of Medin and
Schaffer (1978). (Different functions are for different ranges of the coupling probability)

experimenter’s categories into subcategories, but it almost
never merged items from the two experimenter categories into
an internal category. Reed’s subjects were asked to classify 25
test stimuli, and the major test of the model was its classifica-
tion of these test stimuli. Overall its confidence of category
membership (calculated by Equation 2) correlated .90 with
Reed’s data.®

Effects of Specific Instances

4
Although experiments like those of Reed show that human
categorization is sensitive to central tendencies, there also has

| | I

Figure3. The stimuli used by Reed (1972). (The faces in the first row
are in one category and the faces in the second row are in another
category. From “Pattern Recognition and Categorization” by S. K.
Reed, 1972, Cognitive Psychology. 3, p. 384. Copyright 1972 by Aca-
demic Press. Adapted by permission))

been a great deal of research showing that subjects are sensitive
to specific instances that they have studied. Anderson (1990)
described simulations of the Medin and Schaffer (197 8) experi-
ments that demonstrated this effect for discrete dimensions.
Here I would like to describe some simulations of research by
Nosofsky. Figure 5 illustrates the material used by Nosofsky
(1988). Subjects were trained to classify 12 colors that varied in
brightness and saturation. The colors varied in brightness on
the Munsell scale from 3 to 7 and in saturation from 4 to 12.
Again in the model of this task, the prior means were set to be
the means of the dimensions and the prior variances were set to
be the squares of one quarter of the ranges. The values for the
other parameters were o;; = 1, 4o =1, andA,=1.

In the base condition ( B) subjects had four trialson each item
and were then tested. In the first experiment there wasa Condi-
tion E2 in which subjects saw Stimulus 2 approximately 5 times
as frequently and a Condition E7 in which they saw Stimulus 7
approximately 5 times as frequently. The top panel of Figure 6
illustrates probability of classification in Category 2. As can be
seen, subjects are sensitive to the frequency manipulation. The
bottom panel of Figure 6 shows the probability that the model
assigned to a Category 2 response given the same experience. In
Experiment 2, Nosofsky manipulated the frequency of Stimu-
lus 6 to be either 3 or 5 times the average (Conditions E6[3]and
E6[5]). Figure 7 shows the result and the simulation. In both
cases there is sensitivity to the manipulation of the frequency of
Stimulus 6. The overall correlation between data and theory
across the two experiments is .98.

Nosofsky took these data as indicating that subjects made

6 thank Stephen Reed for making his data available.



418

Figure 4. The prototypes for the two categories in Figure 3. (From
“Pattern Recognition and Categorization” by S. K. Reed, 1972, Cogni-
tive Psychology, 3, p. 391. Copyright 1972 by Academic Press. Adapted
by permission)

their judgments of category membership on the basis of similar-
ity to individual instances. It is interesting to inquire as to what
the rational model was doing. It typically extracted two, three,
or four major categories depending on order. For instance, in
one run it extracted a category for Stimuli 2, 3,4, 6, 7,and 9, a
category for 1 and 5, and another category for 8,10, 11, and 12.
In another run it extracted a category for 1, 2, 3, and 5, a cate-
gory for 6, a category for 4, 7, and 9, and a category for 8,10, 11,
and 12. Its category extraction behaviors did not vary as a func-
tion of condition. The effect of condition was to bias the center
of one of the categories toward the value of the repeated stimu-
lus. This would enhance classification of that stimulus.

Linearly Nonseparable Categories

The experiment of Nosofsky (1988) just reviewed isan exam-
ple of an experiment using linearly separable categories, in that

BRIGHTNESS

1 1 1 L

AA

SATURATION

Figure 5. A representation of the material used by Nosofsky (1988).
(The circles represent members of one’s own category. The triangles
represent members of the other category. From “Similarity, Frequency,
and Category Representations,” by R. M. Nosofsky, 1988, Journal of
Experimental Psychology: Learning, Memory, and Cognition, 14, p. 56.
Copyright 1988 by the American Psychological Association. Re-
printed by permission from the author)
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Figure 6. Simulation of the first experiment of Nosofsky (1988).
(Top: The portion of assignments by subjects of the 12 stimuli to Cate-
gory 2 in each of the three conditions. Bottom: The estimated probabil-
ity of Category 2 responses by the rational model. B = base condition;
E2 = presentation of stimulus 2 approximately 5 times as frequently;
E7 = presentation of stimulus 7 approximately 5 times as frequently)

it is possible to draw a line that separates the two categories.
Categories that are linearly separable are easier to learn than
categories that are not linearly separable for many categoriza-
tion models. However, Medin and Schwanenflugel (1981)
showed that subjects can in some circumstances learn linearly
nonseparable categories more easily than separable categories.
This occurs when the instances in the separable categories are
all far apart from one another, whereas clusters of within-cate-
gory stimuli are close together in the case of the nonseparable
categories. The model reproduces this result because it forms
separate internal categories for every cluster of the stimuli. In
the case of widely spaced separable stimuli this means a sepa-
rate category for every stimulus. In the case of the nonseparable
categories with clusters this means one category for each clus-
ter. Thus, there are fewer internal categories to learn in the case
of nonseparable external categories.

Table illustrates the material used by Medin and Schwanen-
flugel (1981). In the case of the linearly separable categories it
formed separate categories for each stimulus. In the case of
linearly nonseparable categories, it merged the first two in Cate-
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Figure 7. Simulation of the second experiment by Nosofsky (1988).
(Top: The portion of assignments by subjects of the 12 stimuli to Cate-
gory 2 in each of the three conditions. Bottom: The estimated probabil-
ity of Category 2 responses by the rational model. B = base condition;
E6(3) = Stimulus 6 presented 3 times the average; E6(5) = Stimulus 6
presented 5 times the average) -

gory A into an internal category, the second two in Category A,
and the first, second, and fourth in Category B. Thus, only
Stimulus 3 in Category B was in a singleton category, and this
was the stimulus that produced the highest error rate in their
experiment.

Medin’s demonstration was with discrete stimuli. Recently,
Nosofsky, et al. (1989) reported a study with continuous stim-
uli. They had subjects learn to categorize seven circles which
varied in size and angle of orientation of a radial line. The four
possible sizes were 4.94,6.17,8.81,and 10.05 mm, and the four
possible angles were 25°, 50° 130°, and 155°. Figure 8 illustrates
the 16 stimuli that resulted from combining these two dimen-
sions. Stimuli 1 or 2 were studied and assigned to Category 1 or
2. Subjects were given 150 training trials on these stimuli and
then were transferred to a condition where they had to catego-
rize all 16 stimuli. Note there is no line that will separate Cate-
gory | stimuli from Category 2 stimuli.

In typical runs of the model, the simulation extracted four
categories, one to contain 1 and 13, one to contain 6 and 10, one
to contain 3 and 8, and one to contain 1 1. In fitting his model to

Table 1

Abstract Representation of the Alternative Categorization Tasks
Used in Experiment 2

Dimension

Exemplar D, D, D, D,

Linearly separable categories

Category A
A, 1 1 1 0
A, 1 0 1 1
A, 1 1 0 1
A, 0 1 1 1
Category B
' 1 0 1 0
B, 0 1 1 0
B, 0 0 0 1
B, 1 1 0 0
) Categories not linearly separable
Category A
A, 1 0 0 0
A, 1 0 1 0
A, 1 1 1 1
A, 0 1 1 1
Category B
B, 0 0 0 1
B, 0 1 0 0
B, 1 0 1 1
B, 0 0 0 0

Note. Each task involved eight stimuli varying along four dimensions.

these data, Nosofsky (1988) had to allow for different atten-
tional sensitivity to the two dimensions of size and angle of
rotation and found that the data could be better fit by greater
sensitivity to angle. This was modeled in the current framework
by allowing separate estimates of a, for the variances on the two
dimensions (see Equation 15). The larger a,, the harder it is for
a category to have a tight variance, and the category has less
sensitivity to that dimension. There was a single estimate of A,
for both dimensions. The parameter « for category label was
held at 1 as before, and the coupling parameter ¢ was held at.3 as
before. The Stepit program of Chandler (1965) was used to find
the best fitting values (correlation is .98 ) of the three free param-
eters. The best fitting parameter values were A\, = 31.08, a, =
2.74 for angle, and a, = 9.13 for size. Thus, as postulated, the
differential sensitivity to dimensions was reproduced by differ-
ent prior strengths of the variances. Basically, the model has a
stronger belief that a wide range of distances will be equivalent
than its belief that a wide range of angles will be equivalent.

Category Labels

The models for the experiments in the last subsection typi-
cally extracted more categories than the number of category
labels the experimenters use. In the extreme we can induce a
separate category for each instance, in which case the model -
becomes basically indistinguishable from instance-based mod-
els (e.g., Medin & Schaffer, 1978; Nosofsky, 1988). It is also
possible for the model to merge instances with different cate-
gory labels into the same internal category. The likelihood of
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Figure 8. The 16 stimuli used by Nosofsky, Clark, and Shin (1989).
(The circles were stimuli trained as in Category 1 and the triangles were
stimuli trained as in Category 2. From “Rules and Exemplars in Cate-
gorization, Identification, and Recognition” by R. M. Nosofsky, S. E.
Clark, and H. J. Shin, 1989, Journal of Experimental Psychology: Learn-
ing, Memory, and Cognition, 15, p. 285. Copyright 1989 by the Ameri-
can Psychological Association. Panel A adapted by permission from
the authors)

this is controlled by «, level for the label dimension; «, is the
measure of the strength of beliefs in the priors. If this has a low
value, there will be a strong bias against merging instances with
different category values. Thus, there can be differential sensi-
tivity to a dimension like category label. A person is less sensi-
tive to empirical data for dimensions about which the person
has stronger priors.

It is reasonable that one should have weak priors about a
category label. There is no reason to expect that a novel éreature
encountered in Australia will be called an echidna. It just is.
Thus, the general expectation is that internal categories will be
at least as refined as the experimenter’s category labels. Often
they will be more refined, however. It is possible that the setting
of a =1 for the category labels in previous experiments was too
high. However, the impact of lowering « would be to decrease
the tendency to merge stimuli with different labels. As not
much merging occurred with a = 1, lowering & would not have
substantially changed the behavior.

It is also the capacity to form multiple categories per label
that allowed us to fit the data of Medin, Altom, Edelson, and
Freko (1982) on correlated features (described in more detail in
Anderson, 1990). The problem of characterizing a correlated
category structure is very much like solving an exclusive-or
problem. The category is defined not by single combination of
values on the dimensions but by the fact that when an instance
takes a particular value on one dimension it takes a particular
value on another dimension. The way the model handles this is
to break out a separate internal category for each combination
of values. It does this because this maximizes the predictive
structure of the instances.

JOHN R. ANDERSON

Role of Category Label Feedback

The experiment by Homa and Cultice (1984 ) is an interesting
one for illustrating the role of feedback as to category labels.
Figure 9 illustrates their stimulus material. They are derived
from the random nine-dot patterns introduced by Posner and
Keele (1968), but Homa introduced the feature of drawing
lines to connect the dots. This makes it relatively cheap to write
a computer program that will determine how to map the points
of one into another in a way as to achieve maximal fit. Given
such a mapping, one can describe each stimulus according to18
ordered dimensions, which are the x and y coordinates of each
point. The rational categorization model was applied to these
materials under such descriptions.

There are three categories in Figure 9—one category repre-
sented by nine items, one by six, and one by three. In one condi-
tion of their experiment, subjects were given category labels
and trained to sort the stimuli into three categories. In another
condition they were free to sort the stimuli into whatever catego-
ries they wanted. Homa and Cultice (1984) were interested in
determining how well subjects did at recovering the category
structure without feedback. In the case of feedback, Homa and
Cultice just measured accuracy of assignment in a final crite-
rion test. In the case of no feedback, they tried to discover some
way of assigning labels to the categories in the subjects’ sort that
made their categorization look optimal. It is hard to know how
comparable the two measures are.

In the simulation, when there was feedback, the probability
of a category label was measured according to Equation 2.
When there was no feedback, labels were assigned to internal
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Figure9. Examples of low-distortion stimuli from Homa and Cultice
(1984).
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categories in such a way as 10 maximize probability of a correct
1abel assignment when Equation 2 was used. Again, it is unclear
how comparable the two measures Were. The measures from
the simulation were corrected for guessing. A control condition
was run where, rather than letting the algorithm decide which
items g0 together, items were randomly assigned 10 internal
categories. Then performance scores were obtained in the same
way as when the algorithm did the assignment. Thus, there were
two measures——P, a mean probability of the correct category
label when the algorithm did the clustering and G, a mean
probability of category labeling in the control condition when
the clustering was done randomly. The final measure was (P—
G)/( — G), which is @ standard correction-for-guessing for-
mula.

Homa and Cultice (1 984) used several different {raining sets,
including 2 low distortion training set where the points were
perturbated 1.1 units (the examples in Figure 9 are 1.1 distor-
tions)and 2 high distortion set where they wereé perturbated 4.8
units. Figure 10 compares the performance ofthe subjects and
the simulation for high- and low-distortion training stimuli in
the presence of label feedback or not. 1n the case of Homa and
Cultice, 2 correction for guessing measure was used with G set
tobe .33, because there were three categories. Both subjects and
simulations show approximately additive effects of the two di-
mensions. Both the subjects and the simulation ar¢ nearly at
chance in the presence of high distortion stimuli with no label
feedback. However, the model shows greater sensitivity 10 feed-
back.

1n summary, subjects and the model appear capable of iden-
tifying category structure in the absence of feedback when
there is a relatively obvious category structure. When such an
obvious structure s missing, the category 1abel providesa neces-
sary cue. Even when thereisa relatively obvious category struc-
ture, a category label provides yetan additional correlated cue
and so enhances categorization.

Learning Trends

The results t0 this point have been concerned with compar-
ing the final performance of the algorithm with the final perfor-
mance of humans. However, recently there has been growing
interest in comparing the course of learning in categorization.

gome of the most intricate data on this scor® are unpublished
data by Nosofsky and Gluck (1989), whodida further analysis
of learning with the stimuli of Shepard, Howvland, and Jenkins.
(1961) illustrated in Figurell. They looked at the task of trying

10 categorize eight stimuli defined by binary values on three
dimensions into two categories of four items. Figure 11 illus-
trates the six logically possible ways of dividing these catego-
ries. Shepard et al. found that Category 1 was easiest to learn;
followed by 11, followed by 111, 1V, and v, which were essentially
equivalent; followed by V1. Figure 12 shows the learning data
recently obtained by Nosofsky and Gluck for 25 trials.” The
superiority of Class 11 emerges relatively late in the categoriza-
tion, but otherwise the results of Shepard et al. are confirmed.
Kruschke (1990) noted that the ease of the Class 11 structure
relativetothe more prototypical structures like IV is problemat-
jcal fora good many category models (although his ALCOVE
model with attentional parameters is able to handle these &
sults). Basically, Type 11 involves tWO distant clusters within a
category. The categories in Type 11 are pot linearly separable.
On the other hand, the stimuli can be categorized by only pay-
ing attention to tWO dimensions.

Figure 13 displays the learning results of the application of
the model with the parameters & = 01 for the category 1abel
and 1.0 forall other dimensions. Ascan beseen the model does
a good job of replicating the learning trends including the late
emergence of the superiority of Type L8 Tt will also be notec
that the model produces an interesting pattern with Type IV
where it starts out as one of the best but shows a residual diff
culty so that it becomes as bad as Type V1. This pattern als
appears in the data.

Each trial was modeled as another presentation of the eig

—

7 Each subject Was in all six conditions, but Nosofsky and Ght
(1989) presented the results from the last three conditions 3 partict
subject was in. Error rate Was higher in the first three than the
three.

8 Figure 13 plots estimated probability of the incorrect categor
bel. These probabilities remain above zero even after 25 exposur
each stimulus, in contrast t0 Figure 12 where most conditions 80 ¢
to zero error rate. However, itisnot unreasonable t0 suppose that
estimated probability gets 10 something like 90% for 2 category
subjects will always assign that label, thereby producing zero erro
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Type VI

Figure 1. The six Category types of Shepard, Hovland, and Jenking
(1961), (The eight stimulj are denoted by the corners of the cubes. The

€xemplar numbers. From “Learning and Memorization of Classifica-

i . N. . H. M. Jenkins, 1961,

Psychological Monographs, 75, No. 13, Whole No. 517, P. 4. In the
)

to 1. Type VI does the worst because jt breaks up entirely into
singleton categories,
Another prediction of the rationa] model is that periphera]

1o basic Jeve] categories jn Subjects.
Base-rate effects. The model simulateq the data of Homa
and Vosburgh (1976) ang Medin ang Edelson (1988) shOWing

_
° This js based on ignoring contributiopg of the possibility of 5 new
category that has a 509, probability of the labe] and also ignoring the

Smal] Probability of the opposite label from an existing Category,
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Figure 12.  The total number of errors in each trial. (From Nosofsky and Gluck, 1989)

(1989) noted that this analysis could be extended to discrete
stimuli by simply regarding difference between stimuli asa sum
of the number of dimensions on which they differ (see Russell,
1986). This leads to a prediction that the strength of generaliza-
tion increases exponentially with the number of dimensions
two stimuli share.

Shepard’s analysis and the current analysis are basically iso-
morphic in their treatment of discrete dimensions. Because of
the multiplication rule in Equation 6 for combining dimensions
this analysis also predicts an exponentially decreasing function
of number of mismatching dimensions.

There are subtle but informative contrasts in the two treat-
ments of distance on a continuous dimension. Shepard’s notion
of a consequential region maps onto the current notion of a
category, and his generalization gradients correspond to cate-
gory boundaries. His analysis was basically Bayesian. He as-
sumed that consequential regions were regions of uniform prob-
ability of a stimulus. He showed that, given this assumption of a
uniform distribution, one gets close approximations to expo-
nential generalization gradients over a wide variety of prior
assumptions about possible distributions of size of the uniform
interval, assuming all positions are equally likely. The analysis
in this article assumes that the consequential region is defined
by a normal distribution. Again under a wide range of assump-
tions about the prior mean and variance of the distribution this
will lead to a sigmoid generalization gradient rather than an
exponential gradient.'® The distinction between the two gener-
alization gradients turns on the normal’s prediction of an in-
flection point where the decrease in generalization switches

from a positive acceleration to the negative acceleration typical
of the exponential. The two generalization gradients only differ
within one standard deviation of the training stimulus.

The striking thing about the two analyses is their similarity
both in rationale and conclusion. However, it is impossible to
resist the temptation to ask the question of whether the under-
lying distributions are uniform or normal and whether the gen-
eralization gradients are therefore exponential or sigmoid. The
data Shepard cited tend not to give evidence for an inflection
point typical of the normal, but there are not many observa-
tions close to the training stimulus, and the inference depends
critically on treating the repetition of the training stimulus as a
generalization test. If, as will be shortly argued, repetitions are
special, one would expect higher than generalization perfor-
mance and consequently the appearance of an exponential
rather than a sigmoid function.

On adaptive rather than empirical grounds the assumption
to be preferred depends on whether one assumes a normal or a
uniform distribution is more likely. To quote Lee (1989) on use
of a uniform distribution for Bayesian inference, “I realize that
the case of the uniform distribution . . . must be a considerable
importance, since it is considered in virtually all textbooks.
Strangely, however, none of the standard references seems to be

'2Shepard (personal communication, 1990) does not agree that
there is always a mapping of uniform prior to exponential gradient and
normal prior to sigmoid gradients. The exact basis of our differing
derivations remains to be identified.
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able to find any reasonably plausible case in which it arises”
(p.102).

The Nature of Category

”

There is a lot of research that has been done on the topic of
categorization, and it seems that not all of this research has
shared the same conceptions of what a category is. Therefore, it
might be useful to comment on the conception of a category in
this article and its relationship to conceptions that have been
advanced in other articles. The current notion is strongly tied to
the goal of prediction and to the phenomenon of species in
living things. It is of interest to inquire as to when the rational
model would actually identify the species structure of living
things. In many cases, the feature descriptions we have of
members of different species are so similar that the model
would merge them into one category. Thus, I assume I merge
into a fish category many creatures that could not possibly in-
terbreed. Perhaps fishermen or other people with a richer and
more discriminating contact with fish would prbduce some-
thing closer to the species structure. As in the Homa and Cul-
tice experiment, verbal labels can serve as discriminating fea-
tures to extract the categorical structure. Perhaps appropriate
training with labels of fish species would help my categoriza-
tion.

On the other hand, there are occasions where the categories
might be more refined than species. For instance, I am con-

vinced that labrador is a basic-level category for myself. This
phenomenon of subspecies categories is particularly likely to
happen in the case of domestic breeds where humans have
prevented free interbreeding within the species and caused
strong breed-specific correlations to occur.

Subspecies or superspecies categories do not mean that the
categorization algorithm has failed. By forming subspecies cate-
gories like breeds, the algorithm is capturing predictable struc-
ture, which is its goal. The case of superspecies categories is
more problematic, but recall that each category maintained
creates extra computational cost. The subtle differences among
the species within a superspecies category may not be worth the
cost of maintaining separate categories.

The assumption of disjoint partition of the object space has
been questioned by many. It is argued that cross-classification is
common (e.g., Martin, 1990). A common example is to point
out that a creature is both a dog and a pet. Clearly, the rational
algorithm would choose the biological category, dog, as the true
category and note that dogs are found in homes, are faithful
(with a certain probability), and have the labels dog and pet.
Perhaps there are certain predictions associated with the social
phenomenon of pets that this model could not make, butitisa
mistake to think all inference is a matter of categorical general-
ization. As Anderson (1990) developed, there is at least one
additional kind of inference, causal inference, that is quite dis-
tinct in its logic. Many purported cases of cross-classifications
in the biological domain involve mixing true biological catego-
ries with role categories, which need a different logic of predic-
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tion. Just because language treats both dog and per as nouns
does not mean the mind treats their referents identically.

This confusion of linguistic labeling and categories is at the
heart of Barsalou’s (1983) point about ad hoc categories. He
claimed people can make up categories on the spur of the mo-
ment, such as “things to take from a burning house” However,
just because one can create an appropriate noun phrase, its
referent does not become a mental category. To be sure, we can
reason about such ad hoc categories, but such reasoning in-
volves causal inference and not categorical inference.

Some people (e.g., Murphy & Medin, 1985) have questioned
the extent to which similarity-based categories exist and have
argued that most categories are theory based. They point out
that people display rich rules for reasoning about objects and
can, for instance, overcome visual appearance to infer bats and
dolphins are mammals (rather than birds and fish) and hence
suckle their young. Most cited cases of such theory-based cate-
gories involve levels of aggregation much higher than would be
produced by the rational model. For instance, mammal is un-
likely to be a category in the model at hand—dolphins and bats
are more likely (and both of which are still superspecies catego-
ries). One could capture these facts by just storing the mammal
label and the suckle-their-young property as features of the bat
and dolphin category. However, this would miss the point of
such examples, which is that one can infer that a bat suckles it
young from the fact that it is a mammal without any direct
evidence that bats suckle their young. Such predictions are not
captured in this rational model of categorization. However, it is
an open question whether the ability to make such predictions
reflects anything about natural categories or whether it reflects
the application of schoolroom knowledge acquired quite sepa-
rately.

As noted throughout the article, category labels are treated as
just another feature to be predicted that may differ in their
prior parameters but that do not differ in their logical role. It is
remarkable that very little laboratory research has been done to
see if category labels are in fact special. Recently, Heit (1990)
looked at the question of whether category labels are different
from any other stimulus feature in terms of serving as a cue for
prediction or as a feature to be predicted. His result was that
category labels are not different.

It should be acknowledged however that there are a strong set
of linguistic phenomena associated closely with categories (eg.,
Markman, 1989). These linguistic categories are presumably
quite functional in communicating information. It is legitimate
to try to study and understand these phenomena surrounding
these linguistic categories. However, I question what they have
to do with the sense of category that is the topic of this article.
The categories of this article are potentially nonverbal, non-
conscious, and need only be implicit in prediction behavior.

Hierarchical Structure

Another peculiar feature of this model is that it identifies a
particular distinguished level that is the basic level. Language,
on the other hand, allows for a hierarchy of categorical expres-
sions. A natural question is whether there is any role for such a
hierarchy of categories in the rational model. In fact, one could
achieve some greater predictive accuracy by considering levels
of aggregation above and below the category. I consider what

could be gained by having a level of aggregation above the cate-
gory, called the genus'' level, and a level below, which is the
individual level (corresponding to different appearances of the
same object).

Genus-Level Identification

The genus level offers a level of aggregation above the species.
A genus corresponds to a group of biologically related species
that are more similar to one another than are arbitrary pairs of
species. The significance of the genus level does not come in
making predictions about known properties of known species.
For instance, we are much better off predicting the cat-chasing
propensity of Fido knowing that he is a dog than knowing he is
a mammal. The significance of the genus level comes in mak-
ing predictions about unknown properties of a known species
(e-g, whether Fido has a spleen) and making predictions about
unknown species.

In Bayesian terms, the significance of the genus level is that it
can be used to set more informed priors for the species under
the genus. This will help in making predictions about new spe-
cies and about unexperienced properties of existing species.
The interesting complication is that these priors themselves
depend on estimates of the parameters for the existing species,
which in turn depend on the priors. Thus, it might seem that
there is a difficult joint estimation problem. The typical Baye-
sian approaches to such estimation problems are called Aierar-
chical methods (Berger, 1985, Section 4.6 ). The technical devel-
opment of such methods can be quite complex and is not Justi-
fied here, because data have not yet been gathered that require
such complex quantitative analysis. It is enough to note for
current purposes that there is a rationale for making estimates
of the mean and variance within a species sensitive to estimates
of means and variances for other species within a genus.

There certainly is evidence that people have this sensitivity.
Even young children have expectations about the properties of
new types of animals on the basis of animals that they have seen
(Carey, 1985). They also have expectations that certain dimen-
sions are less variable for certain types of categories. Thus,
there is the expectation that animals within a category will have
the same constitution, whereas artifacts within a category will
have the same function (Gelman, 1988). Moreover, these ex-
pectations show developmental trends to more accurate forms
as experience accumulates.

The experiment of Nisbett, Krantz, Jepson, and Kunda
(1983)also illustrated differential sensitivity to variance in cate-
gories of different kinds. They asked subjects to suppose that
they had a sample of a new mineral, a new bird, or a new tribe of
people from a new island. They were given samples of different
sizes and told that all the objects within the sample had some
property. Subjects were willing to extrapolate from a single ob-
servation for some dimensions, like conductivity of the mineral
or skin color of the tribe of people, whereas they required 20

! My use of the term genus is in its more general sense to refer to a
kind and does not imply the precision that is involved in the distinction
among genus, family, order, class, and phylum in biology. I suspect that
the level useful in prediction might be considerably above the biologi-
cal genus level and actually closer to the phylum level.
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observations before they were able to extrapolate with any con-
fidence for other dimensions, like the obesity of the people.
This ability to show sensitivity to variance is one thing that
distinguishes this hierarchical Bayesian approach to categoriza-
tion from most others. Many approaches (e.g., instance-based
models) would predict that subjects would be biased in their
estimate of the mean of a new species by the mean of existing
species. These other approaches do not have the mechanisms,
however, for showing a similar sensitivity to variance.

Individual-Level Identification

The individual level provides a much lower level of aggrega-
tion below the category. For purposes of prediction, there is a
real advantage to identifying a repetition of an individual and
making predictions from the individual rather than the cate-
gory. This is because the individual may reliably deviate from
the mean of the category and because many features are much
more certain at the individual level than at the category.

Retrieving an individual and making a prediction on this
basis corresponds to a memory retrieval. From this perspective
the difference between memory and categorization concerns
whether prediction is being made at the individual level or the
category level. It is basically the same logic of prediction; how-
ever, it needs to be parameterized differently. To reflect the fact
that individuals repeat themselves much less often than catego-
ries, a lower value of the coupling parameter ¢ should be used.
Also, the features are much less likely to change, and to accom-
modate this fact, there should be lower values of the «; for
discrete dimensions and much smaller values of g, for con-
tinuous.

Thus, the identification of the individual is modeled in the
same way as identification of a category except that the assump-
tion is that individuals repeat themselves less frequently—
hence, the lower ¢ value. This perspective takes the point of
view that when people encounter a new instance it is ambigu-
ous whether it is a new individual or some old individual just as
it is ambiguous whether it is a new category or some old cate-
gory. The prior probability of an individual and the similarity of
the presented instance to the remembered individual are used
to decide if the presented instance is an old individual in just
the way a category is recognized.

There has been a lot of speculation as to how categorization
behavior relates to memory behavior. The instance-based mod-
els (Medin & Schaffer, 1978; Nosofsky, 1986) would argue that
everything is really instance based, whereas connectionist mod-
els (McClelland, Rumelhart, & Hinton, 1986) would argue that
there are no separate representations of instances and every-
thing is merged together. They try to account for differences
between categorization and memory by arguing that a single
representation is differently processed. The current rational ap-
proach offers a representation that distinguishes the two levels
but uses the same Bayesian logic at both levels. Of course, the
rational representation is only an acknowledgment of the fact
that there are individuals and categories in the real world. It
does not really make any claims about how they are processed
in the head. '

There is one analysis and prediction that does follow from a
rational analysis that does not seem to flow from the other
models. This concerns the fan effect (Anderson, 1983b). Typi-

cally it is described in other terms, but in current terminology it
is concerned with the effect of repeating a value on a dimension
for multiple individuals or items. Memory for specific items is
hurt by repeating a feature across multiple items. On the other
hand, if the feature is consistently associated with a category,
categorization is enhanced when the feature is repeated (Reder
& Ross, 1983). The contrast between these two fan effects can
be illustrated with respect to the material in Table 2 typical of
those used in Reder and Anderson (1980) or Reder and Ross
(1983).

Subjects studied a set of target sentences. In terms of the
analysis in this article, each sentence is like an item composed
of features. Table 2 gives the feature code used for each sentence
in the simulation. There are four dimensions: The first corre-
sponds to the person; the second to the theme of the predicate;
the third to the specific predicate: and the fourth to whether the
item was studied. Thus “George bought a train ticket” is en-
coded as (2 0 5 0), where 2 refers to George, the first O to the
train theme, the 5 to the specific predicate, and the 0 to the fact
that it was studied. Table 2 also gives the fan of these materials,
which is the number of items in which the person occurs.

When subjects are in a memory experiment, they are asked
to judge whether specific sentences had been studied. In this
case related foils such as those in Table 2 are used. A related foil
is created by pairing persons with predicates of the same theme
that had been studied with other persons. When subjects are in
a categorization experiment, they are asked to judge whether
the sentence is like the sentences they had studied. In this case
an unrelated foil is created by pairing persons with predicates
of different themes. .

These two conditions were simulated not just by presenting
the different sets of materials that the subject saw to the model
but also by adjusting the parameters. In the case of a categoriza-
tion task, ¢ was set to .3 as usual, whereas it was set t0.03 in the
case of a memory task.'? In both experiments the «; corre-
sponding to the fourth dimension was set very low at.001. This
reflects the idea that sentences cannot both be studied and not
studied. The setting of the «, for the other dimensions de-
pended on the task. In the case of categorization, the usual
value of 1.0 was used, whereas in the memory task the more
extreme value of 0.1 was used to reflect constancy of features
across repetitions of an instance. These differences seemed a
priori plausible ways to model the task, but the results depend
critically only on the setting of the ¢ parameter.

In the category condition, the model extracts four categories
defined by crossing the two sets of thematically related sen-
tences crossed with whether they are studied or not. In the
memory condition the various true and false sentences are
identified as the individuals.

The model was tested by presenting it with stimuli with the
last dimension (presentation status) omitted and asking the
model to predict the presentation status. The results are shown
in Figure 14(right panel) in terms of the models estimation of
the probability of a correct response. For the sake of compari-
son, the left panel gives the data from Reder and Ross in terms

12 At this value of ¢, the system will treat a repetition of an item as the
same category. It will not at ¢ = .01. At ¢ = .10, it will not extract the
items as categories.
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Table 2
Materials Used in Simulation of Positive and Negative Fan Effects
Item Fan Feature code

Target
Marty arrived at the train station 3 00 00)
Marty heard the train conductor 3 00 10)
Marty took the train to Grand Central 3 00 20)
Fred checked the train schedule 2 (10 30)
Fred waited for the train 2 (10 40)
George bought a train ticket 1 (20 50)
Tom preferred to run on the inside lane 3 (31 60
Tom did sprints to improve speed 3 3170
Tom bought a new pair of Adidas 3 31 80)
Bill warmed up by jogging 2 41 90
Bill ran five miles 2 41100)
Mike wanted to make the track team 1 51110)

Related foil
Marty checked the train schedule 3 00 31)
Marty waited for the train 3 00 41)
Marty bought a train ticket 3 00 s51)
Fred arrived at the train station 2 (10 01)
Fred heard the train conductor 2 (10 11)
George took the train to Grand Central 1 20 21)
Tom warmed up by jogging 3 B3191)
Tom ran five miles 3 (31101)
Tom wanted to make the track team 3 (B1111)
Bill preferred to run on the inside lane 2 41 61)
Bill did sprints to improve speed 2 @41 71
Mike bought a new pair of Adidas 1 51 81)

Unrelated foil
Marty warmed up by jogging 3 ©O1 91)
Marty ran five miles 3 ©1101)
Marty wanted to make the track team 3 ©O1rt1ry
Fred preferred to run on the inside lane 2 (11 61)
Fred did sprints to improve speed 2 (11 71
George bought a new pair of Adidas 1 21 81)
Tom checked the train schedule 3 (30 31)
Tom waited for the train 3 (30 41)
Tom bought a train ticket 3 30 51
Bill arrived at the train station 2 40 01)
Bill heard the train conductor - 2 40 11
Mike took the train to Grand Central 1 50 21)

of mean time for a correct response. The correspondence is
compelling. In the case of a categorical response, repetition of
an item leads to an increased certainty of the response, because
this increases the match to the theme category. In the case of a
memory response, increased fan means increased match to ir-
relevant foils and hence lower certainty of a match to the item.
Thus, the interaction with fan and task is a reasonable statisti-
cal response to the task structure.

This points the way to a merging of the rational model of
memory (Anderson & Milson, 1989) and this rational model of
categorization. Anderson and Milson calculated the probabil-
ity of a memory trace being needed as a product of prior proba-
bility and a conditional probability of a trace given cues. This
maps onto Equation 3 in the current analysis. Casting memory
in the current categorization framework enables a much more
sophisticated analysis of the conditional probabilities. More-
over, the point of memory retrieval is better articulated, which
is not just to get at a needed trace but to use these traces to make
predictions (e.g., where the car is parked). On the other hand,

the memory model had a much more sophisticated analyses of
the prior probability, incorporating recency, frequency, and
spacing, It also offered a model of how the internal probabilities
mapped onto dependent measures like probability correct and
reaction time. Although development of a complete integration
of the two models remains a future goal, it does appear a promis-
ing direction.

Conclusion

Although more research remains to be done on this rational
model of categorization, a good case has been made for the
proposition that categorization behavior can be predicted from
the structure of the environment at least as well as it can from
the structure of the mind. Most of the studies reviewed in this
article already had been fitted to one or more categorization
models. The typical observation when the rational model is
compared with one of these models is that the two models corre-
late better with each other than either do with the data. This
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suggests that the rational model is as correct as the noise in the
data will allow one to determine. It typically did not do better
(or worse) than the published models, but it needs to be stressed
it is one rational model that is being fitted to all of the data. Of
course this does not tell us what the structure of the mind is, but
it suggests that the mind has the structure it has because the
world has the structure it has.
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