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Abstract 

Sustained attention and psychomotor reactions are 
foundational components of performance in many laboratory 
and applied tasks. In sleep research studies, individual 
differences in baseline attentional vigilance are compounded 
by individual differences in vulnerability to the negative 
consequences of fatigue due to sleep loss, producing large 
differences in reaction time profiles. In this paper, we present 
a theory and model to explain individual differences in 
reaction time performance in a sustained attention task, both 
at baseline and as overall alertness declines across 88 hrs 
without sleep. The model captures the performance of 
individual human participants, and illustrates how individual 
differences in processing speed and differences in 
susceptibility to fatigue from sleep loss may combine to 
produce unique performance profiles. 

Keywords: Attention; Reaction Time; Individual 
Differences; Processing Speed; Computational Model. 

Introduction 

Attentional vigilance refers to the ability to maintain 

focused attention on a task and respond appropriately to 

repetitive stimuli. Vigilance is critical in monitoring tasks 

that are central in many transportation domains (e.g., train 

operators or long-haul truck drivers), and in many security-

related tasks (e.g., baggage screeners and intelligence 

analysts). A substantial body of literature has accrued on 

breakdowns in attentional processes (e.g., Davies & 

Parasuraman, 1982; Van Dongen & Dinges, 2005), which 

can have serious consequences in applied settings (e.g., 

Caldwell, Caldwell, Brown, & Smith, 2004). Lapses in 

attention have been attributed to fatigue caused by sleep loss 

(e.g., Doran, Van Dongen, & Dinges, 2001; Dorrian, 

Rogers, & Dinges, 2005) and/or extended time on task (e.g., 

Davies & Parasuraman, 1982; Van Dongen & Belenky, 

2008). 

In the Psychomotor Vigilance Test, or PVT (Dinges & 

Powell, 1985; Dorrian et al., 2005), participants monitor a 

known location on a computer screen and press a response 

button each time a stimulus appears at that location, which 

happens at random intervals between 2 s and 10 s. Sustained 

attention is taxed in this task as a function of the length of 

each test session, which was fixed at 10 minutes for the 

experiment described below. 

There are baseline differences among individuals in the 

speed with which they are able to respond to stimuli in 

reaction time tasks like the PVT (e.g., Humphreys & 

Revelle, 1984). Such individual differences in reaction time 

performance have been studied in the context of the 

relationship to general intelligence (e.g., Deary, Der, & 

Ford, 2001; Larson & Alderton, 1990), and explained in 

terms of processing speed, with slower processing being 

associated with both longer reaction times and lower overall 

intelligence. 

In addition to differences in reaction times across 

individuals on the PVT and many other reaction time tasks, 

there are considerable differences in how reduced alertness 

resulting from fatigue impacts performance. Alertness in 

this context refers to overall cognitive performance 

capability, which varies as a function of time awake and 

circadian rhythms. Research on sleep deprivation has 

demonstrated substantial declines in performance on the 

PVT as a function of these factors (e.g., Doran et al., 2001; 

Dorrian et al., 2005; Van Dongen & Dinges, 2005). The 

extent of those declines varies significantly across 
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individuals and reflects a trait (Van Dongen, Baynard, 

Maislin, & Dinges, 2004).  

We have explored computational mechanisms to explain 

individual differences in human performance on the PVT 

(Gunzelmann, Moore, Gluck, Van Dongen, & Dinges, 

2008), as well as changes observed as alertness varies (e.g., 

Gunzelmann, Gross, Gluck, & Dinges, in press). Here we 

present an integrated account of PVT performance, which 

explains stable individual differences in performance 

through variations in processing speed, combined with 

distinct mechanisms to represent the deleterious impact of 

sleep deprivation. The resulting model provides a more 

comprehensive explanation of sustained attention 

performance and adds new insights regarding the nature of 

performance differences across individuals at baseline and 

over the course of an extended period without sleep. 

Model and Mechanisms 

Our computational model for the PVT was developed using 

the ACT-R cognitive architecture (Anderson et al., 2004). 

The PVT places emphasis on ACT-R’s perceptual and 

motor capabilities, which must encode the stimulus when it 

is presented and elicit a response efficiently to produce 

effective task performance. The coordination of these 

activities is accomplished by ACT-R’s central cognitive 

process, which is implemented as a serial production system 

that operates in a cyclical manner to represent goal-directed 

cognitive activity. 

The foundation of the model consists of processes that (1) 

shift visual attention to the stimulus when it appears and (2) 

generate a response in the form of a virtual button press. 

These processes are represented as productions in ACT-R. 

The first process is sensitive to the appearance of the 

stimulus and generates a request for ACT-R’s visual system 

to shift attention to the item. The second process generates a 

response through a request to ACT-R’s motor system. 

Responses also can be generated in the absence of the 

stimulus, creating the possibility of false starts (see 

Gunzelmann et al., in press). Baseline differences and 

declines associated with fatigue are instantiated in the model 

through parameter manipulations that influence the duration 

and probability of successfully executing these processes. 

These mechanisms are described in the next subsections. 

Variability in Baseline Reaction Time 

Accounts of differences in reaction time implicate 

processing speed as the main factor. We represent this in the 

current model using a parameter in ACT-R that controls the 

duration of cognitive actions. Specifically, the parameter 

controls the time required for a single cognitive cycle within 

ACT-R’s central production system, which involves 

matching, selecting, and executing (firing) a single 

production. The default time for this process in ACT-R is 50 

ms. In the model, noise is added to this parameter to 

produce variability in the timing of cognitive cycles. The 

noise is sampled from a uniform distribution ranging from 

2/3 to 4/3 of the parameter value.  

We manipulate the parameter controlling the duration of 

cognitive cycles to represent stable processing speed 

differences among participants. The parameter has two 

specific effects on the model’s performance. First, and most 

obviously, it has a direct impact on the mean time required 

to complete the task. By decreasing or increasing cognitive 

cycle time, the model becomes faster or slower in 

responding to the presentation of the stimulus on average. 

Second, because the width of the uniform distribution 

determining the variability in the timing of cognitive cycles 

is defined to be proportional to the cognitive cycle time, 

faster cognitive cycle times produce narrower distributions 

than longer cycle times. This predicts that individuals who 

are slower in performing the task will also be more variable 

in their reaction times. 

Performance Decrements with Decreased Alertness 

The mechanism responsible for individual differences in 

reacting to the onset of a stimulus under baseline conditions 

represents one aspect of the research presented here. The 

other aspect relates to individual differences in the ability to 

maintain performance on the task despite reductions in 

overall cognitive alertness stemming from extended periods 

of sleep deprivation. In our computational model, the impact 

of sleep deprivation on PVT performance is driven by 

mechanisms within the central production system. 

The mechanisms allow for very brief gaps in cognitive 

processing, which we refer to as micro-lapses (Gunzelmann 

et al., in press). These micro-lapses reflect cognitive cycles 

in ACT-R where no cognitive actions are performed. As 

alertness declines, the likelihood of a micro-lapse increases, 

leading to delayed responses (lapses) and occasional failures 

to respond (non-responses). In ACT-R, the selection and 

execution of actions in central cognition is managed by the 

calculation of an expected utility for each production (Ui), 

which is influenced by an anticipated cost (Ci), a likelihood 

of success (Pi), and an overall level of ―alertness‖ in the 

cognitive system (G). The equation for the expected utility 

of a production, i, is: 

 

 iii CGPU  

 

Note that noise (ε) is added to the utility computation, 

which allows for stochasticity in the selection and execution 

of cognitive actions. Micro-lapses occur in our model when 

none of the expected utilities for applicable productions 

exceed a threshold for action, referred to as the utility 

threshold (Tu). In this circumstance, no action is performed 

on that cognitive cycle, and it is followed by another 

cognitive cycle where utility values are evaluated once 

again to determine if an action will be executed. Noise in 

the utility computation, sampled from a distribution with a 

mean of 0 and a standard deviation of about 0.453 (a default 

value in ACT-R), is critical in creating a circumstance 

where a micro-lapse can be followed by an appropriate 

cognitive action, allowing for the possibility for delayed 

responses (i.e., lapses). 
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Declines in alertness are represented by decreasing G, 

which is a global parameter that impacts the utility value of 

all productions. G is decremented further during cognitive 

inactivity (i.e., during micro-lapses) to represent dynamic 

declines in alertness over time. Tu is also decremented as 

alertness declines; it reflects compensatory effort on the part 

of the individual to offset the negative consequences of 

fatigue (see Gunzelmann et al., in press, for details). The 

overall impact of decreases in Tu is to make it more likely 

that some action will be performed on a given cognitive 

cycle. In this model, lower Tu values are a main contributor 

to increased numbers of false starts seen with sleep 

deprivation (Doran et al., 2001). 

To reduce degrees of freedom in the assessment of values 

for G and Tu, the dynamics of their changes are constrained 

by predictions of alertness from a published 

biomathematical model (Jewett & Kronauer, 1999) 

representing the interplay of sleep homeostasis and 

circadian rhythms on alertness (see Mallis, Mejdal, Nguyen, 

& Dinges for an overview of this class of model). A linear 

mapping of the alertness predictions to G and Tu provides an 

effective means of constraining the changes in these 

parameters in the model (Gunzelmann et al., in press). 

Comparison to Individual Human 

Performance 

Human Experiment Protocol 

To evaluate the ability of our model to capture a breadth of 

individual performance, including wide variations in 

alertness among individuals, we used data from 13 

participants who completed a study involving 88 hrs of total 

sleep deprivation (Doran et al., 2001). Participants 

completed a 10-minute PVT session every two hrs 

throughout the sleep deprivation period as part of a battery 

of cognitive tasks. Responses were classified as false starts 

if made before or within 150 ms of the stimulus 

presentation. Alert responses were considered to be 

responses between 150 ms and 500 ms, while longer 

responses were categorized as lapses. In cases where no 

response was made within 30 s of the stimulus onset, the 

trial was halted and identified as a non-response while a 

beep alerted the participant for the next trial. 

There were substantial inter-individual differences in 

performance overall, and the extended period of 88 hrs 

without sleep introduced wide temporal variations in 

alertness. In the current paper, we focus on declines in 

performance that occurred over progressive days without 

sleep while averaging out changes within days. Elsewhere 

we have used our approach to look at changes that occur 

across hrs within a day as a function of circadian rhythms 

(Gunzelmann et al., in press). 

Model Fitting and Evaluation 

For each individual, we explored the capacity of the 

model to capture average human performance for each day 

of the sleep deprivation protocol, including the baseline day 

that followed a full 8 hrs in bed and the subsequent first, 

second and third days of total sleep deprivation. The 

qualitative dynamics of the computational model were 

constrained by biomathematical model predictions of 

alertness, but we allowed magnitudes to vary on an 

individual basis. For every participant, we estimated 

intercepts and slopes to map the values of G and Tu to the 

biomathematical model predictions of alertness. Baseline 

cognitive cycle time was also estimated for every 

participant, but not varied as a function of predicted 

alertness because no such relationship was found (p>.90). 

We based the evaluation of our model on a ―standard two-

stage‖ method. In the first stage of our analysis, we fitted 

the 5 parameters identified above for each participant. We 

then compared the model results to the human data by 

computing the proportion of responses classified as false 

starts, lapses, and non-responses, as well as proportions of 

responses falling into 10 ms bins across the alert response 

time range (150–500 ms). In the second stage, we computed 

summary statistics and based our conclusions on the 

behavior of the model across the whole sample.  In this 

manner, we avoided overparametrization of the research 

problem—standard two-stage methods constitute a 

statistically appropriate and approximately valid approach to 

the study of individual differences (Feldman, 1988; Van 

Dongen, Maislin, & Dinges, 2004). 

Results 

Figure 1 illustrates the ability of the model to capture the 

range of human behavior, both at baseline and across an 

extended period of sleep deprivation. Increases in cognitive 

cycle time in the model produced shifts in the response 

distribution to the right, combined with a widening of the 

distribution attributable to noise. This prediction of the 

model is borne out in the human data. In fitting individual 

human performance data for the PVT, we found that the 

best-fitting values for cognitive cycle time ranged from 

21ms to 70ms, which is largely in line with proposals made 

by Card, Moran, and Newell (1983) regarding individual 

variability in cognitive processing speed. Importantly, this 

single parameter did an excellent job of accounting for 

individual differences in human performance at baseline. 
There was limited evidence for a systematic increase in 

cognitive cycle time across the sleep deprivation period. An 

increase in this parameter was supported by 7 of the 13 

participants (none of which were statistically significant, 

p>.08), while 2 of the remaining 6 showed a significant 

trend in the opposite direction (p<.05). Overall, changes in 

cognitive cycle time did not lead to significant improvement 

in the model’s predictions (p>.90) These results offer 

further support for holding cognitive cycle time constant for 

each individual across time awake, and call into question 

cognitive slowing as the sole explanation for the impact of 

sleep deprivation on performance (see also Dinges & 

Kribbs, 1991). 
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Figure 1: Individual human performance data (black) and 

model fits (grey) for each day of the 4-day sleep deprivation 

study. Data are proportions of responses within each 

category (false starts, alert responses, lapses, and non-

responses), with alert responses broken into 10 ms ranges. 

 

In addition to cognitive cycle time, alertness (G) and the 

threshold for action (Tu) were fitted. There were substantial 

differences among participants in the baseline values of G 

and Tu, and in the slopes of change for G and Tu as a 

function of the alertness changes across days of sleep 

deprivation. As a result, the values of G and Tu became 

more different among participants as sleep deprivation 

progressed. 

For all 13 participants, performance was best fit when G 

values declined across the sleep deprivation period in 

parallel with the biomathematical model predictions of 

alertness. Overall, the impact of changes to G across the 

sleep deprivation period was significant (p<.001). A similar 

pattern was observed for Tu, where the data from 11 of the 

participants was best fit when Tu declined as time awake 

increased. This effect was significant as well (p<.001).  

Table 1 presents the baseline value for each of the 

parameters, and the coefficient relating G and Tu to 

alertness, for the fits presented in Figure 1. 

 

Table 1: Baseline values for all parameters and regression 

coefficients (β) to map G and Tu to the Jewett & Kronauer 

(1999) model for each participant, along with the correlation 

(R) and Root Mean Squared Deviation (D) of the model 

with the individual participant data in Figure 1. 

ID G 

Value (β) 

Tu 

Value (β) 

Cycle 

(ms) 

R D 

A 1.27 ( 1.32) 1.53 ( .85) 38 .95 .013 

B 1.51 ( 0.64) 1.70 ( .23) 59 .97 .014 

C 1.58 ( 1.69) 1.51 (1.26) 38 .92 .013 

D 0.65 ( 3.12) 1.05 (2.50) 41 .90 .026 

E 1.22 ( 0.75) 1.23 ( .49) 70 .98 .010 

F 1.68 ( 0.43) 1.68 ( .21) 57 .95 .016 

G 1.24 ( 3.07) 1.21(2.74) 70 .98 .010 

H 1.63 (0.33) 1.68 (.04) 47 .94 .013 

I 1.18 ( 2.23) 1.21 (2.06) 51 .92 .016 

J 1.61 ( 0.56) 1.88 ( .08) 24 .93 .014 

K 2.18 ( 0.29) 1.96 (-.56) 21 .97 .012 

L 1.58 (0.02) 1.71 (-0.08) 37 .96 .011 

M 1.33 ( 0.85) 1.54 ( .41) 40 .97 .010 

 

To evaluate the overall capacity of the model to capture 

human performance, aggregate statistics are presented in 

Table 2. Mean parameter values and standard deviations are 

shown to illustrate the variation required to capture 

behavioral differences observed across individuals. In 

addition, the means and the standard deviations of the 

correlation and root mean squared deviation (RMSD) values 

of the fits to the individual human data are presented. The 

relatively high average correlation and correspondingly low 

RMSD illustrate the model’s overall ability to capture 

individual-level performance well, while the low standard 

deviation of these statistics indicates that the model is 

generally effective for each of the individual participants 

modeled, as illustrated in Figure 1 and Table 1. 
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Table 2: Summary statistics of the model’s performance 

across individuals, including measures of parameter 

variation (ms) and fit to human data (correlation [r] and root 

mean squared deviation [RMSD]). RMSD is presented as a 

proportion of responses. 

Parameter/ 

Statistic 

Mean Standard 

Deviation 

G (Intercept)   1.438   0.358 

G (Slope)   1.178   1.046 

Tu (Intercept)   1.532   0.280 

Tu (Slope)   0.787   1.045 

Cycle Time 45.566 15.376 

Correlation (r)   0.948   0.026 

RMSD   0.014   0.004 

 

Conclusions 

The results presented in this paper raise a number of issues 

with regard to understanding psychomotor vigilance and 

inter-individual differences in human reaction time, as well 

as variability in the impact of sleep loss. Three primary 

conclusions can be drawn. First, cognitive cycle time in 

ACT-R provides a useful way of understanding stable 

individual differences in baseline reaction time performance 

on the PVT. This aspect of the architecture impacts the rate 

of cognitive activity across contexts, providing a fairly 

direct instantiation of processing speed. The performance of 

our model supports of the idea that individual differences in 

reaction time performance can be captured in a relatively 

direct manner in ACT-R by using the cognitive cycle time 

parameters, and provides a detailed, process-level account 

of the phenomena observed in human performance. 

Second, our research shows that micro-lapses in cognitive 

processing can provide a parsimonious account of both 

delayed responses (i.e., lapses) and smaller shifts in the 

speed of alert reaction times. As such, micro-lapses may be 

the right computational model equivalent of the ―wake state 

instability‖ phenomenon that has been proposed to underlie 

the shifts in the reaction time distribution which give rise to 

slower responses and lapses (Doran et al., 2001). .  

Third, changes in cognitive cycle time alone did not 

capture performance changes associated with sleep loss. 

This calls into question the construct of cognitive slowing as 

the best explanation for the relatively small changes in 

median alert reaction time that are observed with increased 

levels of sleep deprivation. Instead, our account suggests 

that these changes can be explained by the same 

fundamental changes in cognitive processing that give rise 

to delayed responses and non-responses. 

Interestingly, vulnerability to the negative consequences 

of sleep deprivation on cognitive performance showed only 

a modest relationship to individual differences in baseline 

performance, as has been observed previously (Van Dongen 

et al., 2004). The correlation between cognitive cycle time 

and the magnitude of changes to both G and Tu across 

successive days without sleep was not significant (p>.16; 

r=.30 with G and r=.41 with Tu), suggesting that these two 

sources of individual differences represent relatively distinct 

influences on cognitive processing. 

The free parameters in our modeling effort reflect claims 

about the underlying sources of individual differences in 

human performance on this task, and so they were expected 

to vary among individuals. Research has shown repeatedly 

that people’s performance varies extensively across a wide 

variety of tasks in virtually every domain of psychological 

study. Our goal is to use laboratory tasks to generate a 

comprehensive model of the performance of individuals, 

providing a capacity to predict individual performance on 

applied tasks where data are difficult or impossible to 

collect (e.g., Gunzelmann & Gluck, in press). We comment 

on this long-term focus more in the remainder of the paper, 

which discusses future directions. 

Applications and Future Directions 

As we develop a more robust and detailed account of 

human cognitive performance and the various moderators 

that impact behavior, it should become increasingly possible 

to make predictions about the performance of individuals in 

novel task contexts. For instance, the research presented 

here provides evidence for variability in processing speed 

across individuals on a sustained attention task. Because our 

mechanisms are specified within a cognitive architecture, 

there is potential for using performance data from simple 

tasks like the PVT to generate predictions of performance 

for individuals in other tasks as a function of this variability. 

The same is true with regard to the mechanisms associated 

with changes in alertness. The next step in this process is to 

use these mechanisms to make such predictions in another 

task where we have data from the same participants. This 

will provide evidence regarding the promise of the 

methodology, and also will illustrate the utility of using a 

unified theory of cognition as a means of building a 

cumulative account of the impact of fatigue on cognitive 

performance. 

The longer-term opportunity we see in this research is not 

in modeling laboratory tasks like the PVT per se. Rather, it 

is to use individually tailored parameter values derived from 

simple laboratory tasks to make specific predictions in more 

complicated, naturalistic task environments. A major 

achievement would be to be able to predict the likelihood of 

a catastrophic error by a specific individual based upon his 

or her cognitive capabilities and limitations, including 

performance degradations associated with sleep deprivation. 

This has the potential to increase safety across myriad real-

world domains. 

A further direction of this research is to understand in 

greater detail the dynamics of human sustained attention. 

Progress on this front depends on understanding another 

major influence on alertness, namely time on task. It is well 

established that performance on attention-demanding tasks 

tends to decline as the task is performed for greater lengths 

of time, a phenomenon referred to as the vigilance 

decrement (e.g., Davies & Parasuraman, 1982; Van Dongen 

& Belenky, 2008). Providing a unified account of the 
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relationships among time awake, circadian rhythms, and 

time on task represents a major subgoal in being able to 

predict variability in human performance across time. The 

current line of research represents significant progress 

toward that goal. 
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