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Regions in the prefrontal and parietal cortices contribute to mathematical problem-solving
through their roles in retrieval and mental representation, respectively. This fMRI study
examined whether activity in these regions tracked with subsequent errors in solving
algebraic equations. Whereas previous studies have used recognition paradigms (e.g.,
decide whether 2+2=5 is correct) to assess the relationship of neural functioning with
performance, participants in this study were required to generate an answer themselves.
For the prefrontal region that in previous studies has exhibited activity modulated by
retrieval demands, we found that activity was greater when equations were solved correctly
than when errors were committed. Good solvers also tended to exhibit more activity in this
region than poor problem-solvers. This was not true for the region in the parietal cortex that
has been associated with representing the number of transformations to the equation. This
suggests that, in our adult sample, successful performance was related to retrieval abilities
rather than to difficulty in representing or updating changes in the equation as it is being
solved.
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1. Introduction

As any math teacher will attest, students produce frequent
errors when solving mathematical problems. Indeed, the
number and types of errors can be an important source of
information for teachers in determining where students need
further instruction. A number of behavioral studies have
closely examined the types of errors that occur when solving
equations, and these data have been used to generate and test
cognitive models of component processes in mathematical
problem-solving (Anderson et al., 1996; Koedinger andNathan,
avizza).

er B.V. All rights reserved
2004). Recently, the field has expanded to include neuroima-
ging studies of mathematical processing in order to confirm
that these components map onto separable neural regions
(Anderson et al., 2003, 2004a,b; Danker and Anderson, 2007;
Qin et al., 2004). However, very few studies have determined
whether neural regions associated withmathematical proces-
sing are important for successful performance. The dearth of
studies on the neural underpinnings of mathematical errors is
surprising given that mathematics is one of the few subjects
where the distinction between right and wrong answers is
relatively clear-cut. The goal of this study is to assess whether
.
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errors in mathematical performance are associated with
activity in neural regions known to instantiate processes
required for problem-solving.

A unique aspect of this study is its focus on the active
generation of solutions to algebraic equations rather than a
more passive evaluation process. To date, recognition para-
digms have primarily been used to assess neural contributions
to successful performance in mathematical tasks (Menon
et al., 2002; Rivera et al., 2002). Rather than generating
answers, participants are given an equation such as 2+2=5
and asked to determine its correctness. Greater activity in the
prefrontal cortex has been observed when judging incorrect
than correct equations (Menon et al., 2002), however, it is
difficult to determine whether these regions are critical for
successfully solving equations or whether they reflect a more
general process needed in evaluating incorrect solutions by
others (e.g., sustained selective attention or novelty detec-
tion). By asking participants to generate answers, this study is
specifically designed to assess the neural underpinnings of
successful performance.

While imaging studies of mathematical errors are rare,
much headway has been made in verifying that component
processes of mathematical problem-solving map onto sepa-
rable neural regions. One model, the ACT-R information-
processing model (Anderson et al., 2004a,b; Anderson, 2007),
posits several modules necessary for tasks such as mathema-
tical reasoning, and these modules have been shown to have
distinct neural correlates (see Anderson, 2005 for a review).
Three of these modules have been extensively studied in
behavioral and neuroimaging studies of abstract symbol
manipulation (Anderson et al., 2003, 2004a,b) and algebraic
equation solving (Anderson et al., 2003; Qin et al., 2004), and
will also be the focus of this experiment.

One module in the ACT-R cognitive architecture corre-
sponds to an imaginal buffer that maintains the current
mental representation of a problem state such as an equation.
Neuroimaging studies have demonstrated that activity of the
inferior parietal cortex displays a parametric increase when
the number of changes to the problem state increases
(Anderson et al., 2003; Qin et al., 2004); that is, when the
number of steps needed to solve an equation increases
(thereby increasing the number of transformations to the
problem state), the inferior parietal cortex is recruited to a
greater degree. The lateral prefrontal cortex, in contrast, does
not respond to the number of transformations but, instead, is
engaged in conditions where retrieval demands are high. This
region is thought to correspond to a buffer that holds cues that
drive the retrieval process. For instance, it would hold the
retrieval cues “7+5” in retrieving the arithmetic fact 7+5=12 in
service of solving the equation x−5=7. Activity in the lateral
prefrontal cortex increases as the time to retrieve an item
increases or the number of items to be retrieved increases. A
third module is responsible for motor output and is reflected
in activity of the motor cortex. This region displays peak
activity at the time of responding.

Given that a number of neuroimaging studies have now
provided converging evidence for the viability of these buffers
and their neural instantiations, our current goal is to link the
computations provided by these regions with success in
solving algebra equations. One prediction might be that both
retrieval efficiency and visuospatial representational abilities
would be associated with greater accuracy. If so, regions
undertaking those processes should be engaged to a greater
degree when equations are solved correctly than when errors
are committed. Moreover, individuals with higher accuracy
rates should also display more activity in those regions. To
foreshadow our results, we found that activity of the lateral
prefrontal cortex was greater during correct trials and tended
to be greater for better-performing participants. In contrast,
inferior parietal cortex activity was not modulated by accu-
racy. Thus, our results imply that errors are linked more to
inefficient retrieval than to difficulty in representing the
problem state in our adult sample.

In addition to examining the effects of accuracy, we also
assessed the complexity of mental representation by varying
the size of the operands. Several studies have found activity in a
region of the inferior parietal cortex to be modulated by the
demands of mental representation as assessed by varying the
number of transformations. However, the visuospatial require-
ments in representing large numbersmay also tax the imaginal
buffer. Other studies have found greater parietal activity for
larger numbers than smaller numbers (Stanescu-Cosson et al.,
2000; Piazza et al., 2004), however, it is unclear whether the
same region of the parietal cortex is responsive to both the
number of transformations of the problem state and number
size. By using a different manipulation to vary the difficulty of
mental representation, it is possible to verify that this region
corresponds to an imaginal buffer rather that being important
for a process specific to visuospatial transformations.

While parietal, prefrontal, and motor contributions to
mathematical problem-solving have been studied intensively,
less well-characterized is the role of the anterior cingulate
(Anderson, 2005). In the ACT-Rmodel, the anterior cingulate is
hypothesized to contribute to the control of goal-oriented
behavior. For example, there is much evidence supporting
anterior cingulate involvement in the detection of response
conflict and the ability to overcome prepotent responses
(MacDonald, et al., 2000; vanVeen and Carter, 2002; Kerns et
al., 2004). Less support has been acquired for a role of this
region in more stimulus-based conflict (Van Veen and Carter,
2005). The slow-event related design in our experiment will
allow us to assess whether the anterior cingulate is recruited
when participants are mentally solving equations and are not
making overt responses.
2. Results

2.1. Behavioral

Null and incomplete responses were discarded, so only errors
of commission were analyzed. The data can be classified into
four categories according to whether the problemwas large or
small and whether the problemwas answered correctly or not
(Fig. 1). Averaging accuracies over subjects, they were 76.3%
accurate for small problems and 55.5% for large problems. This
was a highly significant difference (t(14)=7.81, pb .001). With
respect to latencies, the averages of the subject means are
13.75 s. for small correct, 18.89 s. for small error, 21.05 s, for
large correct, and 23.4 s. for large error. An ANOVA performed



Fig. 1 – Accuracy and reaction times of participants solving
algebraic equations. Reaction time corresponds to the
moment that participants pressed the key indicating that
they knew the answer to the equation.
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on these latencies confirmed that the effects of size and
correctness are both highly significant (F(1,14)=38.56, pb .0001,
for accuracy; F(1,14)=57.41, pb .0001, for size) and the interac-
tion between the two approached, but did not reach,
significance (F(1,14)=4.2, p=.06,). Fig. 2 shows the distribution
of timing of responses summed across participants in these
four categories in terms of which scan the response was
emitted. Note these means are measured from 1 s into the
Fig. 2 – The number of responses given during each scan in
each condition. Dark vertical lines denote the scan associated
with the mean RT in each condition (i.e., scan 8 for small
correct, 11 for small error and large correct, and 13 for large
error).
scanning sequence because the warning prompt occupies the
first second. Therefore, the scans associated with these mean
times are 8 for small correct, 11 for small error and large
correct, and 13 for large error. These scans are indicated by
vertical lines in Fig. 2.

2.2. Imaging results

The wide distribution of times in Fig. 2 poses a challenge for
aggregating the imaging data in a way to provide meaningful
analysis. To deal with this, we developed a method (see
Anderson and Qin, 2008) for warping data from an individual
trial to the mean length of the response across trials. First, for
each trial and each region of interest we calculated the percent
change of the (Blood Oxygen Level Dependent) BOLD response
on each scanwith reference to the first scan on a trial.We then
broke these change scores into two intervals. One interval was
from the first scan until the scan of the response and the other
from the first scan after the response until the last scan of the
trial. We then warped these two intervals onto the mean
lengths for these intervals in that condition. The following is
the warping procedure for taking a scan sequence of length n
and deriving a scan sequence of the mean length m. It
depends on the relative sizes of m and n:

1. If n is greater than or equal to m, create a sequence of
length m by taking m/2 scans from the beginning and m/2
from the end. If m is odd select one more from the
beginning. This means just deleting the n–m scans in the
middle.

2. If n is less than m, create a beginning sequence of length
m/2 by taking the first n/2 scans and padding with the
last scan in this first n/2. Construct the end similarly. If
either n or m is odd, the extra scan is from the beginning.

This creates scan sequences that preserve the temporal
structure of the beginning and end of the sequences and just
represent the approximate average activity in their middle.

Fig. 3 shows the results we obtained for the predefined
motor region. It shows nicely staggered motor responses
Fig. 3 – Time course of activity in the left motor region of
interest in each condition. Dark vertical lines denote the scan
associated with the mean RT in each condition (i.e., scan 8
for small correct, 11 for small error and large correct, and 13
for large error).



Fig. 5 – Time course of activity in the left parietal region of
interest in each condition. Dark vertical lines denote the scan
associated with the mean RT in each condition (i.e., scan 8
for small correct, 11 for small error and large correct, and 13
for large error).
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beginning their rise with the scan of the response. As with all
of our predefined regions, we performed a separate analysis of
the area under the curve for the first 7 scans and the area
under the curve for the remaining 15 scans (i.e. the sum of the
first 7 points and the sum of the last 15 points). The first seven
scans reflect that portion of the imaging data that has not yet
been influenced by response generation in any condition. In
the case of the motor area there are no significant effects
here (size: F(1, 14)= .6, correctness: F(1,14)=1.23, interaction
F(1,14)=1.44, psN .1). Moreover, the overall area is not sig-
nificantly different than zero (t(14)=−0.89, pN .1). This con-
firms what is apparent to the eye, which is that this region is
basically dormant in the early interval. On the other hand,
there is a highly significant rise after this point (t(14)=4.44 for
area under the curve, pb .001) but the size of this rise also
does not vary with condition (size: F(1, 14)= .89, correctness:
F(1,14)= .01, interaction F(1,14)=1.11, psN .1). These are more or
less the results we would expect from the motor region. The
fact that we obtained them indicates that there is no
confounding of motor difficulty with condition and that our
warping procedure does succeed in bringing out the structure
of the BOLD response over such variable latencies.

Fig. 4 shows the results we obtain for the predefined
prefrontal region. As a general qualitative statement, the results
in these areas quickly rise and reach an asymptotic level about
scan7 anddropoffwith the emission of the response. This is the
pattern we would expect if this region were principally
responsible for retrieval of arithmetic facts. Unlike the results
for the motor cortex, there are significant differences in areas
under the curve for the first 7 scans and for later scans. For the
interval before responsegeneration, there is significantlygreater
area under the curve in case of correct compared to erroneous
responses (F(1,14)=5.25, pb .05). This is an important result
because it indicates that the activation in the prefrontal region
is signaling error in advance of any response. The other effects
were not significant in the first 7 scans (size: F(1,14)=.02,
interaction F(1,14)=0.38, psN .1). Both main effects were signifi-
cant in the later scans (size: F(1, 14)=15.08. pb .005, correctness:
F(1,14)=10.00, pb .01) and there was no significant interaction
(F(1,14)=1.78, pN .1). Both of the main effects for the later scans
Fig. 4 – Time course of activity in the left prefrontal region of
interest in each condition. Dark vertical lines denote the scan
associatedwith themean RT in each condition (i.e., scan 8 for
small correct, 11 for small error and large correct, and 13 for
large error).
reflect the fact that subjects take longer and are presumably
doingmorework when theymake errors or face large problems.
Note that area under the curve is greater for error trials in later
scans, but smaller before a response is generated. It is as if the
extra effort early avoids the need for extrawork later. In terms of
total area (summing all scans) therewas amarginally significant
tendency for greater area for errors (F(1,14)=3.58, pb .1).

Fig. 5 shows the results we obtained for the predefined
parietal region. It shows a more rapid rise than the prefrontal
area, reaching a peak about scan 4 and dropping off from scan
4 to scan 8 whereas the prefrontal region is continuing to rise
over the interval. The rapid involvement of this region would
be expected if it is involved in building up an internal
representation of the problem. In terms of the first 7 scans
there are no significant effects (size: F(1, 14)=1.75, pN .1;
correctness: F(1,14) = .002, pN .1; interaction F(1,14) =4.19,
p=.06). Moreover, these results suggest that this region of
the parietal cortex is not responsive to number size in the
early interval. Indeed, neither of the simple effects of number
size were significant (large vs. small correct: t(14)= .05, p=.96;
large vs. small error: t(14)=1.73, p=.11). However, for the
interval after the response, both main effects were significant
(size: F(1, 14)=8.66. pb .05, correctness: F(1,14)=7.46, pb .05)
and there was no significant interaction (F(1,14)= .024, pN .1).
Activity in the late interval seems basically to reflect the
duration of the trial. The parietal appears to behave as a region
that is heavily involved in building up an initial problem
representation and then continues to update that representa-
tion as long as the trial lasts.

Fig. 6 shows the results we obtain for the predefined
anterior cingulate region. This region shows an early rise
when the strategy is selected and a late rise with the
emission of the response. In terms of area under the curve,
the main effects are not significant during the first 7 scans
(size: F(1, 14)=1.52, Correctness: F(1,14)= .82, psN .1) but the
interaction term is (F(1,14)=6.44, pb .05). The interaction is
driven by the sharp drop for small errors. Given that this is the
condition with the fewest observations per subject one might
be suspicious of this result. In terms of late area there are no



Fig. 6 – Time course of activity in the anterior cingulate
region of interest in each condition. Dark vertical lines denote
the scan associated with the mean RT in each condition (i.e.,
scan 8 for small correct, 11 for small error and large correct,
and 13 for large error).

Table 1 – Regions produced in the voxelwise analysis

Contrast BA x y z Large r Small r

Accuracy (CorrectNError)
SMA 6 −7 −16 57 .19 .08
Left middle frontal gyrus 6/9 −56 6 40 .48 ⁎ .01
Left putamen/thalamus −25 −2 4 .41 .00
Right lingual gyrus/
vermis

11 −55 −3 .16 − .36

Number size (LargeNSmall)
Right middle
temporal gyrus

21 63 −12 −11 .09 − .26

Right lingual
gyrus/vermis

6 −66 −6 .00 − .28

Number size (SmallNLarge)
Left inferior frontal gyrus 45 −32 26 7 .23 − .34

⁎ Denotes significance at pb .05 if outlier is excluded.
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significant effects (size: F(1, 14)=2.78, correctness: F(1,14)= .64,
interaction F(1,14)=1.89, psN .1). It is noteworthy that in this
experiment, unlike simpler experiments, there seems to be no
connection between anterior cingulate activation and error.

2.3. Correlations between performance and neural activity

To assess whether our regions were directly involved in
performance, we correlated area under the curve in the early
stage with accuracy in the problem-solving stages across
participants (see Fig. 7). Although a positive association was
observed between activity in the left prefrontal cortex (correct
trials only) and accuracy in the large-number condition
(r(14)= .354, pN .1), it was not close to significance. However,
this was mostly due to one outlier who had low accuracy
despite greater activity in the prefrontal cortex. This outlier
had the highest deviation score from the sample as a whole as
indexed by the Mahalanobis distance score (5.64), and this
participant also had the most influence on the correlation
statistic according to a leverage analysis (.4). If this outlier is
removed, the correlation is significant (r(13)= .603, pb .05).
Accuracy was only weakly related to prefrontal activity in the
small-number condition and was in the opposite direction
(r(14)=− .173, pN .1)
Fig. 7 – The relationship of performance and prefrontal
activity for each participant.
The parietal cortex and the anterior cingulate did not
display a significant relationship between percent change in
activity and accuracy.

2.4. Voxel-wise analyses

Several regions were produced in our whole-brain analysis of
accuracy effects. Only regions where activity in one condition
was above baseline are listed in Table 1. To determinewhether
these regions were associated with performance, we corre-
lated area under the curve for the early interval (i.e. 0–10 s after
stimulus onset). Of the regions showing greater activity for
correct trials, activity in the left middle frontal gyrus tended to
be related to performance (r(14)= .48, p=.067; if same outlier
removed [see ROI analysis]: r(13)= .57, pb .05); that is, indivi-
duals who were more likely to solve equations accurately also
displayed greater activity in this region. As in the pre-defined
frontal region, this was only true in the large number
condition (see Table 1 for r-values).

None of the regions displaying number size effects was
related to performance.
3. Discussion

Evidence has accumulated for distinct contributions of the
parietal and prefrontal cortices to mathematical problem-
solving with the former subserving imaginal processing and
the latter goal-directed retrieval (Anderson et al., 2003, 2004a,
b; Danker and Anderson, 2007; Qin et al., 2004). This study
extends these findings by assessing how the functioning of
these modules contributes to successful performance when
solving algebra equations. Errors might occur due to a failure
of either of these buffers — either because of difficulty in
numerical/spatial representation or because retrieval is
impaired or inefficient. We provide evidence that a prefrontal
region previously shown to be modulated by retrieval diffi-
culty is also associated with accurate problem-solving.
Activity in the left PFC was greater when equations were
solved correctly than incorrectly, and better solvers tended to
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displaymore activity in this region. In contrast, parietal cortex
activity did not differ depending on whether participants
provided a correct answer.

The tight coupling of performance level with prefrontal
cortex functioning is consistent with a large body of research
examining performance in a diverse set of processes such as
response selection, language comprehension, and memory
(MacDonald et al., 2000; Kerns et al., 2004, Cohen et al., 1994).
Prefrontal cortex is thought to guide goal-directed behavior by
biasing or modulating the pattern of activity in more posterior
motor, sensory, semantic, and attentional regions (Miller and
Cohen, 1991). Applied to mathematical performance, we
propose that the prefrontal cortex guides the retrieval of task-
relevant information for solving the equation. For example, the
prefrontal cortex would direct whether the result of 5+2 or 5 ⁎2
should be retrieved depending on the context of the equation.
When theprefrontal cortex fails to guide retrieval appropriately,
our results demonstrate that errors occur.

Interestingly, another site in the prefrontal cortex was
associated with successful performance. Similar to our pre-
specified region of interest in the inferior frontal gyrus, a more
superior and posterior site in the middle frontal gyrus
displayed greater activity for correct than error trials and
tended to be more active for better problem-solvers. Note,
however, that for both these sites, individual accuracy scores
and neural activity were associated only in the large-number
condition. Although, these prefrontal regions may show some
specificity in terms of responding to numerical magnitude,
these data reflect the critical link between prefrontal cortex
functioning and successful problem-solving.

One might predict that successful performance would also
rely on visuospatial abilities, however, parietal cortex activity
was not related to accuracy. This region seemed to basically
reflect time on task — showing greater activation when errors
weremade and greater activation for large equations. However,
this greater activationoccurred late in theprocessing. Therewas
no relationship between activity in the early scans and either
accuracy or size. Early on, it seems the parietal cortex is equally
involved in the analysis of all problems and continues this
involvement into later scans until the problem is solved. This
results in greater activation for conditionswith longer latencies.

Our results are consistent with a previous study of error
detection inmathematical processing. Using a verification task,
Menon et al. (2002) reported effects of accuracy in the prefrontal
cortex whereas parietal regions were not affected by the
accuracy of the equation. Instead, parietal cortex was modu-
lated by the number of operands in the equation, consistent
with our previous work reporting that activity in this region is
affected by the number ofmathematical steps that are required
to solve the equation. Taken together, these resultswould imply
that students may be better served practicing equations with
varying levels of retrieval demands rather than working with
large quantities per se in order to master algebra.

While suggestive of potential strategies for educating adult
algebra students, it is unclear whether a different pattern
would be observed for adolescents. Adults may be better at
representing large quantities because of their greater experi-
ence in non-algebraic tasks such as balancing a checkbook. In
contrast, adolescents' imaginal abilities may not be fully
developed and, if so, an association between accuracy and
activity in the parietal cortex could be observed. This would be
an important question to answer in future investigations.

While we have previously found our pre-specified region in
the parietal cortex to be important in representing transforma-
tions of the problem state, this region showed little evidence of
representing numerical magnitude. Previous studies (Stanescu-
Cosson et al., 2000; Piazza et al., 2004) have shown that larger
numbers engage the parietal cortex to a greater degree than
smaller numbers, however, the region showing this effect lies in
the intraparietal sulcus. In contrast, our prespecified region of
interest is located in a more ventral site in the precuneus
(BrodmannArea7)more thanacentimeter away fromtheregion
of the intraparietal sulcus showing number size effects. This
result suggests that the visuospatial representations needed to
track changes in the state of the equation are separate from a
representation of number magnitude. There are a number of
potential differences between the imaginal requirements of the
two processes. For example, transformations of the problem
state require that representations be frequently updated while
magnitude is an unchanging characteristic of a number. In
addition, number size may induce a mental representation of a
number line while equation transformations may not rely on
representations that are characterized by distance. Adjudicating
between these hypotheses is beyond the scope of this paper, but
our results do suggest that there are separate systems for the
mental representations of magnitude and problem state.

Surprisingly, given its importance in studies of cognitive
control, the anterior cingulate showed neither accuracy nor
number size effects. However, the region was active in the
problem-solving stage when no overt response was given as
well as being active while participants were entering their
response. The anterior cingulate was active even in the large
number condition almost 10 s in advance of the first motor
response. Thus, the anterior cingulate was active when there
was no competition between overt responses. This suggests
that this region may be important for goal selection in a
similar way to its hypothesized role in response selection. For
example, it may be important for detecting conflict between
problem-solving strategies or particular operations such as
whether to add or subtract.

The parietal and prefrontal sites we examined have shown
robust activity across several studies indicating their impor-
tance in visuospatial processing and retrieval. The goal of this
study was to assess the contributions of these computations
to performance in mathematical problem-solving. We have
shown that while both modules are important for solving
algebra equations, activity of the prefrontal cortex is more
strongly associated with solving those equations correctly.
4. Experimental procedures

4.1. Subjects

Fifteen subjects (11 females, 4 males) with an average age of
24.6 years participated in this study for monetary compensa-
tion. All participants were right-handed with normal or
corrected-to-normal vision. Participants were pre-screened
in a separate session outside the scanner to ensure that they
made an adequate number of errors (25%–75%). Out of all the
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participants who were pre-screened, 32% had an error rate
that fell within our range.

4.2. Stimuli

Participants had to solve two-step algebra equations that
required either multiplication or division in one step and
addition or subtraction in the other step (e.g., 14+(7 ⁎x)=35). A
list of 214 equations was created where the parentheses
enclosed either the first two numbers or the last two numbers
on the left side of the equation in equal proportions. The
number to solve for could be either in the first position (25%),
second position (50%), or third position (25%). The positions of
the parentheses and the “x” were manipulated in order to
prevent learning over the course of the experiment thereby
ensuring enough trials to be able to examine errors.

In addition to accuracy, the neural substrates of number
size were also of interest. In the small-number condition, the
operands on the left side of the equation were all one digit
numbers (e.g., (x+4) ⁎5=30) or required well-learned know-
ledge of the multiplication table (e.g., 1×1 to 12×12). The large
number condition containedat least one two-digit number and
more advanced multiplication/division (e.g., 19+(13 ⁎x)=71).

4.3. Procedure

A trial began with an alerting stimulus (i.e., !) for 1 s followed
by an equation which stayed on the screen until the
Fig. 8 – Pre-specified regions of interest in the anterior cingulate
previous work (Anderson, 2005).
participant indicated they knew the answer or 39 s had
elapsed. When participants felt that they had solved the
equation, they pressed a key under the thumb of their right
hand which then brought up a “counter”, set at 00, that was
displayed in the center of the screen. Participants pressed a
key under their index finger to increment the tens column and
their middle finger to increment the ones column. Both the
tens and ones column could be set back to 0 by the participant
if they made an input error. Once they had entered their
answer, they pressed a key under their thumb to indicate they
were done. A fixation stimulus was then presented for the
amount of time needed to ensure a trial duration of 44 s.

Participants completed 6–9 blocks of 12 trials each and
equations were chosen at random from the stimulus list.
Behavioral data were acquired using the E-prime software
package interfaced with a response box and a color LCD
projector.

4.4. fMRI acquisition

Data were acquired on a 3.0 T Siemens Trio magnetic
resonance imaging scanner located in the UC Davis Imaging
Research Center. We used an echo planar imaging protocol to
acquire 36, 3.4mmaxial slices every 2 s (TE 25ms, 90° flip angle,
22 cm FOV, 3.4375 mm×3.4375 mm resolution). T2-weighted
in-plane scanswere acquired in each scanning session aswell,
using the same slice thickness as the functional scans butwith
an inplane resolution of .859 mm×.859 mm.
, left motor, prefrontal, and parietal cortex based on our
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Motion correction was undertaken using an automated
image recognition (AIR) program which implements two
iterations of a six-parameter, rigid body realignment, to co-
register each image with the first functional image acquired in
a session. Data from participants moving more than an
average of 3 mm in any direction or rotating their heads
more than 2° across the session were excluded from the
experiment. Images were spatially smoothed with an 8 mm
FWHMGaussian filter and an additive baseline correction was
applied to each voxel-wise time course independently. Inten-
sities in each voxel were detrended with a simple linear
regression to remove intensity changes due to scanner drift.
Structural and functional images for each participant were
cross-registered to the MNI common reference brain and the
Talairach atlas system using AFNI.

4.5. fMRI data analysis

Statistical analyses were implemented using the NIS software
suite developed by the University of Pittsburgh and Princeton
University (http://kraepelin.wpic.pitt.edu/nis). We excluded
trials where participants did not respond or were not finished
incrementing the response counter. An average of 19% of the
trials had to be discarded due to null or incomplete responses
(range: 5%–34%). In the large-number condition, participants
had an average of 18 correct responses (range 6–32) and 14
erroneous responses (range 6–28) which was sufficient for
event-related fMRI analyses. Participants made an average of
31 (range 18–45) correct responses in the small-number
condition, however, they committed very few errors (average
of 10; range 3–30). Despite the low error rate in the small-
number condition, we did assess interaction effects of number
size by accuracy so that we could report the complete data set;
however, interaction effects must be interpreted with some
caution. Note that our effects of interest mostly lay in main
effects of accuracy and number size.

Mean intensities of each voxel in each condition were
averaged across participants. To assess the activity of neural
regions associated with component process of the ACT-R
model, we examined activity in regions centered on the peak
coordinates reported in our previous studies (Fig. 8). Note that
these regions of interest were all in the left hemisphere as we
have found that mathematical problem-solving displays a
preference for engaging this hemisphere (Anderson, 2005). A
left prefrontal region was centered at x=−40, y=21, z=21
(all coordinates refer to Talairach space) and activity was
averaged over all voxels within this block (16×16×10 mm) in
each condition. Identically-sized regions of interest were used
to assess parietal cortex (−23, −64, 34), anterior cingulate (−5,
10, 38), and left motor cortex (27, −25, 47) activity. Given our
focus on a small number of pre-specified regions of interest, a
threshold of pb .05 uncorrected was used.

A voxel-wise analysis was also performed to assess
whether regions of interest outside our prespecified areas
displayedaccuracy or number size effects in the interval before
a response was generated. Separate 4 (time points 0–10)×2
(Correct/Incorrect or Small/Large) ANOVASwere performed on
the signal intensity in each voxel using subject as a random
factor. Using Monte-Carlo sampling (AfniAlphaSim) to test for
the incidence of false positives,we implemented a threshold of
at least pb .001 and a cluster size of 27 voxels to ensure that our
rate of family-wise error was less than .05.
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