
Second Life as a Simulation Environment:
Rich, high-fidelity world, minus the hassles.

 Vladislav D. Veksler
 (vekslv@rpi.edu)

 Cognitive Science Department
Rensselaer Polytechnic Institute

110 8th Street
Troy, NY 12180 USA

Abstract
Second Life™ is a 3D virtual world with unlimited potential
as a tool for cognitive modeling. This paper discusses the
many advantages of using Second Life versus other
simulation environments, the aspects of cognitive modeling
that this simulation environment may be appropriate for, the
interface setup, and various technical issues. Two simulations
are provided as examples of interfacing Second Life with
cognitive models, including an example where the high-
fidelity complexity and constraints of Second Life may help
to distinguish between models and/or parameter values that
produce varying performance in different task environments.

Keywords: cognitive modeling, Second Life, 3D virtual
worlds, embodiment, ACT-R, task environment, cognitive
architectures.

Introduction
The 3D virtual world Second Life™ offers a potential
environment for training and testing cognitive models.
Second Life is populated by hundreds of thousands of
online users, and perhaps millions of virtual objects. This
technology may be of interest to the cognitive modeling
community for a variety of reasons, including scalability
and scope testing, skill transfer simulations and long-term
model development, emerging behavioral and social
simulations, etc. Second Life provides a very rich, dynamic,

and interesting world, (compared with the simple simulation
environments that are typical in cognitive modeling), that is
well-supported and easy to use and to redesign as needed
(compared with robotics), with unlimited tasks, and the
opportunity for life-long (rather than simulation-long)
learning for a cognitive agent. Some Cognitive Science
researchers have already begun to explore Second Life for
demo and simulation purposes (e.g. Burden; Merrick &
Maher, 2009; Rensselaer Polytechnic Institute, 2008), but
more work with this environment is needed to take full
advantage of its features.

The rest of this paper discusses the advantages of Second
Life over alternative simulation environments for cognitive
modeling, the types of simulations that Second Life may be
appropriate for, and some key technical issues for modeling
in this environment. Finally, two simulations are provided
as examples of how cognitive models may be interfaced
with Second Life, and how the high-fidelity complexity and
constraints provided by the virtual world may be useful in
distinguishing between models and/or parameter values that
produce varying performance in different task
environments.

Why Second Life?
The attraction of Second Life is the same as that of robotics

Figure 1. Cognitive Agent exploring a park in New York. ACT-R model controlling the agent.

– embodiment (minus the many hassles of robotics,
discussed below). A large portion of human cognitive
abilities is the result of the complexities and consistencies of
our environment. Thus, a dynamic, rich world, with physical
laws and consistent object properties may provide for more
fidelity than simpler simulation environments, and thus,
more useful models of cognition.

Second Life’s complexity and constraints may help to
avoid some ‘false positives’, as well as ‘misses’ in cognitive
modeling. A false positive may occur when a cognitive
model accounts for human data in a simplified task
environment, but cannot scale in the real world. A miss may
occur when a cognitive model cannot fit human data without
the added complexity and constraints of the real world; thus,
the use of a simplistic simulation environment may cause
for the model to be incorrectly dismissed.

Second Life vs Robotics
If real-world fidelity is so important, why not just use the
real world? There are many limitations to working with
robots in the physical environment, versus simulated agents
in virtual reality. In addition to the financial expenses, one
major problem is that robotics work involves
disproportionally more work on the ‘body’ as opposed to
the ‘mind’. In the end, a slight change to the task
environment (e.g. taking a driving robot off-road) may
require changes in both sensory and motor mechanisms.

While biological agents are endowed with appropriate
sensory-motor systems for their world, and virtual agents
for theirs, robotic agents are in no way equipped to handle
the dynamics of the real world. For example, the number of
sensors on today’s robots, compared to the amount of
sensors that a biological cognitive agent might have, is
simply laughable. Virtual worlds like Second Life provide
for environmental complexity and fidelity, as well as
proportionally suitable sensory-motor abilities of virtual
agents. Said simply, by using Second Life as opposed to a
robot platform, researchers may be able to focus on
cognitive research, and avoid unnecessary investments of
time and finances.

Other Simulation Environments
Many other virtual simulation environments exist, and may
be used for cognitive modeling. Some of the alternatives
have better graphics, which can be very useful for demo
purposes, some have a faster interface for brain-body
communication, etc. However, due to the sheer size of the
Second Life user community, due to its steadily increasing
popularity, it makes for a much richer, ever-growing world.
Additionally, the commercial value of Second Life is
reflected in greater expansion of its technical capability and
technical support. Using Second Life over a less popular
simulation environment may be equated to using the World
Wide Web over a Bulletin Board System.

What in the world of Cognitive Modeling is Second
Life good (and not good) for?
Second Life may NOT be employed for modeling
millisecond response times, nor is it appropriate for large-
scale parameter exploration. Rather, Second Life is best
used for modeling performance, and learning curves.
Specifically, Second Life is best employed for (1) testing
the scope of models’ learning/decision-making mechanisms
in complex and dynamic, distractor-full environment, (2)
modeling adaptation and skill transfer, and (3) social
modeling.
Complexity and Constraints

Spatial navigation is a prime example of a task that
requires the complexity and constraints of Second Life for
cognitive modeling. When modeling navigation, researchers
often unrealistically represent the environment as a flat grid
of adjacent spaces (e.g. Braga & Araujo, 2003; Voicu &
Schmajuk, 2002). Some alternatives may be to include two-
way or one-way wormholes. Different models may thrive in
different environments, and so the choice of task-
environment is not trivial. Second Life may be employed to
provide realistic uncertainties and constraints. Although
Second Life bears many geographic properties (e.g. if space
A can be reached from space B, usually this means that
space B can be reached from space A), it also provides
many realistic uncertainties (e.g. object B may be in view
when approaching object A from the East, but not from the
North; object C may be dynamic, sometimes to be found in
proximity with A, and sometimes in proximity with B, etc.).
The use of a high-fidelity environment may help to deduce
high-fidelity cognitive models and parameter sets.
Task Variety and Skill Transfer

Second Life may be used for simulations of a variety of
tasks, from playing with building blocks, to maze-running,
to soccer, etc. Most tasks are very easy to set up, require no
programming or 3D modeling background, and are reusable
by other researchers. Of great importance is the fact that an
agent may ‘live’ and develop in this rich world, learning
new skills along the way. The multitude of tasks can also
help in modeling skill-transfer – an important qualification
of human intelligence. A cognitive agent may adopt their
soccer skills to hockey, walking skills to driving, and block-
building skills to tower of Hanoi, Tetris, and sculpting.

Technical Setup and Complications
The Second Life programming language, LSL, is required
for interfacing Second Life objects with cognitive models.
Although the basic algorithm is relatively simple (capture
and send sensory information to model; perform any actions
returned by the model), some complications are bound to
arise.
Land Ownership

There are many parts of the Second Life world where new
objects cannot be created because the landowner does not
allow this. There are parts of the world, called sandboxes,
where users are encouraged to build and script their objects;
however, objects usually cannot remain in most sandboxes

for longer than a few hours. Thus, sandboxes may be fine
for building models and running short simulations, but not
for longer lifespans or more controlled simulations. One
alternative is to buy land. Another may be to connect an
object to an avatar (see a lengthier discussion of this in the
Region Restrictions section below).

One last alternative is to use land that may be offered for
research purposes by a university or a private research
institution. For example, the Second Life AI Laboratory
(SLAIL) provides booth size spaces for free to anyone
undertaking research in AI (cognitive modeling included),
and particularly AI in virtual worlds, providing a permanent
exhibition, meeting and collaboration space for the
community. The space may be found on Daden Cays in
Second Life – (http://slurl.com/secondlife/Daden%20Cays/152/44/22;
for more details visit http://knoodl.com/ui/groups/
ArtificialIntelligenceGroup/wiki/SLAIL).
Region Restrictions

Scripted objects in Second Life are restricted from
entering certain regions. If a modeling simulation requires
travel beyond known open regions, it may be necessary to
use an avatar (an avatar is a representation of a human user
in Second Life, and only exists as long as the user is logged
on). One simple way to resolve this issue is to attach the
object interfaced with a cognitive model to an avatar. For
example, the neon-blue sphere floating above the avatar’s
head in Figure 1 is an object scripted to interact with a
cognitive model. For demo purposes the scripted object can
be made see-through, tiny, or made to look like an article of
clothing (e.g. a hat).
Firewall Issues

When a computer running a cognitive model is using
DHCP, or if it is behind a firewall, a dedicated web server is
necessary for interfacing the model with the Second Life
world (Figure 2). Alternatively, LSL scripts can answer
HTTP requests from the cognitive agent directly through
their XML-RPC service (XML-RPC is a standard for XML
structure for sending function calls to remote systems). This
latter route is sometimes unreliable and may be deprecated
("Category:LSL XML-RPC - Second Life Wiki," 2009), but
may be faster than the setup shown in Figure 2, depending
on the speed of the researcher-owned web servers.
Asynchronous HTTP Calls

A question may arise when a cognitive model sends a
command to its Second Life ‘body’ (e.g. “move toward the
fountain”, “raise left arm .2m”, “push the block object”),
and receives information back about the state of the world,
as to the time of the state. The model may require
information as to whether its last action has been performed,
and whether the HTTP responses are in order. This is easily
resolved by sending a timestamp along with the last
performed action from the body script to the model.

Figure 2. Second Life setup for models on DHCP or behind

a firewall. Simulation shown at bottom has 3 models
exploring a maze with cheese and water.

Memory Issues

Second Life scripts are relatively restricted in memory
(16KB total for Byte-code, Stack, Free Memory, and Heap).
This may be a serious restriction for collecting data about
the state of the agent and keeping a copy of the prior state
(prior state information may be necessary to avoid sending
unchanged information to the model, saving both speed and
bandwidth). This is not an issue when world-state contains
only the last taken action plus the names of a few
surrounding objects, but becomes an issue when collecting
all possible information (object id, name, description,
position, direction, velocity, dimensions, etc.) for a large
number of objects.
Scanning

Other complications may arise in the way that a model in
Second Life may be allowed to scan around for nearby
objects. The scan is performed as a sphere, rather than a
cylinder. This may take unnecessarily long for a large
radius. A smaller radius may be scanned for a simulated
sense of smell, but for long-distance vision, scanning must
be restricted from a sphere to a smaller cone.
Speed

The greatest complication is that the perception-action
protocol can take a relatively long time. This, of course,
depends on the setup of scanning and HTTP requests. The
greater bottleneck seems to be the maximum rate of HTTP
requests (capped at 25 requests in 20 seconds). The
assumption in modern cognitive architectures (e.g.
Anderson & Lebiere, 1998) is that visual information is
used at most 10 times per second (50ms for attention shift,

and 50ms for attending the information). Thus, it seems that
Second Life vision is about 10 times slower than may be
desired for real-time cognitive models. This is not a major
problem for interacting with static objects or other (similarly
retarded) models, but it is a problem nonetheless. However,
the technical support enjoyed by the Second Life
community carries the promise of near-future solutions for
these issues.

Specifics of Sample Simulations

Simulation 1
The first simulation was attempted to examine how a
cognitive architecture may be interfaced with Second Life.
The ACT-R cognitive architecture (Anderson & Lebiere,
1998) was connected with a Second Life script through an
intermediary web server, as displayed in Figure 2. A
scripted object was created in Second Life that would scan
the world every few seconds, and send the state of the world
via an HTTP call to the intermediary web server. On the
ACT-R side, a cognitive model, in a perceive-think-act loop,
would request an updated world-state from the intermediary
web server, decide upon an action, and send motor
commands back to the server.
Second Life Setup

The Second Life scripted object was attached to an avatar
for greater exploratory capabilities (without an avatar
scripted objects are restricted from many lands). The script
performed a regular scan of nearby objects with a radius of
2m. If less than 5 objects were detected, the radius was
increased, and another scan was re-initiated, until at least 5
objects were detected. Much more information was
collected and transferred to the ACT-R model than was
necessary for this simulation (e.g. object position, velocity,
size, etc.), as this helped to examine the technical limitations
of the setup. In addition, information sent to ACT-R
included a timestamp, and the latest received motor
command.
ACT-R Interface and Model

ACT-R visual and motor components were interfaced for
Second Life in the following manner. Lisp functions were
added to send out motor commands to the intermediary web
server, and to retrieve world-state from the server. The
ACT-R visual information (visicon) was filled with Button
objects, each Button containing the name of its
corresponding Second Life object found in the world-state
list from the server. Upon clicking one of the button objects,
a command would be issued, via a call to the web server, to
move toward the corresponding object.

The ACT-R model employed to examine this interface
was the Goal-Proximity Decision model (Veksler, Gray, &
Schoelles, 2009). The details of the model are not provided
here, as this is tangential to the focus of this paper. The
general idea of the model is that it attends all objects in the
visicon, and clicks the object with the greatest strength of
association to the current goal (plus or minus noise). The

strength of association between objects, in turn, is updated
based on experienced temporal proximity of those objects.
Simulation Results

The Second Life script was first limited to find only the
objects that belonged to its owner, which comprised sixteen
randomly distributed boxes that served as navigational
landmark (Figure 3). The model was presented with each of
the sixteen objects as its goal, one at a time, until it
successfully found each object.

Figure 3. Second Life simulation. Controlled environment,

with researcher-owned objects.

Upon the successful completion of this exercise, the

scanning restrictions were removed, allowing the model to
‘see’ all objects within its scanning radius. The model was
moved to an object-rich region, Washington Square Park in
Manhattan (Figure 1), and manually given various objects as
its goals (e.g. fountain, bench, store). Although the model
was able to successfully navigate most of the region, some
distant objects were unreachable due to the chosen scanning
procedure. Thus long-distance vision, as discussed in the
Scanning section above, may be necessary for most
exploratory agents.

Simulation 2
The purpose of the second simulation was to examine
whether Second Life can be set up to help distinguish
between sets of model parameters for a Reinforcement
Learning model. Reinforcement Learning (Sutton & Barto,
1998) is a widely implemented model of trial-and-error
behavior. The specific form of Reinforcement Learning that
was implemented in this model was a closed-form version
of the ACT-R decision/utility-learning mechanism. The
model chose which object to approach based on the utility
of that object, given the specific goal (plus or minus noise).
Upon reaching its goal, the model updated the utility of all
encountered objects for reaching that goal based on the
ACT-R utility-learning equation (Bothell, 2008).

The details of the model are relatively tangential to the
focus of this work. What is important, however, is that there
are several free parameters in this model (e.g. exploratory
noise, learning rate, etc.), and that the same parameter
values may cause different behavior for different task
environments. Thus a high-fidelity task environment, like
Second Life, may be necessary to distinguish between
different parameter sets.
Different Task Environments

Parameter searches were performed with the model using
three different maze structures. Each maze contained sixteen
available spaces for the model to explore. The mazes were
rated according to the average difficulty of finding each
possible maze location from each possible starting point, by
means of a random walk. The easy, medium, and difficult
mazes required on average 181.39, 369.83, and 793.79
steps, respectively. The easy and medium difficulty mazes
were set up in a grid-like fashion, with bidirectional
movement allowed between any two neighboring locations.
The easy maze, shown in Figure 4A, allows movement in all
eight directions to its neighboring cells (N, NE, E, SE, S,
SW, W, and NW). The medium difficulty maze, shown in
Figure 4B, allows movement in four directions (N, E, S, W).
The difficult maze, shown in Figure 4C, was set up with
unidirectional and bidirectional connections, without regard
for grid consistency.

Figure 4. Sample navigation task environments. Numbered

boxes signify locations, arrows signify the directions in
which an agent may travel.

Different Parameter Sets

The model ran through each of the three tasks 60 times
for each parameter set (noise was varied between .01 and
30, learning rate was .001 and .2). Each model run consisted
of five bins, where the model had to reach sixteen goal in

each bin (every possible location was set as a goal, in
random order). The best performance (as measured by the
average number of steps taken by the model to reach a goal
in bin 5) for each maze was achieved with a different set of
values for the free parameters in the model. The best
parameters for the easy maze (paramsEasy) was achieved
when the noise parameter was set to 5 and the learning rate
was .1, for the medium difficulty maze (paramsMed) when
the noise parameter was 25 and the learning rate was .1, and
for the difficult maze (paramsHard) when the noise
parameter was 15 and the learning rate was .01. A 3x3 two-
way ANOVA revealed a significant interaction effect of
ParameterSet × MazeDifficulty, F(4, 531) = 115.42, p <
.001, a significant effect of ParameterSet, F(2, 531) =
167.60, p < .001, and a significant effect of MazeDifficulty,
F(2, 531) = 346.52, p < .001. Post-hoc Tukey HSD
comparisons revealed significant differences between the
performance of all three parameter sets at the p < .05 level.
Second Life Simulation

Given the differences between paramsEasy, paramsMed,
and paramsHard on the three types of task environments, it
may be appropriate, and even essential, to establish which
parameter set is best in a high-fidelity task environment. A
Second Life simulation was set up as a proof of concept.
Figure 2 is an accurate representation of the modeling setup,
with a connection through the intermediary web server, with
the models being represented as mice in a maze, with
random poles and boxes (serving as landmarks), and three
possible goals: swiss cheese, cheddar cheese, and water
bowl. The complexity of the task, as well as its fidelity, was
augmented with a greater number of objects and the
presence of dynamic objects (other mice). The model was
minimally altered so as to receive perceptual information
from Second Life, and send motor commands back (the
perception and action functions from Simulation 1 were
reused).

The focus here is (1) to point out that choosing a task
environment for cognitive modeling is not trivial (2) that
Second Life, in theory, is an appropriate environment for
task simulations, and (3) that Second Life, in practice, can
be successfully interfaced with cognitive models. On the
latter point, the model ran once with each of the three
parameter sets, each run consisting of ten bins, where each
bin comprised finding the three goals, one at a time, in
random order. Early results (see Figure 5) suggest that the
three parameter sets eventually converge, but this may take
an extremely long time (≈27 walks through the maze,
which, at worst, is almost 3000 steps). The average number
of steps taken to reach a goal is 35.9 for paramsMed, 99.4
for paramsEasy, and 148.5 for paramsHard.

These results are not interpretable without more data, nor,
even if the trend should continue, could we assume that the
medium difficulty maze shown in Figure 4B may be used in
place of high-fidelity task environments. Instead, the
suggestion is that these task environments should be used in
combination: one to quickly test many models and
parameter values, the other to test whether a model could

scale up to the complexities of dynamic and uncertain
worlds.

Figure 5. Second Life simulation results from three different

sets of parameter values.

Summary
In sum, Second Life may be an important tool for cognitive
modeling. It provides a better balance of real-world
complexity and constraints than simpler simulation
environments, less hassle and financial investment than
robotics work, and it stands out from other 3D virtual world
with a rich, massive-multiuser environment, and extensive
technical support. The Second Life environment may be
easily interfaced with cognitive architectures, as described
in Simulation 1, or with closed form models, as described in
Simulation 2. As Simulation 2 suggests, Second Life
modeling work can help to answer questions as to the
fidelity of various cognitive mechanisms and/or parameter
values whose performance may vary in different task
environments.

Future work will address rigorous statistical comparison
of model performance in Second Life versus other task
environments. Other plans include implementation of long-
distance visual scanning coupled with head-movements, and
exploration of a greater variety of tasks (e.g. soccer,
building blocks, hide and seek).

Acknowledgements
I would like to thank Wayne D. Gray and Michael J.
Schoelles for their theoretical and editing contributions to
this work. The work was supported, in part, by grant
N000140710033 to Wayne Gray from the Office of Naval
Research, Dr. Ray Perez, Project Officer. Much of this work
was carried out on space provided at the Second Life AI
Laboratory (SLAIL) on Daden Cays in Second Life -
http://slurl.com/secondlife/Daden%20Cays/152/44/22.

References
Anderson, J. R., & Lebiere, C. (1998). The atomic

components of thought. Mahwah, NJ: Lawrence
Erlbaum Associates Publishers.

Bothell, D. (2008). ACT-R 6.0 Reference Manual: Working
Draft. Retrieved April 13th, 2009, from http://act-
r.psy.cmu.edu/actr6/reference-manual.pdf

Braga, A. P. S., & Araujo, A. F. R. (2003). A topological
reinforcement learning agent for navigation.
Neural Computing & Applications, 12(3-4), 220-
236.

Burden, D. J. H. Deploying embodied AI into virtual
worlds. Knowledge-Based Systems, In Press,
Corrected Proof.

Category:LSL XML-RPC - Second Life Wiki. (2009).
Second Life Wiki Retrieved April 13, 2009, from
http://wiki.secondlife.com/wiki/Category:LSL_XM
L-RPC

Merrick, K., & Maher, M. L. (2009). Motivated Learning
from Interesting Events: Adaptive, Multitask
Learning Agents for Complex Environments.
Adaptive Behaviour, 17(1), 7-27.

Rensselaer Polytechnic Institute. (2008). Bringing Second
Life To Life: Researchers Create Character With
Reasoning Abilities Of A Child. ScienceDaily.
Retrieved April 14, 2009, from
http://www.sciencedaily.com/releases/2008/03/080
310112704.htm

Sutton, R. S., & Barto, A. G. (1998). Reinforcement
Learning: An Introduction. Cambridge,
Massachusetts: The MIT Press.

Veksler, V. D., Gray, W. D., & Schoelles, M. J. (2009).
Goal-Proximity Decision Making: Who needs
reward anyway? Paper presented at the 31st
Annual Meeting of the Cognitive Science Society,
CogSci 2009.

Voicu, H., & Schmajuk, N. (2002). Latent learning,
shortcuts and detours: a computational model.
Behavioural Processes, 59(2), 67-86.

