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Abstract 
One of the open issues in developing large-scale 
computational models of the brain is how the transfer of 
information between communicating cortical regions is 
controlled. Here, we present a model where the basal 
ganglia implement such a conditional information routing 
system. The basal ganglia are a set of subcortical nuclei that 
play a central role in cognition. Like a switchboard, the 
model basal ganglia direct the communication between 
cortical regions by alerting the destination regions to the 
presence of important signals coming from the source 
regions. This way, they can impose serial control on the 
massive parallel communication between cortical areas. The 
model also incorporates a possible mechanism by which 
subsequent transfers of information control the release of 
dopamine. This signal is used to produce novel stimulus-
response associations by internalizing the representation 
being transferred in the striatum. We discuss how this neural 
circuit can be seen as a biological implementation of a 
production system. This comparison highlights the basal 
ganglia as bridge between computational models of small-
size brain circuits and high-level characterizations of 
complex cognition, such as cognitive architectures.  

Transfer of Information in the Brain  
Many ambitious architectures of brain function have been 
proposed recently (e.g., Houk 2005; Hawkins and Blakesee 
2004). These models differ widely from each other. One of 
the common problems they all have to solve is the transfer 
of information among brain regions. The simplest solution 
consists in hard-wiring the communication between brain 
regions as direct connections between layers in a network. 
However, in the human brain, cortico-cortical connections 
are estimated to make up more than 95% of all the inputs 
of a single brain region. Furthermore, about half of this 
amount is estimated to come from long-distance 
                                                
Copyright © 2009, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 
 

connections (Braitenberg and Schüz 1991). It is clear, 
therefore, that some organization needs to be overlaid over 
this massive set of connections. 
 A number of solutions to this problem have been 
proposed (e.g., Anderson 2007; van der Velde and de 
Kamps 2006). In this paper, we propose that the 
transmission of information along the cortico-cortical 
pathways is modulated by a subcortical circuit. This circuit 
comprises important structures such as the basal ganglia 
and the thalamus. By means of this circuit, organized 
behavior is imposed upon an otherwise uncoordinated flow 
of information within the cortex. 
 Our solution has been implemented as a connectionist 
computational model. It provides two additional 
advantages over other attempts. First, it shows how the 
subcortical circuit is functionally equivalent to a 
production system. This equivalence makes an important 
connection between the anatomy of the brain and a widely 
studied and adopted computational framework. Second, it 
provides a natural framework for skill acquisition and habit 
learning compatible with known biological constraints. 

The Role of the Basal Ganglia 
Before dealing with computational details, this section will 
review some evidence in favor of our hypothesis that the 
basal ganglia play an important role in coordinating the 
transfer of information between cortical areas. Three 
converging lines of research support this assumption. 
 Physiologically, pathologies of the basal ganglia in 
humans result in an increase in the amount of correlated 
activity between cortical regions (e.g., Stoffers et al. 2008). 
This fact can be interpreted by assuming that, under normal 
conditions, widespread cortico-cortical communication is 
limited by the control function of the basal ganglia. 
 A second line of evidence comes from studies of human 
working memory. A number of experiments have shown 
that the basal ganglia play an important role in gating new 
information to short-term memory. Neuroimaging data 
indicating basal ganglia involvement in preparation of 



working memory updates (McNab and Klingberg 2008). 
Also, genetic differences in basal ganglia metabolism 
correlate with individual performance in working memory 
tests (Zhang et al. 2007). Finally, individual differences in 
the severity of dopamine depletion in Parkinson’s Disease 
also correlate with decline of working memory functions. 
 A final hint of the importance of the basal ganglia in 
shaping cortico-cortical connectivity comes from research 
on learning. It is known that skill acquisition results in a 
dramatic reorganization of cortical connectivity. Moreover, 
animal studies have shown that lesions of the basal ganglia 
result in a profound impairment in skill acquisition. In 
animals, it prevents the acquisition of new stimulus-
response associations. In humans, it has been proven to 
disrupt the acquisition of new sensory-motor skills. 
 We propose a model for a brain architecture where the 
basal ganglia have an overseeing role in directing and 
shaping cortico-cortical connectivity. The model we 
present here is a layered neural network that reflects 
several aspects of basal ganglia physiology. This network 
has two key properties. First, it can acquire new stimulus-
response associations through practice. Second, its 
workings can be shown to be substantially similar to a 
production system. This provides a straightforward 
mapping between a well-established formalism for 
artificial intelligence and the biology of the brain. 

A Switchboard Model for the Basal Ganglia 
This architecture works as follows. Let us consider a 
collection of cortical areas C = {c1… cn}. For simplicity, let 
us assume they are all connected to each other. At each 
moment in time, each region receives signals from n – 1 
other regions.  
 Essentially, the basal ganglia alert each region to attend 
to only a particular subset of “source” regions S ⊆ C. This 
process can be repeated for each region, providing a 
powerful system for prioritizing and simplifying the 
exchange of communication (Figure 1). Intuitively, there 
should be an optimal ratio of |S| to |C|. If |S| is too small, 
the communication between regions is eventually 
disrupted. If |S| is too large, on the other end, each region 
receives too many competing signals. 
 One can consider a very simple model where the pattern 
held in each region is simply the sum of all the incoming 
signals from the other regions, ci = c1 + c2 + … + cn. 
  

Figure 1: Comunication between massively connected 
cortical regions (left) can be organized by a cortico-
subcortical circuit (right) that encompasses the basal 
ganglia (bottom right). 
 

 When the basal ganglia system is compromised, then S ≈ 
C, and each region receives almost identical and largely 
overlapping signals. Therefore, spatial correlation between 
the regions increases. The temporal correlation increases as 
well, since updating events in one region are reflected in 
changes in larger group of connected regions. 

Circuitry 
In order to explain how the model works, one needs to 
introduce some biology. 
 The basal ganglia comprise a number of interconnected 
nuclei. They include the Striatum, the Internal (henceforth, 
GPi) and External (GPe) Globus Pallidus, the Substantia 
Nigra (SNr), and the Sub-Thalamic Nucleus (STN). The 
wiring among these nuclei is usually described in the 
following terms (Albin, Young, and Penney 1989). The 
striatum is the entry point of the circuit, receiving afferents 
from the entire cortex. The nuclei SNr and GPi constitute 
the system’s output. These nuclei project mainly to the 
thalamus, and control the thalamic projections to the 
cortex. The Striatum and the SNr/GPI are connected by 
two pathways, which exert opposite effects. They are 
known as the direct and indirect pathways. The indirect 
pathway comprises the GPe and the STN (Figure 2). 
 A common interpretation, dating back to Albin, Young, 
and Penney (1989), is that the two pathways simply oppose 
each other. In particular, the direct pathway conveys 
excitatory signals to the cortex, while the indirect pathway 
contrasts this effect through direct inhibition. In the model, 
we expanded this interpretation as follows. The direct 
pathway carries a selection of source regions, whose 
representation has been chosen for transmission. The 
indirect pathway carries a selection of destination regions 
for each source region. In practice, the indirect pathway 
carries a mask that establishes which region each 
destination should be attending to. 

The Striatum 
The striatum is the largest nucleus of the circuit. The large 
majority of its cells are projection neurons (Graveland, 
Williams, and DiFiglia 1985). These neurons can be 
divided into two groups: Striatonigral (SN) cells, whose 
projections form the direct pathway, and Striatopallidal 
(SP) neurons, whose projections begin the indirect pathway 
(Figure 2). 
 In our model, SN and SP cells are organized into 
subdivisions. Each subdivision receives afferents from a 
single corresponding cortical region. Therefore, the striatal 
organization mirrors cortical topology. Subdivisions also 
possess a second-level, internal organization. Within a 
single subdivision, neurons are grouped into ensembles 
corresponding to the destination that the source region 
projects to. 
 Thus, the model striatal subdivisions reflect cortical 
topology at two levels. At a macro-level, they mirror the 
organization of cortex into specific regions. At a lower 

 



level, each subdivision also reflects the cortical 
connectivity of the corresponding cortical region. This 
organization is compatible with some properties of 
corticostriatal projection distribution (e.g., Parthasarathy, 
Schall, and Graybiel 1992). 
 Physiologically, the activity of projections neurons is 
controlled by interneurons (IN), which exert a powerful 
inhibitory pressure (Tepper and Bolam 2004). Because of 
the inhibition coming from interneurons, only a small 
number of ensembles of projection neurons contain active 
and firing cells. Active neurons in a striatonigral 
subdivision signal that the corresponding cortical region is 
a source region, and its contents have been picked up for 
routing. Active striatopallidal ensembles within a 
subdivision, on the other hand, signal destinations where 
the selected representations should not be transferred.  
 Source and destination information travel separately 
along the direct and the indirect pathway, and eventually 
combine in the output nuclei SNr/GPi. From the output 
nuclei, the signals reach the thalamus and, from there, 
come back to the cortex to enable the proper transfer path. 

Relation to Production Systems 
From a purely computational point of view, routing 
operations can be seen as a neural network analog to 
production rules in production systems. Production rules 
are control statements expressed in the form of condition-
action clauses (“if… then…”). The similarity between the 
conditional routing model and a production system can be 
seen if one assumes the following mappings. 
 

 
Figure 2: Outline of the basal ganglia circuit and 
connectivity. Blue arrows and nuclei represent the indirect 
pathway; Orange arrows represent the direct pathway. 
Dotted arrows represent dopamine (Da) projections. 
 

 A rule is embedded in the incoming and outgoing 
synaptic matrices of a set of striatal interneurons.  The 
condition (i.e., Left-hand side) part of the rule is 
represented by incoming synapses to striatal interneurons. 
The synapses encode the specific cortical representation 
that will trigger the interneuron to fire. The action (i.e., 
Right-hand side) is encoded in the outgoing synapses to the 
striatal projection neurons. An action corresponds to the 
activation of particular ensembles of SN or SP projection 
neurons in the striatum. Their activation triggers the 
transmission of information from the source region of the 
cortex to the destination region.  
 Part of the flexibility of production systems originates 
from the use of variables in the production rules. However, 
variables are not easily dealt with in neural networks. To 
overcome this problem, a number of procedures have been 
proposed over the years (e.g., Touretzky and Hinton 1988; 
Smolensky 1990; Stewart and Eliasmith 2008). 
 In our model, a variable simply corresponds to a specific 
location in the cortex, i.e., a cortical region. During the 
execution of routing operations, moving content from a 
source region to a destination region corresponds to 
binding the variable to the contents of the source region 
and transferring the bound value to the destination region. 
Production rules can also specify constants. This 
corresponds to transferring a fixed content to a destination 
region. This particular content is not dependent on any 
particular region, and is embedded in the synaptic weights 
of the circuit. Such a case will be illustrated in the 
forthcoming sections on learning. 

Dopamine 
Dopamine is a neurotransmitter that affects neural 
plasticity, promoting long-term potentiation and long-term 
depression among neurons. Some properties of the 
dopamine signal in the basal ganglia have been 
successfully modeled as the error term in Sutton’s (1988) 
Temporal Difference algorithm (Schultz 2002). That is, the 
dopamine signal reflects the error between two 
subsequence predictions of a specific state’s value. Many 
models of dopamine function have been proposed (see Joel 
et al. 2002 for a review). However, some of the dopamine 
signal’s features lay beyond pure reinforcement learning 
(Redgrave and Gurney 2006). More importantly, the 
connection between dopamine and procedural learning has 
been less investigated. It is easy to imagine that dopamine 
also underlies procedural learning. This is particularly 
important because the exact mechanisms by which new 
skills and habits can be acquired have seldom been 
modeled (See Ashby et al. 2007 for a notable exception). 

Habit Learning and Production Systems 
The connection between production systems and our model 
of basal ganglia function can be applied to the domain of 
habit learning. One easy way to form new habits from a 
chain of production rules is to create new operations that 



simply associate the last action’s response with the initial 
action’s conditions. Another strategy consists in detecting 
intermediate steps that are only needed temporarily to 
transform some kind of representation. The processed 
representation can be eventually encoded directly into the 
production rule, and the intermediate step can be removed. 
A successful version of this idea was proposed by Taatgen 
and Lee (2003). 
 Such intermediate steps can be detected by dopamine 
neurons in the substantia nigra (SNc).  These neurons 
receive two sets of inputs from the striatum, from the direct 
and the indirect pathway. Many reinforcement learning 
models assume that the signal travelling along the indirect 
is delayed, and can be used to obtain an temporal error 
term (Joel et al. 2002). In our model, the two signals can be 
used to compare the current set of source regions with the 
previous set of destination regions. When a region belongs 
to both, dopamine neurons receive an extra boost of 
activation. Since these neurons project to the striatum, the 
net result is that striatal cells in that region receive an 
additional amount of dopamine. In turn, the presence of 
additional dopamine modifies the activation of projection 
neurons and interneurons, and the synapses between them. 
As a result, a compressed copy of the cortical 
representation becomes permanently stored within the 
striatum, and can be used even in absence of the original 
cortical contents. 
 Dopamine can have long-term effects of potentiating or 
depressing a synapse, depending on the types of pre- and 
post-synaptic neurons. These two effects were 
straightforwardly modeled as Hebbian (1) and anti-
Hebbian (2) rules. In our model, Hebbian learning is 
applied to the excitatory cortico-striatal connections. Anti-
Hebbian learning, on the other hand, takes place in the 
inhibitory synapses within the striatum. The two rules are 
implemented as follows: 
 
 Δwi,j = η (θ – wi,j) xi xj    if  wi,j > 0     (1) 
 
 Δwi,j = –η (θ + wi,j)(xi – xj)  if  wi,j < 0     (2) 
 
where wi,j is the weight of the synapses between neurons i 
and j; xi is the activation of neuron i; and η  is the learning 
rate. The term θ is used to bound the weight growth, which 
is otherwise exponential and unstable. 

Simulations 
This section describes a series of simulations that illustrate 
the model’s performance and its learning capabilities. In 
the simulations, the model was trained to perform a simple 
aural discrimination task. This task was originally used as 
part of series of multi-tasking experiments (Hazeltine, 
Teague, and Ivry 2002). In this task, participants responded 
to the presentation of a tone. Tones could have three 
different pitches (440, 880 and 3520 Hz), to which 
participants had to respond “one”, “two”, or “three”, 
respectively. 

 This paradigm was later modeled by Anderson, Taatgen, 
and Byrne (2005). In their model, the task requires four 
steps: (1) The tone is encoded in an aural buffer; (2) The 
tone is used as a retrieval cue and matched against 
previously memorized stimulus-response associations in 
long-term memory; (3) A tone-response association that 
matches the attended stimulus is retrieved; (4) The 
response is used in a vocal command. The model also 
provides a mapping between functional steps and three 
brain regions: one in the temporal lobe (responsible for 
Step 1), one in the left prefrontal cortex (Steps 2-3) and 
one in the posterior frontal cortex (Step 4). 
 A simple cortico-basal ganglia circuit is generated for 
the simulation. The circuit contains only the three cortical 
regions required by the task. Correspondingly, the striatum 
only contains three main subdivisions. It is further assumed 
that each region is connected to the other two. To simulate 
memory retrieval, the prefrontal memory region is 
connected to a data structure (perhaps corresponding to the 
hippocampus) that can hold a series of associated patterns. 
The prefrontal region sends its internal representations to 
this structure, and receives back the pattern that is 
associated with the best-matching input representations. 
Each cortical region contains 100 artificial neurons, and 
each striatal subdivision is made of 10 units. 
 The left part of Figure 3 illustrates how the three regions 
jointly perform the experimental task. In the figure, time 
flows vertically. The different vertical tracks detail the 
execution steps performed by each region. The boxes on 
the tracks illustrate the representation being currently held 
and processed by that region during one of the task steps. 
The arrows connecting the boxes denote transfers of 
information between regions. Two transfer operations are 
required to perform this task. They are represented in the 
two right panels of Figure 3. These two panels illustrate the 
state of the model thalamus in the circuit. For convenience, 
thalamic neurons have been re-arranged into groups within 
a 3 by 3 matrix. In this matrix, rows represent the three 
source regions and columns represent the same regions as 
possible destinations. For instance, the presence of activity 
in a matrix cell in the first row and second column 
corresponds to a signal that tell the second region to attend 
to the contents of the first. This is exactly what happens in 
the basal ganglia between Steps 1 and 2. Activation of 
these thalamic terminals determines the transition to Step 
2. When the prefrontal region has received the auditory 
cue, it responds by producing in Step 3 a pattern 
corresponding to the response associated to the tone. Note 
that this transition occurs within the cortex, and the basal 
ganglia are not involved. The second routing operation 
(illustrated in the bottom right panel) is triggered at this 
point, and routes the retrieved response to the vocal region 
(Region 3), where it can be transformed into a vocal 
program. This corresponds to the final step of the task.  

Effects of Dopamine on Task Performance 
In the learning simulation, dopamine is triggered after the 
execution of Step 3 (see Figure 3). Learning is simulated as 



a one-shot process by setting η = 3.0 and θ = 1.0. Note that 
the same results would have been obtained by lowering η 
and having the model perform the task a number of 
consecutive times. Figure 4 illustrates the very same task 
after learning has occurred. A new operation has been 
produced that directly encodes part of the original cortical 
pattern and is able to transmit it to the thalamus. It is 
interesting to note that the new operation can possibly 
occur at the same time as the original response to the 
stimulus. This is explicitly represented in the right panel of 
Figure 4. The new activation pattern includes the responses 
that were previously found in two separate routing 
operations (compare to right panels of Figure 3). 
Therefore, learning had the effect of “shifting back” in 
time what originally was the second operation, and 
applying it in advance. This fact is consistent with the 
reorganization of firing patterns in the striatum following 
habit learning, where neurons responding originally at 
specific task events begin responding earlier after practice 
(Jog, Kubota, Connolly, Hillegaart, and Graybiel 1999). 

Conclusions 
This paper has presented a connectionist model of the basal 
ganglia. The model is based on the idea that this 
subcortical circuit oversees and controls the transfer of 
information among cortical brain regions. Because of the 
large underlying amount of cortico-cortical connection, 
this circuit plays a fundamental role in organizing the flow 
of information within the brain by selecting proper source 
and destination regions. The model can be seen as a neural 
implementation of a production system, where production 
rules correspond to routing operations among brain 
regions. This equivalence is important for two reasons. The 
first is that it provides a biological substrate for a powerful 
and well-known computational framework. Second, this 
equivalence provides a means to understand the neural 
basis of intelligence and flexible behavior, and bridge the 
gap between low-level and high-level computational 
descriptions of the brain. 
 

 

Figure 3. Performance of the Aural Discrimination task by the model. Left: The sequence of operations necessary to perform 
the task, as executed by the different regions. Right: Thalamic units activation during information transfers across regions. 
 

Figure 4: Performance of the same task after dopamine-triggered learning. Notice that the two operations are now triggered at 
the same time. Furthermore, the response representation has been encoded in the striatum, and can be transferred even in 
absence of a suitable representation in the source region. 



 Furthermore, the connection between production 
systems and the basal ganglia circuit provides a new 
perspective on the neural basis of practice and skill 
acquisition. This connection was exploited to adapt the 
principles of production system practice effects to the 
neural circuit. The simulation results show that habit 
learning can be implemented by using the very same 
mechanisms that have been hypothesized for dopamine-
based reinforcement learning. Additionally, these results 
are qualitatively consistent with electrophysiological data.  
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