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Abstract 

Speakers use referring expressions to 
identify an object in the environment. To 
generate a referring expression, features 
of the intended referent have to be se-
lected that distinguish the object from the 
other potential referents. Current ac-
counts of referring expressions consider a 
number of factors that influence the 
choice of features but ignore the influ-
ences of the task environment. In particu-
lar, they do not address how these influ-
ences change the generation of referring 
expressions over an extended period of 
time. We present results of how colour 
terms are used to describe landmarks in a 
task oriented dialogue (a route communi-
cation task) and describe a computational 
cognitive model of the observed adapta-
tions over time. 

1 Introduction 

Much attention in recent computational as well 
as psychological research on language has been 
given to the linguistic problem of the use and 
generation of referring expressions. Referring 
expressions are linguistic expressions that iden-
tify either a referent entity in the real world or a 
discourse entity in the form of an antecedent. 
Referring expressions serve the purpose of dis-
tinguishing the target or referent from the set of 
other possible referents in the given context, 
called the distractor set. For example, in the set 
of objects in Figure 1, the black cup and the 
small, black cup would both succeed in distin-
guishing the cup at the lower left (the referent) 
from the other two objects (the distractor set). 

A speaker wanting to pick out that small, 
black, cup at the lower left of the array could use 

any of the attributes in the expressions just given. 
Computational approaches to generating refer-
ring expressions often produce expressions that, 
if possible, uniquely and minimally select the 
target object. But such algorithms are computa-
tionally costly and may not be helpful in model-
ling human behaviour: People (1) produce non-
minimal expressions, which contain redundant 
information (e.g., Pechmann 1989) and (2) inter-
pret such expressions more easily (e.g., Paraboni, 
van Deemter and Masthoff 2007). 

 

 
 
Figure 1: A simple domain of reference: for 

each object, the other are distractors 
 
A prominent account of how human-like, non-

minimal referring expression can be generated is 
the algorithm by Dale and Reiter (1995), which 
by now has many extensions (see van der Sluis 
(2005) for a recent overview). This algorithm 
incrementally tests whether using an attribute in 
a referring expression will rule out distractor ob-
jects. The attributes are tested according to a 
preference list that is fixed beforehand. For the 
domain used in Figure 1, for example, this pref-
erence list could be <type, colour, size>. Identi-
fying the object to the right would then produce 
the non-minimal expression large, white cup by 
first adding the type attribute (which has a spe-
cial status and is always added), then by adding 
white (because it removes the object in the lower 
left from the distractor set), finally by adding 
large (because it removes the object in the top 
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left). Non-minimal expressions arise simply be-
cause a selected attribute is never de-selected, 
even if a subsequently selected attribute makes it 
redundant. 

While these approaches deal with which of the 
available possibilities to describe the target ob-
ject is chosen, they do not account for the adapta-
tions that a speaker makes over time to the de-
mands of the current task environment. The 
computational as well as the psycholinguistic 
paradigms typically lack history: On each trial a 
participant (or algorithm) is presented with a pic-
ture like Figure 1 and instructed to produce a 
suitably distinguishing expression. The trial ter-
minates without feedback and is followed by 
others, presenting different objects and distin-
guishing features. How the fourth target is dis-
tinguished from its distractors might actually 
owe something to the participant’s experience 
with the first three, and our work attempts to dis-
cover and model such effects of experience. 

We examine referring expressions in an unre-
stricted, task-oriented dialogue in which the in-
terlocutors get natural feedback on failures of 
reference and refer to many different objects. We 
use a variant of the HCRC Map Task (Anderson 
et al. 1991) in which a player who can see the 
route on a schematic map describes it to a fellow 
player who must reproduce it. Each map is popu-
lated with cartoon landmarks, distinguished by 
several different features. We have shown that 
the use of features changes across first mentions 
as players pursue their task (Guhe and Bard 
2008). In the present paper we ask how and why 
the changes take place. Colour is a perceptually 
salient property, usually one of the first tested in 
the incremental Dale and Reiter type algorithms. 
In our experiment, however, we set unreliability 
against salience: Colour is an unreliable distin-
guisher. In contrast, each map allows for use of a 
reliable attribute, too, (shape, number, kind or 
pattern). Thus, our participants need to use the 
adaptive attributes but waste time and can cause 
misunderstandings using the unreliable one. 

In this paper, we report how the use of colour 
terms changes over the course of the experiment 
and present a simple computational cognitive 
model of this change. More precisely, we de-
scribe how the utility of the colour feature influ-
ences the Instruction Giver’s choice of whether 
to use colour in introductory referring expres-
sions. The model offers an explanation of this 
change in terms of Anderson’s rational analysis 
(Anderson 1990; Anderson and Schooler 1991). 
Rational analysis is the core mechanism in ACT-

R’s utility-based production selection (Anderson 
2007) and is a variant of utility learning mecha-
nisms found in reinforcement learning or the 
delta rule (Sutton and Barto 1998). In brief, ra-
tional analysis says that human memory reflects 
the frequency of events in the environment, mak-
ing more frequent experiences easier to retrieve 
and corresponding behaviours more likely to be 
used. By using rational analysis our model goes 
beyond existing accounts of use and generation 
of referring expressions in that it reveals the en-
vironmental influences on these processes. 

2 Comparison to existing research 

The problem of whether the use of features 
changes with the demands of the task environ-
ment has scarcely been addressed in the litera-
ture. Although Brennan and Clark’s (1996) con-
ceptual pacts address changes in referring ex-
pressions, these changes are about how speakers 
refer to objects after they have been introduced. 
However, our questions here address the overall 
use of features in referring expressions over the 
course of many interactions. To exclude effects 
of conceptual pacts we are only analysing the use 
of introductory (first) mentions of landmarks. 

Garrod and Doherty (1994) describe how a 
community of speakers establishes a sub-
language in referring to entities. We are con-
cerned with the internal structure of the referring 
expressions themselves and propose a utility-
based explanation instead of one based on prece-
dence and salience. 

There is some evidence that extra-linguistic 
factors play a role in generating referring expres-
sions. For example, Arnold and Griffin (2007) 
show that the presence of a second character in-
fluences the choice of whether to use a pronoun 
or the character’s name for references following 
the introductory mention. This is true even if the 
characters differ in gender, so that the name does 
not disambiguate any more than the pronoun. 
Arnold and Griffin argue that the reasons for this 
behaviour lie in the speakers’ cognitive load 
when they generate the referring expression. 

This is part of another strand of findings in 
which the cooperative view on dialogue (e.g. 
Clark 1996) is changed towards a speaker-
oriented view (e.g. Bard et al. 2000). In this 
view, the speaker makes the general assumption 
that what he/she knows is shared knowledge. 
Only if problems arise in the dialogue, e.g. by 
explicit feedback from the listener, might the 
speaker adapt to the listener’s needs. In fact, 



even if overspecified referring expressions (Dale 
and Reiter 1995; Paraboni, van Deemter and 
Masthoff 2007; Pechmann 1989) help the listener 
to identify the target object, the speaker also 
profits in terms of a generation process of greatly 
reduced complexity. Since both – speaker and 
listener – benefit from using such referring ex-
pressions, the communicative strategy cannot be 
attributed uniquely to concerns for the listener’s 
needs. In our task, however, the colour feature is 
counterproductive in the majority of cases, be-
cause it does not match between the two maps. 
So the speaker’s assumption about the usefulness 
of the salient feature colour are mistaken. 

Another related line of research is the use of 
machine learning techniques to extract the way 
attributes are selected for modified versions of 
the Dale and Reiter algorithm (Jordan and 
Walker 2005). Although these algorithms already 
incorporate psychological findings, e.g., concep-
tual pacts, they only provide global adaptations 
to properties of linguistic corpora and do not ac-
count for changes over time and for adaptations 
to the properties of the task environment. 

3 Experiment 

3.1 Task 

The experiment is a modified Map Task (Ander-
son et al. 1991). The Map Task is an unscripted 
route-communication task in which an Instruc-
tion Giver and an Instruction Follower each have 
a map of the same fictional location. The Giver’s 
map contains a route that is missing on the Fol-
lower’s map. The dyad’s goal is to recreate the 
Giver’s route on the Follower’s map. 

The dialogue partners use the landmarks on 
the maps to navigate from START (shared) to 
FINISH (only on the Instruction Giver’s map). 

3.2 Materials, procedure, data collection 

Materials. Some landmarks differ between the 
two maps. In our experiment they can differ by: 

 
1. Being absent on one of the maps or present 

on both; 
2. Mismatching in a feature between the two 

maps (most notably colour); 
3. Being affected by ‘ink damage’ that obscures 

the colour of some landmarks on the Instruc-
tion Follower’s map. 

 
There are four attributes which also distinguish 
landmarks. Each serves for two different kinds of 
landmarks: 

 
1. Number (bugs, trees), 
2. Pattern (fish, cars), 
3. Kind (birds, houses/buildings), 
4. Shape (aliens, traffic signs). 
 
Three crossed independent variables determine 
the nature of Giver–Follower map pairs: 

 
1. Homogeneity: whether the landmarks on a 

map are of just one kind (single) or of differ-
ent kinds (mixed). 

2. Orderliness: whether the ink blot on the In-
struction Follower’s map obscures a con-
tiguous stretch of the route (orderly) or a 
non-contiguous stretch (disorderly). The 
number of obscured landmarks is constant. 

3. Animacy: whether the landmarks on a map 
are animate or inanimate (thus, on the mixed 
maps there are only landmarks from the 4 in-
animate or the 4 animate kinds of land-
marks). 

 
The maps in Figure 2 are a pair of Giver and Fol-
lower maps for the disorderly, mixed tree condi-
tion. Thus, the maps contain mainly trees but 
also other inanimate objects (mixed), and the 
Follower’s map shows multiple, non-contiguous 
ink blots (disorderly). 

 
Procedure. Participants are told that the maps 
are ‘of the same location but drawn by different 
explorers’. They thus know that the maps can 
differ but not where or how. They are instructed 
to recreate the route on the Follower’s map as 
accurately as possible. 

Each dyad did 2 simple training maps and then 
completed a set of 8 maps, one for each kind of 
landmark. The maps were counterbalanced with 
respect to the experimental conditions. After the 
fourth map, the role of Instruction Giver and In-
struction Follower were exchanged. 

To reduce the variability of words and con-
cepts used in the unrestricted dialogues, each 
participant was prompted textually to provide 
standard type names for a few landmarks that 
would occur on the following map. 

 
Setup and data collection. Participants sat in 
front of individual computers, facing each other, 
but separated by a visual barrier. 

This research is part of a larger multimodal 
project. The communication was recorded using 
5 camcorders. The Giver was eye tracked using a 
remote eye tracker. Speech was recorded using a 



Marantz PMD670 recorder whereby Giver and 
Follower were recorded on two separate channels 
using two AKG C420 headset microphones. The 
speech was transcribed manually. The routes 
drawn by the Follower were recorded by the 
computer. 

As the participants were in the same room, 
they could hear each other’s speech. They could 
also see each other in the left half of their moni-
tor, which showed the dialogue partner’s upper 
torso video stream. The right half of the monitor 
showed the map. 

 
Participants. In exchange for course credit, 64 
undergraduates of the University of Memphis 
participated in pairs. In 4 dyads the participants 
knew each other previously. 

3.3 Analysis and results 

The recorded dialogues were coded for referring 
expressions. We present results for the first men-
tions of landmarks by the Instruction Giver. In-
troductory mentions should be both maximally 
independent of one another (as repeated men-
tions reflect precedence in naming a given ob-
ject) and maximally detailed (as reductions in 
form characterise anaphora). Mentions of colour 
in landmark introductions were calculated as a 
proportion of opportunities 

 
1. Over the course of single dialogues (by quar-

tiles),  
2. Across successive maps (1–8) and  
3. Between those where the Instruction Giver 

lacked or already had experience as Instruc-
tion Follower. 

 
The changes in the ratio of colour term use is 
depicted in Figure 3. 

 

 
 
Figure 3: Change of the use of colour terms over 
quartiles of the eight maps 

      
 
Figure 2: A pair of example maps; Instruction Giver left, Instruction Follower right 



The use of colour terms significantly de-
creased over an average dialogue (effect of quar-
tile within experience (2) x map encountered as 
Instruction Giver (4) x quartile (4) ANOVA on 
the arcsine transformed proportion of colour 
terms: F1(2, 54.8) = 15.57, p < 0.001). Although 
there was no significant reduction across dia-
logues with the same Instruction Giver, the Giv-
ers used significantly fewer colour terms when 
they had served earlier as Follower (0.267 colour 
terms on average in the first four maps vs. 0.175 
in the second four). This is a significant effect of 
experience (F1(1, 28) = 7.90, p < 0.01). 

Note that the orderliness of the ink blots on the 
Instruction Follower’s maps did not have a sig-
nificant effect. In contrast to colour, distinguish-
ing features (number, kind, shape, pattern) are 
significantly more common in the maps where 
they are critical (used in more than 80%) and 
significantly increase within a dialogue. Thus, 
the decrease and low overall use of colour terms 
is not due to a general decrease in use of feature 
terms. There is also no effect of prior experience 
as Giver for useful features. The detailed results 
are presented in Guhe and Bard (2008). 

3.4 Discussion 

The participants adapted their use of colour to its 
low utility in the given task environment. The 
adaptation was distributed between speaker and 
listener. The use of colour terms does not fall 
significantly over the 4 dialogues a participant 
has the role of Instruction Giver, but there is a 
significant drop when the participants exchange 
roles: experience trying to match colour terms to 
grey-scale objects as Instruction Follower dis-
courages to mention colour as Instruction Giver. 
Any listener-centric effect is outweighed or 
fuelled by a speaker-centric appreciation of util-
ity. 

4 Utility and task environment 

4.1 Utility and selection probability 

This is not the place to delve into the depths of 
the ACT-R theory, see Anderson (2007) for the 
most recent account. For the model described 
below it is only relevant that in ACT-R proce-
dural knowledge (such as to decide whether to 
use colour or not) is encoded as production rules, 
or productions for short. A production is basi-
cally an if–then rule: if a certain set of conditions 
are given then execute a specified action. 

In ACT-R, each production has a utility value. 
The utility is an estimate of how likely the use of 

the production results in achieving the current 
goal (here: successfully describing the landmark 
to the interlocutor). 

Productions’ utilities are important in the 
cases in which more than one production is ap-
plicable for a given set of conditions. Then, the 
utilities serve to compute the probabilities with 
which a production is selected. This selection 
probability is computed as: 
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with: 
Pi: selection probability for production i 
Ui: utility of production i 
s: noise in the utilities (defaults: s = 1) 
j: set of all applicable productions (including i) 
 
Utility values are learnt over time. After a pro-
duction has been used, its utility is updated de-
pending on whether it was successful according 
to the following equation: 
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with: 
Ui: utility of production i 
n: number of applications of the production 
α: learning rate 
R: reward 

 
If the production is applied successfully, the util-
ity is updated with a positive reward, if it is un-
successful, it receives a negative reward. 

Anderson (2007, p 161) points out that this is 
basically the Rescorla-Wagner learning rule 
(Rescorla and Wagner 1972) or the delta rule by 
Widrow and Hoff (1960). So there is nothing 
special ‘ACT-R-ish’ about this rule; it is a gen-
eral learning rule. 

4.2 Structure of the task environment 

In the maps about half of the landmarks on the 
Instruction Follower’s map are obscured by ink 
blots, and, therefore, don’t have colour. Addi-
tionally, some of the route critical landmarks 
mismatch in colour. Overall this means that us-
ing colour to describe a landmark is successful in 
only about 40% of cases. By comparison, using 
the distinguishing feature of a map is successful 
in about 92% of cases. 



5 Model 

5.1 Introduction 

The following analyses compare the model’s per-
formance to the introduction of the first 33 land-
marks of each map by the Instruction Giver. The 
33rd landmark is still mentioned in 206 of the 
possible 256 cases (32 dyads with 8 maps each). 
The 34th landmark is introduced only 186 times. 

There are three main patterns in the data. 
Firstly, map 1 behaves differently than the other 
maps in that the number of colour terms shows a 
pronounced drop from 0.6 to 0.25 (taken from 
the means of the first and last three values). Sec-
ondly, maps 2 to 4 each show a decrease of col-
our rate from 0.3 to 0.2. Thirdly, in maps 5 to 8 – 
after the role change – the colour rate drops in 
each map from 0.2 to 0.15. (This lower colour 
rate is the basis for the effect of role change.) 

Thus, between maps the colour rate is going 
up again. Explanations may be that the longer-
term utility of colour (learnt over a lifetime) or 
the textual prompting between dialogues exert 
some influence. The fact that the colour rate in 
maps 5 to 8 starts at the same rate as it ends in 
maps 2 to 4 may be due to the utility learning 
during the time as Instruction Follower. But a 
more detailed model is needed to explain this. 

5.2 The model 

The model is not a fully implemented ACT-R 
model, but just uses the two equations for updat-
ing production utility and probability of produc-
tion selection introduced above.  The model con-
tains two competing ‘productions’ one for using 
colour, one for not using colour. Because the In-
struction Giver always has colour available to 
describe a landmark, the model assumes that 
both productions are applicable for each land-
mark. Thus, the model is similar to the ACT-R 
model for an experiment by Friedman et al. 
(1964), described by Anderson (2007, p. 165–
169; in this experiment participants have to pre-
dict which one of two lights will be lit.) Using 
the other features would be modelled as analo-
gous sets of productions. 

For each decision, the model selects one of the 
productions according to their utilities and corre-
sponding selection probabilities at that time. Af-
ter the decision has been made, the usefulness of 
colour is determined according to the structure of 
the task environment (thus, using colour is suc-
cessful in 40% of cases) and the utility of the 
selected production is updated accordingly. For a 

successful application the production receives a 
reward of R = 14; if it is unsuccessful it receives 
a reward of R = 0 (cf. Anderson 2007, p. 162). 

The results reported in the remainder of this 
section were obtained by 500 runs of the model. 
However, just 32 runs – matching the number of 
dyads in the experiment – suffice to get signifi-
cant results; more runs of the model just produce 
a smoother curve. 

5.3 Map 1 

For the first map the model starts with the fol-
lowing estimated utilities: 
 
Ucolour(1) = 5.5 
Uno-colour(1) = 5 
 
These values mean that the colour-production 
has a probability of being selected of 0.622, 
which is close enough to the mean of the first 
three values of 0.594. (Using Ucolour(1) = 5.4 
would give an initial probability of 0.599, but 
one can be too fussy.) 

The final average utilities are: 
 

Ucolour(33) = 4.6 
Uno-colour(33) = 7.7 

 
Choosing these initial utilities gives an excellent 
fit to the data, see Figure 4. A regression using 
the model as predictor for the data shows a sig-
nificant correlation (β1 = 0.90, p < 0.001) that 
accounts for 72% of the variance (R2 = 72%, 
F(1, 31) = 79.5, p < 0.001). 

However, the initial values are not that impor-
tant, and the model matches the data significantly 
for a wide range of start values, as long as Ucol-

our(1) > Uno-colour(1) and the values are not close to 
the extremes of 0 and 14. The same holds for the 
following simulations. 

5.4 Maps 2 to 4 

For maps 2 to 4 (see Figure 5) the initial utilities 
were set to: 

 
Ucolour(1) = 5.5 
Uno-colour(1) = 6.5 

 
resulting in final average utilities of: 

 
Ucolour(33) = 4.5 
Uno-colour(33) = 7.5 

 



The regression shows that 
the model accounts for 
66% of the variance (R2 = 
66.3%, F(1, 31) = 61.0, 
p < 0.001) with β1 = 2.44 
(p < 0.001). 

5.5 Maps 5 to 8 

Finally, for maps 5 to 8 
(see Figure 6) the initial 
utilities were set to: 
 
Ucolour(1) = 3 
Uno-colour(1) = 4 

 
resulting in the final aver-
age utilities 
 
Ucolour(33) = 3.3 
Uno-colour(33) = 7.7 
 
The model accounts for 
52.7% of the variance 
(R2 = 52.7%, F(1, 31) = 
34.6, p < 0.001) with 
β1 = 0.84 (p < 0.001). 

6 Conclusions 

There are two main con-
clusions from the research 
presented here. Firstly, the 
dialogue partners indeed 
adapt their naming behav-
iour to the task environ-
ment. More specifically, 
they adapt to the fact that 
colour is an unreliable 
distinguisher for the land-
marks on the maps. (This 
is amplified by the fact 
that the participants do 
not make a substantial 
effort to identify the parts 
of the maps that are ob-
scured by ink, which 
shows in the absence of 
an orderliness effect.) 

Secondly, the simple 
computational cognitive 
model accounts for this 
change. In particular, the 
model shows that the 
change in behaviour is 
indeed an adaptation to the structure of the task 

environment, because the rate of the probabilities 
and the changes in the probabilities with which 

 
 
Figure 4: Comparison of data and model for the first 33 landmarks in 
map 1. 
 

 
 

Figure 5: Data and model for maps 2 to 4. 
 

 
 

Figure 6: Data and model for maps 5 to 8. 
 



colour is used as a descriptor is a direct result of 
the fact that colour can be successfully used for 
about 40% of the landmarks on the maps. Thus, 
rational analysis (the fact that memory reflects 
the probabilities encountered in the environment) 
explains the observed phenomenon. 

Although – after the fact – it may not be too 
surprising that rational analysis explains the ob-
served phenomenon, the result is more far-
reaching, because the influences of the task envi-
ronment on naming behaviour (the generation of 
referring expressions) has not yet been reported. 

7 Future work 

Our future research will address a number of di-
rect follow-up issues. Firstly, the model will be 
extended to account for the changes in the men-
tions of the distinguishing features (number, pat-
tern, kind, shape). Secondly, after a more de-
tailed analysis of the data we will extend the 
model to account for individual adaptation pat-
terns in the sense that the model can account for 
groups of dyads showing similar dialogue histo-
ries. For this, we will model the landmark intro-
ductions made by the Instruction Follower as 
well. This model serves as starting point for a 
comprehensive ACT-R model of how referring 
expressions (including repeated mentioned of 
landmarks) are generated in the given task. 
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