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In two experiments, we studied how people’s strategy choices
emerge through an initial and then a more considered evaluation
of available strategies. The experiments employed a computer-
based paradigm where participants solved multiplication problems
using mental and calculator solutions. In addition to recording
responses and solution times, we gathered data on mouse cursor
movements. Participants’ motor behavior was revealing; although
people rapidly initiated movement to the calculator box or the
answer input box, they frequently changed their minds and went
to the other box. Movement initiation direction depended on prob-
lem difficulty and calculator responsiveness. Ultimate strategy
selection also depended on these factors, but was further influ-
enced by movement initiation direction. We conclude that strategy
selection is iterative, as revealed by these differences between
early cursor movement and eventual strategy implementation.
After rapidly initiating movement favoring one strategy, people
carefully evaluate the applicability of that strategy in the current
context.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The question of how people select among problem solving strategies is central to psychological re-
search. Although this question has received substantial attention, researchers have primarily studied
situations in which strategies are selected by a single irrevocable action. In many situations, however,
the physical act of executing one strategy provides an opportunity to consider the wisdom of that
choice. While searching for a calculator, one can instead decide to compute the tip mentally; while
commuting along a congested roadway, one can consider the speed of alternate routes; while compos-
ing a spiny response to an email, one can reflect on whether it is prudent to respond at all. Might the
c. All rights reserved.
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need to second-guess oneself, and the second-guess itself, be adaptive? In this paper, we explore this
question by considering subtleties of the mouse-based movements that people make while selecting
and implementing strategies at a computer interface. We will show that as people implement a strat-
egy, they continue to consider whether that strategy is truly preferable. We will show that both the
rapid initial selection and the further consideration of a solution method are sensitive to the relative
utility of available strategies.

Many formal models of human problem solving posit the existence of a strategy selection phase
(Lovett & Anderson, 1996; Lovett & Schunn, 1999; Payne, Bettman, & Johnson, 1988; Payne, Johnson,
Bettman, & Coupey, 1990; Schunn, Reder, Nhouyvanisvong, Richards, & Stroffolino, 1997; Siegler &
Shipley, 1995). Upon reaching an impasse, the problem solver evaluates the applicability of each avail-
able strategy to the current problem. This evaluation is informed by history of strategy use; what has
worked in the past is likely to work again (Lovett & Anderson, 1996; Lovett & Schunn, 1999; Siegler &
Shipley, 1995). Based on the current context and past experiences, the solver attempts to identify the
strategy that minimizes solution time and effort while maximizing accuracy. Such evaluations do not
require conscious awareness (Cary & Reder, 2002). Following selection, a single strategy is executed
and its outcome is integrated into the problem solver’s history.

Selections are generally sound. People adaptively apply strategies in a variety of tasks to improve
performance. For example, while using mental arithmetic, people retrieve answers to problems that
are easy and familiar while they compute answers to problems that are difficult and unfamiliar (Reder
& Ritter, 1992). Similarly, when quizzed after reading a story, people shift from using retrieval to using
inferences as the elapsed time since reading increases (Reder,1987, 1988). People display adaptivity in
many other domains including numerical estimation, currency conversion, reading, and noun pair
learning (Aaronson & Ferres, 1986; Lemaire, Arnaud, & Lecacheur, 2004; Lemaire & Lecacheur,
2001; Touron & Hertzog, 2004). In each instance, selected strategies facilitate performance by increas-
ing efficiency and accuracy.

In the preceding cases, solutions are reached via mental strategies. The case we consider involves
selection between a mental strategy and a technologically facilitated strategy. Technologically facili-
tated strategies are more likely to incur perceptual-motor costs while mental strategies primarily tax
memory. People seem to be sensitive to each of these demands. Evidence supporting this point comes
from work by Gray and Fu (2004). In their experiments, participants programmed a virtual VCR at a
computer interface. To program the VCR, participants first needed to retrieve trial-relevant data from
an occluded or unoccluded window. Gray and Fu found that when the data window was occluded, par-
ticipants accessed it less frequently and committed more items to memory per access. In contrast,
when the window was unoccluded, participants accessed it more frequently and encoded fewer items
per access. Such behavior is consistent with the emerging view of a distributed cognitive representa-
tional system (Clarke & Chalmers, 1998; Hutchins, 1995; Kirsh & Maglio, 1994; Zhang & Norman,
1994). People seem to be tuned to the costs and benefits of epistemic actions, actions intended to aug-
ment cognitive processes. For instance, in the video game Tetris, experts rotate shape ‘‘zoids” manu-
ally rather than mentally to discover where the zoid best fits (Kirsh & Maglio, 1994). The explanation
given for this finding was that manual rotation was faster than mental rotation, allowing players
greater opportunity to identify the ideal zoid placement. As this example illustrates, when the benefits
outweigh the costs, people use epistemic actions to manage information in the environment rather
than in the mind.

Further examples come from studies of problem solving at computer interfaces. When interface
controls are costly to manipulate or when system response time is slow, people plan extended move-
ment sequences before acting (Gray, Sims, Fu, & Schoelles, 2006; O’Hara and Payne, 1998; Svendsen,
1991). Conversely, when an interface is responsive and easy to operate, people act more and plan less.
Presumably, these different behaviors reflect an adaptive approach to problem solving (Anderson,
1991; Simon, 1978); when the cost of generating further partial plans exceeds the cost of acting, action
ensues. As such, people adopt more cognitively demanding strategies when the cost of acting is high.

While these studies confirm that people alter their behaviors based on characteristics of available
technology, they do not fully address whether strategy selection at the interface is adaptive. To sup-
port such a claim, one could show that people perform as well or better when they are allowed to se-
lect between a mental and a technological strategy vs. when they are required to use the mental or the



418 M.M. Walsh, J.R. Anderson / Cognitive Psychology 58 (2009) 416–440
technological strategy. Our studies differ from existing work in that we use the choice/no-choice
method (Siegler & Lemaire, 1997). Using this method, we can make these very comparisons.

In addition to testing determinants of strategy selection, we sought to explore the process by which
the performer selects and implements a strategy. Researchers interested in strategy choice frequently
rely on performance outcomes such as the distribution of strategy use, error rates, and solution times
(Lovett & Anderson, 1996; Reder, 1987; Reder & Ritter, 1992; Siegler & Shipley, 1995). Although these
measures are informative, they force us to infer the underlying process based solely on its final out-
comes. More recently, researchers have analyzed eye movements accompanying strategy selection
in complex addition (Green, Lemaire, & Dufau, 2007). While patterns of steady fixation provide valu-
able clues, the time required to plan and execute saccades limits the number of fixations occurring in
short-duration tasks (Matin, Shao, & Boff, 1993).

As such, in addition to recording responses and solution times, we gathered a more dynamic source
of data; mouse cursor position. Because motion is modified online (Goodale, Pélisson, & Prablanc,
1986), cursor movement offers sensitive information about the processes accompanying selection
and execution. The practice of inferring internal processes from overt motor behavior is not new. This
technique has been applied to topics ranging from spoken-language processing (Spivey, Grosjean, &
Knoblich, 2005) to algebraic representation (Alibali, Bassok, Solomon, Syc, & Goldin-Meadow, 1999).
These applications have demonstrated the value of monitoring motor behaviors and confirmed that
guided limb movements, much like saccades, provide veridical measures of attention and intention.
Currently, we attempted to gain a deeper understanding of strategy use by studying the mouse cursor
trajectories that accompany strategy selection and execution.

1.1. Overview of the present experiments

While humans are often characterized as apt strategists, certain questions remain minimally
understood. First, do people accurately evaluate the relative utility of technological and mental strat-
egies and do they select accordingly? Second, how do people interleave action with the selection of a
strategy?

To address these questions, we devised a task in which participants rapidly solved multiplication
problems presented at a computer. Participants solved problems mentally or with the use of a calcu-
lator built into the interface. Calculator responsiveness varied so that solutions were presented imme-
diately in one condition and following a delay in the other condition. Problems of varying difficulty
(according to problem types NN � 10, N � NN, and NN � NN) were presented during both conditions.
Pay was granted for correct responses and decreased as time passed.

We used the choice/no-choice method in our experiments (Siegler & Lemaire, 1997). During choice
trials, participants were allowed to use mental or calculator solutions. During no-choice trials, partic-
ipants were told which strategy to use. Because performance during no-choice trials is not biased by
strategy selections, performance estimates derived from no-choice trials can be used to assess the
adaptivity of selections during choice trials (Siegler & Lemaire, 1997).

If people try to maximize the payoff function defined by solution time and accuracy, calculator
responsiveness and problem difficulty should influence strategy selection. Because mental solutions
for N � NN (e.g. 7 � 16) problems are moderately slow (Siegler & Lemaire, 1997), selections on these
problems should be particularly sensitive to calculator delay – participants should show greater reli-
ance on mental strategies in the delay condition. In addition, solution times and error rates should in-
crease as participants use mental solutions on a harder superset of problems in the delay condition.
Conversely, calculator usage should be rare on NN � 10 (e.g. 17 � 10) problems and frequent on
NN � NN (e.g. 17 � 13) problems because mental solutions are especially accurate and quick for
NN � 10 problems, while they are inaccurate and slow for NN � NN problems (Siegler & Lemaire,
1997). Lastly, if participants selectively apply mental solutions to the most suitable problems, mental
solution times and error rates should be lower during choice than during no-choice trials. In sum,
adaptive selection depends on at least three factors: problem difficulty, technological responsiveness,
and sensitivity to personal ability.

We were also interested in participants’ immediate behavior following problem presentation.
Immediate behavior can be considered in light of two additional questions. Both questions relate to
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early cursor motion, beginning at movement onset and commencing with a mouse click in the calcu-
lator box or in the answer box.

1.1.1. Does strategy selection precede execution?
Strategy selection takes time. Even when pressed to decide as quickly as possible, people take

about 700 ms to select a mental multiplication strategy and to indicate their selection by striking a
key (Reder & Ritter, 1992). While no such estimates exist for our task, the duration of such a relatively
slow decision process presumably exceeds the time required to initiate a guided limb movement,
which occurs rapidly (Rosenbaum, 1980). As such, participants could conceivably initiate motion be-
fore selecting a final strategy.

1.1.2. If execution precedes selection are initial actions ignorant or informed?
Early cursor movements need not predict ultimate strategy use. Participants might initially move

towards a neutral point that allows equally rapid access to both the calculator and the answer box.
After starting towards this point, participants would select a strategy and smoothly converge to the
associated box. Alternatively, participants could always initiate movement corresponding to the fa-
vored strategy. They would frequently complete these movements, but they would sometimes revise
the motion and converge to the opposite box.

2. Experiment 1

2.1. Methods

2.1.1. Participants
Twenty-one Carnegie Mellon students participated on a paid volunteer basis (13 males and 8 fe-

males, ages ranging from 18 to 35 with a mean age of 24 years). All participants were blind to the
study’s aim and hypotheses.

2.1.2. Stimuli
Stimuli included 112 multiplication problems of three structural types (NN � 10, N � NN, &

NN � NN). Because we expected the largest effect of calculator delay on problems of intermediate dif-
ficulty, we included 56 N � NN problems, 28 NN � 10 problems, and 28 NN � NN problems. The
Appendix contains the complete problem set.

Problem order was randomized during two calculator conditions (0 and 4 second delay), resulting
in 224 experimental trials. Multiplicand order was randomized during the first condition and each
problem’s commutative pair was presented during the second condition. Eleven participants com-
pleted the delay condition first and ten completed the no delay condition first.

Choice/no-choice trials were intermixed. During each calculator condition, 14 problems of each
type were assigned to no-choice trials. Half required mental solutions and half required calculator
solutions. Thus, within each calculator condition, 21 problems required mental solutions, 21 problems
required calculator solutions, and 70 problems allowed choice.1 Each participant received a randomly
selected set of choice/no-choice problems.

2.1.3. Procedure
Each block began with 10 unique practice problems. These problems allowed participants to adjust

to the interface and to gauge calculator responsiveness, a necessary precondition to accurately eval-
uating its utility.

Throughout the experiment, participants interacted with a MATLAB graphical user interface (GUI)
centered on a 17’ Dell Ultrasharp monitor. To initiate each trial, participants used the computer mouse
1 Because we were mainly interested in behavior during choice trials, we included more choice than no-choice trials. The
number of no-choice trials was selected to provide a sufficient number of observations to estimate the utility of each strategy for
each problem type.
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to click the button labeled Next that was centered on the screen. After clicking Next, participants saw a
prompt that specified the upcoming trial. The prompt read ‘‘Mental”, ‘‘Calculator”, or ‘‘Choice” and was
aligned above the Next button. If the prompt read ‘‘Mental” or ‘‘Calculator”, the participant was re-
quired to use that strategy. If the prompt read ‘‘Choice”, the participant could use either. When par-
ticipants clicked Next a second time, the prompt disappeared and the problem appeared.

The calculator and answer box were vertically aligned, with the calculator box above and to the left
of the Next button (Fig. 1). The calculator and answer box had identical dimensions and were equidis-
tant from the Next button. Problems were presented in 20 point, Times New Roman font and were
aligned above the answer box with a standard times symbol to the left.

To use the calculator, participants moved the computer mouse to and clicked in the calculator box,
typed the multiplicands separated by the multiplication symbol ‘‘*”, and hit enter. The product then
appeared in the calculator box. During the delay condition, a dotted line appeared in the calculator
box while the product was computed. Participants then clicked the answer box, input the solution,
and pressed enter. To solve a problem mentally, participants simply input their response in the answer
box and pressed enter. The interface automatically deleted entries that violated the trial condition,
forcing participants to adhere to prompts. Participants were instructed to use their right hand while
moving the mouse and using the number pad.

After responding, participants saw whether they were correct and if so, how much they earned for
the problem. This feedback was horizontally centered above the Next button. Cumulative earnings
were displayed on the bottom right corner of the screen.

Pay was determined according to the equation
2 Bec
using. D
the nea
:5þ :5� cos
p� Dtime

14

� �
where Dtime corresponded to the elapsed time since problem presentation. As solution time ap-
proached 0 or 14 s, pay approached 100% or 0%. Responses after 14 s received 0% pay. Maximum
pay for each problem was 10 cents.2

2.2. Results

We will first describe participants’ selections and performance, and then report findings related to
mouse cursor movements.

2.2.1. Selections and performance
As shown in Fig. 2 (top panel), participants used mental solutions less frequently as problem diffi-

culty increased, F(2,40) = 157.15, p < .0001, and more frequently when the calculator was delayed
F(1,20) = 32.89, p < .0001. The interaction between problem difficulty and calculator condition was
also significant, F(2,40) = 19.99, p < .0001. As expected, the difference between the delay and no delay
condition was greatest for the intermediate N � NN problems, t(20) = 5.41, p < .0001.

Fig. 2 also shows the effects of problem type and calculator condition on solution times during
choice and no-choice trials (bottom panels). Some participants failed to contribute to all cells during
choice trials. The means and standard errors displayed pertain to all participants who contributed to
that cell. We evaluated mental solution times during choice trials for the 20 participants who contrib-
uted fully to a 2 (problem type: NN � 10, N � NN) � 2 (calculator condition) layout, and then for the
subset of 9 participants who contributed fully to a 3 (problem type: NN � 10, N � NN, NN � NN) � 2
(calculator condition) layout.

The first ANOVA revealed significant effects of problem type, F(1,19) = 119.25, p < .0001, and calcu-
lator condition, F(1,19) = 5.86, p = .026, as well as a significant interaction, F(1,19) = 9.17, p = .007.
Mental solutions on N � NN problems were slower when the calculator was delayed, t(19) = 2.82,
p = .011, presumably because participants decided to solve more difficult problems mentally during
ause of the low sinusoidal frequency, the payoff function behaves similarly to a linear function, which we also considered
uring piloting work however, the adopted function generated a greater range of payoffs by allowing participants to earn

r maximum amount on some problems.



Fig. 1. Experimental interface. The calculator box is in the upper left, the answer box is in the bottom left, and the start box is in
the middle. To use the calculator, participants clicked in the rectangular region at the top of the calculator box. To enter a
solution, participants clicked in the rectangular region at the bottom of the answer box.
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that condition. The second ANOVA confirmed effects of problem type, F(2,16) = 80.47, p < .0001, and
calculator condition, F(1,8) = 8.12, p = .022, as well as a significant interaction, F(2,16) = 5.85,
p = .012. Mental solutions on NN � NN problems were slower when the calculator was delayed,
t(8) = 2.95, p = .018. Corresponding error rates in each group depended on problem type
(F(1,19) = 78.24, p < .0001; F(2,16) = 12.06, p = .0006), increasing with problem difficulty
(NN � 10 = .004 0.002; N � NN = .155 .015; NN � NN = .273 .072). Calculator error rates, in turn, were
consistently low (aggregated error rate = .02 .007). Neither the effect of calculator condition nor the
interaction between calculator condition and problem type affected error rates.3

Mental solution times appeared to be faster during choice than during no-choice trials for N� NN and
NN� NN problems, presumably because participants opted to solve easier problems mentally during
choice trials. We confirmed this with additional 2 (calculator condition) � 2 (choice/no-choice) ANOVAs
for N� NN and NN� NN problems. Both showed a significant effect of choice on solution time
(F(1,19) = 29.27, p < .0001; F(1,8) = 6.84, p = .031). Error rates were not affected by the choice status of
trials.

One additional point warrants explanation. When forced to use the delayed calculator, participants’
solution times were especially quick on NN � 10 problems. Astute participants realized that they
could solve NN � 10 problems mentally, move to the answer box, and type the solution while waiting
for the delay to end. When the calculator responded, they could quickly strike enter thereby reducing
solution times.

2.2.2. Movements
Mouse cursor position was sampled at �90 Hz yielding an average of 66 points between movement

onset (defined by the earliest cursor motion following problem presentation) and operator selection
3 Trials with errors were included in all analyses based on the fact that the distributions of solution times were statistically
indistinguishable between error trials and error-free trials. Inclusion of these trials ensured an adequate number of observations
for comparisons. No trimming of solution times was used.



Fig. 2. The top panel shows the proportion of choice trial problems solved mentally (±1 SE), and the bottom panels show mean
participant solution times (±1 SE) during choice trials (left) and no-choice trials (right).
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(defined by the first mouse click in the calculator or answer box). We used a shape preserving cubic
spline interpolation to calculate x and y cursor coordinates at 100 time-normalized points between
movement onset and operator selection for each trial.

Participants’ motor behavior was revealing. On average, participants initiated motion within
220 ms. Following movement initiation, participants frequently redirected motions mid-execution.
Fig. 3 shows two representative trajectories as they approach the calculator box. One trajectory clearly
begins towards the answer box while the other approaches the calculator directly. This distinction be-
tween direct and indirect motions is also apparent when we consider trajectories collectively. Fig. 4
displays how frequently participants’ mouse trajectories passed through different regions of the
screen. The region of raised relief connecting the calculator and answer box results from movements
initiated towards the answer box but redirected to the calculator, and from movements initiated to-
wards the calculator but redirected to the answer box.



Fig. 4. Contour map set on a grid that divides the screen into .53 � .53 cm cells. Contours show the proportion of trajectories
that intercepted each cell before a click occurred in the calculator or answer box.

Fig. 3. Representative examples of direct (solid line) and indirect (dotted line) movement trajectories to the calculator box.
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To quantify the difference between direct and indirect motions, we calculated an index of curvature
for the portion of movement preceding operator selection. The index was defined as the maximum
deviation from the straight line connecting the movement start point and the movement end point



Fig. 5. Distributions of movement curvature observed for calculator solutions (left) and mental solutions (right). Superimposed
histograms represent curvature during the delay (gray) and the no delay (white) calculator conditions. Bin widths equal .1 with
bins evenly spaced between �1.25 and 1.25.
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divided by the length of that line (with positive values assigned to portions of curvature towards the
non-selected box and negative values assigned to portions away from the non-selected box).4 Fig. 5
shows the frequencies of resulting curvature values for calculator solutions (left panel) and mental
solutions (right panel). The distributions in both panels are bi-peaked, with values near zero reflecting
direct movements and values near one reflecting indirect movements curved towards the non-se-
lected box. These histograms show that participants frequently began towards the answer box before
using calculator solutions, while they rarely began towards the calculator box before using mental
solutions. This is especially apparent in the delayed calculator condition.

Another way to understand these data is to distinguish between the initial movement and the
strategy ultimately selected. Using a K-means cluster analysis (Seber, 1984), we partitioned the aggre-
gated values of movement curvature into two groups. Observations in the cluster with smaller curva-
ture, centered at .045, were considered direct movements. Observations in the cluster with larger
curvature, centered at .801, were considered indirect, late aborts. To ensure that the assumption of
bimodality was valid, we compared how well a unimodal normal distribution could fit the curvature
distribution to how well a bimodal distribution formed by a pair of overlapping normal distributions
could fit the curvature distribution. The ratio of the Bayesian Information Criterion (BIC) for the uni-
modal solution to the BIC of the bimodal solution (4.2) was substantially greater than 1, indicating that
the bimodal solution was preferable despite its added complexity. Additionally, the BIC ratio for every
participant substantially exceeded 1, confirming that all participants exhibited a blend of direct
movements and indirect late aborts.
4 We replicated all results using an alternate measure of movement curvature, area between the movement trajectory and the
straight line connecting the movement start point and end point. Both methods are common in studies of human motor control
(Jax & Rosenbaum, 2007; Spivey et al., 2005).



M.M. Walsh, J.R. Anderson / Cognitive Psychology 58 (2009) 416–440 425
The initial movement direction and the ultimate selection coincide for direct movements but differ
for late aborts. Fig. 6A shows the direction of the initial movements, independent of eventual solution
method. As seen, participants initiated fewer movements towards the answer box on harder problems,
F(2,40) = 14.18, p < .0001, and they initiated more movements towards the answer box when the cal-
culator was delayed, F(1,20) = 27.40, p < .0001. The interaction between problem difficulty and calcu-
lator condition was not significant (p > .5). It is noteworthy that participants were able to consider
these factors in the first 220 ms before movement initiation on at least some trials.

This rapid initial action affected eventual strategy selection (Fig. 6B). On NN � 10 problems, there
were no effects of delay or initial decision – participants almost always used mental solutions. How-
ever, there was a substantial interaction between the other two problem types (N � NN and NN � NN)
and the type of movement initiated, as confirmed by analysis of the 20 participants who contributed
to all cells, F(1,19) = 21.18, p = .0002. Participants tended to use mental solutions after starting
Fig. 6. (A) The percent of movements initiated towards the answer box during choice trials (±1 SE). (B) The probability of using
a mental solution (±1 SE) with bars ordered by problem type, calculator condition, and direction of initial movement.
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towards the answer box for N � NN problems, t(19) = 4.88, p = .0001, while they showed a non-signif-
icant effect in the opposite direction for NN � NN problems, t(19) = �.39, p > .7.

There were costs associated with revising selections mid-execution. These costs are clear at the le-
vel of operator selection times. Sensibly, participants took longer to click in the calculator or answer
box if they had begun in the opposite direction (Table 1). The resulting difference in the time to com-
mit to a strategy averaged approximately a second.

Finally, behavior in the previous trial strongly influenced behavior in the current trial. Table 2
shows current state probabilities (columns) conditioned on prior state (rows). The first letter in each
classification describes the direction of movement initiation (movement to answer box denoted by M;
movement to calculator denoted by C), and the second letter describes the solution used (mental solu-
tions denoted by M, calculator solutions denoted by C). Both aspects of prior behavior affected current
behavior. An ANOVA on the percent of current movements initiated to the answer box revealed large
effects of prior initial direction (77% for mental vs. 58% for calculator, F(1,16) = 20.18, p = .0004) and
prior solution (80% for mental vs. 54% for calculator, F(1,16) = 56.59, p < .0001). Similarly, an ANOVA
on the percent of current problems solved mentally revealed large effects of prior initial direction (63%
for mental vs. 48% for calculator, F(1,16) = 10.16, p = .006) and prior solution (63% for mental vs. 48%
for calculator, F(1,16) = 17.11, p = .0008).

Prior behaviors seemed to indirectly influence current solutions through their effect on current ini-
tial movements. The percent of current problems solved mentally, conditioned on initiating the cur-
rent movement towards the answer box, depended minimally on prior initial direction (74% for
mental vs. 65% for calculator, t(19) = 1.49, p = .15) and prior solution (76% for mental vs. 72% for cal-
culator, t(20) = 1.43, p = .17). Similarly, the percent of current problems solved mentally, conditioned
on initiating the current movement towards the calculator box, depended minimally on prior initial
Table 1
Operator selection times for late aborts and direct movements.

Problem type No delay Delay

Mental Calc Mental Calc

Abort

NN � 10 1.21 — 1.45 —
N � NN 2.49 1.47 2.55 2.03
NN � NN 2.82 1.16 3.31 1.45

Direct

NN � 10 0.85*** — 0.79** —
N � NN 1.51** 0.86*** 1.17** 0.92***

NN � NN 1.03* 0.85*** 1.72* 0.96***

Note: The top group of cells shows operator selection times following aborts and the bottom group shows selection times
following direct movements. The p-values in the direct group refer to the difference between that cell and its corresponding cell
in the abort group.

* p < .05.
** p < .01.

*** p < .001.

Table 2
Transition probabilities for choice trials.

Prior trial Current trial

MM MC CM CC

MM .695 .207 .046 .052
CM .539 .226 .048 .187
MC .529 .181 .098 .192
CC .273 .156 .146 .425
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direction (40% for mental vs. 27% for calculator, t(15) = 2.08, p = .055) and prior solution (43% for men-
tal vs. 36% for calculator, t(18) = 1.64, p = .12).

In contrast, much larger effects remained for the inverse conditional probabilities – probability of a
current initial direction conditioned on the current solution. The percent of movements initiated to
the answer box, conditioned on solving the current problem mentally, depended on prior initial direc-
tion (90% for mental vs. 73% for calculator, t(19) = 2.95, p = .008) and prior solution (93% for mental vs.
77% for calculator, t(20) = 5.09, p < .0001). Similarly, the percent of current movements initiated to the
answer box, conditioned on solving the current problem with the calculator, depended on prior initial
direction (70% for mental vs. 44% for calculator, t(18) = 4.77, p = .0001) and prior solution (73% for
mental vs. 42% for calculator, t(17) = 7.15, p < .0001). Thus, behavior during the previous trial primarily
affected the direction of movement initiation during the current trial, which in turn influenced the
solution applied.

To confirm that these contingencies were not driven by the behavior of individual participants (e.g.
participants who frequently used calculator solutions also frequently initiated movement to the cal-
culator) we replicated the prior set of analyses using non-parametric binomial tests. The motivation
behind these analyses was to determine whether the directions of contingencies were consistent
across participants. In all but one case, the resulting p-values were less than .02, indicating that con-
tingency effects were consistent across participants. In the one discrepant case, the effect of prior ini-
tial direction on the percent of movements initiated to the answer box, conditioned on solving the
current problem mentally, was marginally significant (p = .11).

2.2.3. Summary
Strategy selections depended on the interaction between problem difficulty and calculator respon-

siveness. Mental solutions were generally superior for NN � 10 problems and calculator solutions
were generally superior for NN � NN problems, but the optimal strategy for N � NN problems de-
pended on calculator responsiveness. Accordingly, participants predominantly used mental solutions
on NN � 10 problems, they rarely used mental solutions on NN � NN problems, and they used far more
mental solutions on N � NN problems when the calculator was delayed.

The pattern of solution times further suggests that participants adaptively selected between strat-
egies. Mental solutions during choice trials tended to be faster than mental solutions during no-choice
trials, as would be expected if participants only attempted mental solutions on the most suitable prob-
lems. Mental solution times also increased when the calculator was delayed, indicating that people
applied mental solutions to a more difficult superset of problems during that condition.

Results from Experiment 1 support an iterative decision process. Participants quickly adopted an ini-
tial direction based on problem characteristics, calculator responsiveness, and behavior during the pre-
vious trial. They continued to consider the choice before ultimately committing to a strategy on the basis
of problem characteristics, calculator responsiveness, and the direction of movement initiation.

3. Experiment 2

Although the results of Experiment 1 seem clear, we have two concerns. First, participants began
towards the answer box on the majority of trials (74%). We suspect that this occurred because mental
solutions were ultimately chosen for the majority of problems (64%). As such, participants initiated
the movement that was most likely to correspond with the strategy ultimately used. However, aspects
of the interface design or task format may have primarily motivated participants’ initial motions.
Problems always appeared above the answer box and every trial ended with the submission of a re-
sponse in the answer box. Participants may have initiated a disproportionate number of movements
towards the answer box for either of these reasons.

To test these accounts, we altered the distribution of problem difficulty by removing NN � 10 prob-
lems and doubling the number of NN � NN problems. This manipulation was intended to cause par-
ticipants to predominantly use the calculator during Experiment 2. If movement initiation depends
on a rapid problem judgment, participants will now initiate more movements towards the calculator,
which is the favored strategy. Movements to the calculator will be direct while movements to the
answer box will sometimes be direct but will sometimes begin towards the calculator.
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Our second concern relates to the ambiguity of selections following movement initiation on
NN � NN problems. While calculator responsiveness, problem difficulty, and movement initiation
direction clearly influenced strategy use on N � NN problems, the effect of direction of movement ini-
tiation on NN � NN problems was unclear. Because the prior study included few NN � NN problems,
this likely relates to the small number of observations. By increasing the number of NN � NN problems
in the current study, we expected to attain a definitive result.

3.1. Methods

3.1.1. Participants
Twenty Carnegie Mellon students participated on a paid volunteer basis (9 males and 11 females,

ages ranging from 18 to 27 with a mean age of 23 years). All participants were blind to the study’s aim
and hypotheses, and none had participated in Experiment 1.

3.1.2. Stimuli
We replaced NN � 10 problems with 28 new NN � NN problems (Appendix). During each calculator

condition, 14 problems of each type were randomly assigned to no-choice trials. Half required mental
solutions and half required calculator solutions. Thus, within each calculator condition, 14 problems
required mental solutions, 14 problems required calculator solutions, and 84 problems allowed
choice. Each participant received a randomly selected set of choice/no-choice problems. The procedure
was identical to that used in Experiment 1.

3.2. Results

3.2.1. Selections and performance
As shown in Fig. 7 (top panel), participants used mental solutions less frequently as problem difficulty

increased, F(1,19) = 45.09, p < .0001, and more frequently when the calculator was delayed,
F(1,19) = 65.44, p < .0001. The interaction between problem difficulty and calculator delay was not sig-
nificant (p > .2). In the delay vs. the no delay condition, participants used mental solutions on a higher
proportion of N � NN problems, t(19) = 5.13, p < .0001, and NN � NN problems, t(19) = 2.66, p = .015.

Fig. 7 also shows the effects of problem type and calculator delay on solution times during choice
and no-choice trials (bottom panels). Some participants failed to contribute to all cells during choice
trials. The means and standard errors displayed pertain to participants who contributed to that cell.
On choice trials, participants’ mental solutions were slower when the calculator was delayed, although
this effect was not significant (NN � NN: t(5) = .17, p > .8; N � NN: t(14) = 1.64, p > .1). After aggregat-
ing across calculator conditions, we compared mental solution times during choice and no-choice tri-
als. Mental solutions were faster during choice trials for NN � NN problems, t(14) = 2.54, p = .024, but
not for N � NN problems, t(19) = 1.25, p > .2. Error rates increased with problem difficulty
(N � NN = .166 .031; NN � NN = .381 .095), but did not depend on calculator condition or choice sta-
tus of trials. During choice and no-choice trials, calculator error rates remained uniformly low (aggre-
gated error rate = .021 .005).

3.2.2. Movements
On average, participants initiated motion within 208 ms. As seen in Fig. 8, initial motions were

clearly directed towards the calculator or answer box. Many of these initial motions were then redi-
rected, as revealed by the region of raised relief connecting the calculator and answer box.

Movement curvature was calculated as in Experiment 1. Fig. 9 shows frequencies of movement cur-
vature values for calculator solutions (left panel) and mental solutions (right panel). Participants were
equally likely to start towards the calculator or the answer box before using the delayed calculator.
Conversely, participants were much less likely to start towards the answer box before using the
responsive calculator. In both conditions, participants frequently started towards the calculator before
using mental solutions.

Using a K-means cluster analysis, we partitioned the aggregated values of movement curvature
into two groups. Mean curvature of direct movements was .064, and mean curvature of indirect, late



Fig. 7. The top panel shows the proportion of choice trial problems solved mentally (±1 SE), and the bottom panels show mean
participant solution times (±1 SE) during choice trials (left) and no-choice trials (right).
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aborts was .837. To ensure the validity of the bimodality assumption, we compared the BIC for a single
normal distribution to the BIC for a pair of overlapping normal distributions. The BIC ratio (3.7) was
substantially greater than 1 across participants, and the ratio substantially exceeded 1 for each partic-
ipant, confirming the observation that participants exhibited a blend of direct movements and indirect
late aborts. Based on the results of the K-means analysis, we identified initial movement selections
during each trial (Fig. 10A). As predicted, participants began towards the answer box less frequently
than in Experiment 1. However, as in Experiment 1, participants initiated fewer movements towards
the answer box as problem difficulty increased, F(1,19) = 22.25, p < .0001, and they initiated more
movements towards the answer box when the calculator was delayed, F(1,19) = 34.13, p < .0001.
The interaction between problem difficulty and calculator condition was not significant (p > .6).



Fig. 8. Contour map set on a grid that divides the screen into .53 � .53 cm cells. Contours show the proportion of trajectories
that intercepted each cell before a click occurred in the calculator or answer box.

Fig. 9. Distributions of movement curvature observed for calculator solutions (left) and mental solutions (right). Superimposed
histograms represent curvature during the delay (gray) and the no delay (white) calculator conditions. Bin widths equal .1 with
bins evenly spaced between �1.25 and 1.25.
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These rapid initial actions influenced participants’ eventual selections (Fig. 10B). Participants were
more likely to use a mental solution if they started towards the answer box, both for N � NN problems,
t(19) = 4.23, p = .0004, and for NN � NN problems, t(19) = 2.33, p = .03. A 2 (problem type) � 2 (initial
direction) ANOVA revealed a non-significant interaction (p > .1).



Fig. 10. (A) The percent of movements initiated towards the answer box during choice trials (±1 SE). (B) The probability of using
a mental solution (±1 SE) with bars ordered by problem type, calculator condition, and direction of initial movement.
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Movement redirection came at a cost. This cost is apparent in operator selection times. Within-sub-
ject comparisons confirmed that participants took longer to click in the calculator or answer box if
they had begun in the opposite direction (Table 3). As in Experiment 1, the average cost of a late abort
was approximately a second.

Prior behaviors influenced current behaviors. Table 4 shows current state probabilities (columns)
conditioned on prior state (rows), with states again defined by the direction of movement initiation
and the solution ultimately applied. An ANOVA on the percent of current movements initiated to-
wards the answer box showed large effects of prior initial direction (69% for mental vs. 44% for calcu-
lator, F(1,16) = 56.49, p < .0001) and prior final solution (68% for mental vs. 44% for calculator,
F(1,16) = 24.49, p = .0001). An ANOVA on the percent of current problems solved mentally showed
weaker effects of prior initial direction (49% for mental vs. 39% for calculator, F(1,16) = 3.15, p = .1)
and prior final solution (48% for mental vs. 40% for calculator, F(1,16) = 3.42, p = .08).

We again tested the causal relationship between prior behavior and current solutions. The percent
of current problems solved mentally, conditioned on initiating the current movement towards the an-



Table 3
Operator selection times for late aborts and direct movements.

Problem type No Delay Delay

Mental Calc Mental Calc

Abort

N � NN 1.92 1.68 1.97 2.05
NN � NN 3.29 1.33 2.88 1.31

Direct

N � NN 1.19*** 1.07 1.09* 0.76***

NN � NN 2.00 0.82*** 1.36** 0.95***

Note: The top group of cells shows operator selection times following aborts and the bottom group shows selection times
following direct movements. The p-values in the direct group refer to the difference between that cell and its corresponding cell
in the abort group.

* p < .05.
** p < .01.

*** p < .001.

Table 4
Transition probabilities for choice trials.

Prior trial Current trial

MM MC CM CC

MM .475 .322 .057 .146
CM .345 .202 .100 .353
MC .353 .193 .093 .361
CC .165 .105 .138 .592
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swer box, was independent of prior initial direction (60% for mental vs. 58% for calculator, t < 1) and
prior solution (59% for mental vs. 57% for calculator, t < 1). The percent of current problems solved
mentally, conditioned on initiating the current movement towards the calculator box, was again inde-
pendent of prior initial direction (24% for mental vs. 24% for calculator, t < 1) and prior solution (27%
for mental vs. 24% for calculator, t < 1).

Conversely, large effects remained for the inverse conditional probabilities – probability of a cur-
rent direction conditioned on the current solution. The percent of current movements initiated to
the answer box, conditioned on solving the current problem mentally, depended on prior initial direc-
tion (83% for mental vs. 63% for calculator, t(17) = 4.21, p = .0005) and prior solution (80% for mental
vs. 62% for calculator, t(18) = 4.01, p = .0008). The percent of current movements initiated to the an-
swer box, conditioned on solving the current problem with the calculator, depended on prior initial
direction (49% for mental vs. 21% for calculator, t(18) = 5.71, p < .0001) and prior solution (55% for
mental vs. 26% for calculator, t(18) = 4.95, p = .0001). We repeated each of these comparisons using
binomial tests to ensure that contingencies were not driven by individual participants. As expected,
each contingency effect was consistent across participants (all ps < .005). Thus, as in Experiment 1,
previous behaviors affected current direction of movement initiation, which influenced the ultimate
selection of a strategy.

3.2.3. Summary
These results are consistent with findings from the first experiment. Additionally, these results ad-

dress the earlier two concerns. First, as participants used fewer mental solutions (41%), they initiated
fewer movements to the answer box (45%). Although aspects of the interface and task format may in-
duce a slight bias, problem type, calculator responsiveness, and prior behavior largely accounted for
initial movement direction. Second, a consistent set of factors determined ultimate selections across
problem types. On both N � NN and NN � NN problems, strategy selection depended on problem type,
calculator responsiveness, and direction of movement initiation.



M.M. Walsh, J.R. Anderson / Cognitive Psychology 58 (2009) 416–440 433
4. Rationality of choice

Participants’ behavior suggests an iterative selection process. Participants quickly decide whether a
mental or calculator solution is preferable and they initiate the corresponding mouse motion. While
moving, participants then conduct a more thorough analysis and decide whether to continue with
the initially favored strategy or to revise the selection. Here, we investigate the rationality of two out-
comes of this selection process, namely the adopted movement initiation direction and the strategy
ultimately applied.

These analyses are driven by two assumptions. First, rather than trying to optimize solution time or
accuracy alone, participants attempt to optimize pay, which depends on both. This is plausible be-
cause the feedback given to participants pertained to pay. To understand selections, we should then
consider strategy profitability. Second, different selection patterns between experiments should de-
pend on the distribution of problem difficulty and the applicability of each strategy given that level
of difficulty.

4.1. Outcome 1: Movement initiation

To derive unbiased estimates of strategy profitability, we looked to no-choice trials. For each com-
bination of problem type and calculator condition, participants were required to solve 7 problems
mentally and to solve 7 problems with the calculator. We computed the average proportion of times
that each mental solution paid as much or more than the 7 corresponding calculator solutions (Table
5, top three rows). These proportions are local because they relate to specific problem types within
each calculator condition. The fourth row of Table 5 shows proportions averaged across problem type
and within calculator condition. These proportions are global because they relate to all problem types
within each calculator condition.

If participants responded optimally, they would always start towards a mental solution when it
was more profitable than a calculator solution (values greater than .5 in Table 5). Likewise, partici-
pants would always start towards a calculator solution when it was more profitable than a mental
solution (values less than .5 in Table 5). However, participants were probably not perfectly tuned to
these local probabilities. Additionally, participants may have sometimes initiated movement before
carefully considering problem type. In these instances, participants would give greater weight to
the probability global to the calculator condition.

To evaluate the importance of local and global probabilities, we performed a multiple regression
analysis. We sought the best fitting combination of the global and local values to predict the observed
probability of initiating movement towards the answer box during both experiments (observed prob-
abilities contained in Figs. 6A and 10A). The resulting regression equation was
Table 5
Probabi

Problem

NN � 1
N � NN
NN � N
Means

Note: M
2: N �
PðMentalÞ ¼ :64þ :25� ðLocal� :5Þ þ 1:25� ðGlobal� :5Þ
This equation accounted for 97.9% of the variance. Both variables contributed significantly (local
weight: t(7) = 7.28; and global weight: t(7) = 13.19). Global weight was significantly greater than local
weight t(7) = 9.86, indicating that participants were more sensitive to the global context. In addition,
lity mental pays best.

type Experiment 1 Experiment 2

No delay Delay No delay Delay

0 .988 .993 — —
.463 .706 .544 .701

N .103 .200 .070 .198
.504 .651 .307 .450

eans in fourth row depend on problem frequency (Experiment 1: NN � 10 = .25, N � NN = .5, NN � NN = .25; Experiment
NN = .5, NN � NN = .5).
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the intercept was significantly greater than .5, t(7) = 13.02, indicating that participants tended to start
in the direction of the answer box even when the global and local statistics did not support a mental
solution.

In summary, participants were sensitive to problem type and calculator condition at the time of
movement initiation. However, because they acted so quickly, participants gave relatively little weight
to local features of the problem. Instead, they mainly responded to the global statistics of the current
condition. Additionally, participants exhibited an optimistic bias: they seemed to overestimate the rel-
ative utility of mental solutions.

4.2. Outcome 2: Strategy revision and completion

Strategy selection depended on similar considerations of strategy profitability by problem type and
calculator condition. Selections additionally depended on the direction of movement initiation. If one
had already moved to the answer box, the critical comparison was between a direct mental solution
and a late abort calculator solution. If one had already moved to the calculator box, the critical com-
parison was between a direct calculator solution and a late abort mental solution.

To conduct these comparisons, we computed the increase in solution time brought about by late
aborts during choice trials (based on average differences within Tables 1 and 3). This value (.913 s)
represented the temporal penalty associated with deviating from the initial movement direction. By
adding this penalty to solution times from no-choice trials, we could calculate expected pay following
a late abort. To calculate the probability that a mental solution was preferable after first moving to the
answer box, we computed the probability of a mental solution paying as much or more than a time-
penalized calculator solution. Similarly, to calculate the probability that a mental solution was prefer-
able after first moving to the calculator box, we computed the probability of a time-penalized mental
solution paying as much or more than a calculator solution.

This gave us three variables for predicting the probability of using a mental solution – the global
and local statistics used in predicting initial direction and the fine-grain statistic that accounted for
the direction of movement initiation. In a multiple regression analysis, neither the global nor the local
information was predictive of selections. The only variable that proved relevant was the fine-grain sta-
tistic. The best fitting equation was
PðMentalÞ ¼ :54þ :97� ðFineGrain� :5Þ
This equation accounted for 97.2% of the variation in the 20 data points from the two experiments
(observed probabilities in Figs. 6B and 10B). The contribution of the fine-grain statistic was highly sig-
nificant t(18) = 25.17. The resulting equation describes a probability matching situation (Herrnstein,
1961), where participants chose a solution strategy as frequently as it proved to be the better choice.
Such a situation would be characterized by an equation with an intercept of .5 and a slope of 1. The
actual intercept was slightly but significantly greater than .5, t(18) = 2.80, but the slope was not sig-
nificantly different from 1, t(18) = 0.78.

Fig. 11 shows a scatter plot of the observed percent of mental solutions applied against the prob-
ability of a mental solution paying as much or more than a calculator solution. A set of points along the
main diagonal would indicate perfect probability matching. As seen, the observed points deviate min-
imally from the main diagonal. Corresponding to the significant intercept, the percent of mental solu-
tions applied averaged slightly more (.036) than the probability of a mental solution paying as much
or more than a calculator solution. This difference, although small, was significant across the 20
points, t(19) = 2.83.
4.3. Discussion

The ability of these simple linear equations to account for participants’ selections supports an iter-
ative selection process and indicates that as participants approached a decision, their behaviors de-
pend on the relative profitability of mental and calculator solutions. Adoption of a movement
initiation direction, which occurred rapidly, reflected imperfect sensitivity to the current problem.



Fig. 11. Percent of problems solved mentally vs. the probability of a mental solution paying as much or more than a calculator
solution, dependent on start direction, problem type, and calculator condition. The gray diagonal illustrates predictions for
perfect probability matching. Values on y-axis are taken from Figs. 6B and 10B for Experiments 1 and 2.
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Commitment to a specific strategy, which occurred later, reflected nearly perfect sensitivity to the rel-
ative profitability of mental and calculator solutions.

Given that strategy selections were more finely tuned to local statistics than were directional selec-
tions, one might wonder why participants did not wait longer to initiate motion. The answer is simple.
When participants correctly anticipated how they would solve a problem, they saved about a second
by moving and evaluating the problem concurrently. When participants incorrectly anticipated how
they would solve a problem, they were no worse off than had they waited, in which case they would
have still needed to program a movement to the desired region.

The applicability of the same linear equations to both experiments is not trivial. Participants’
behavior, particularly while selecting a movement initiation direction, differed substantially between
experiments. The equations’ generalizability shows that the primary differences between experiments
were quantitative rather than qualitative. Specifically, the global probability of a mental solution pay-
ing as much or more than a calculator solution decreased from the first to the second experiment. As a
result, participants initiated fewer motions towards the answer box during the second experiment.

Thus far, we have focused on the outcomes of the underlying decision process. How might we char-
acterize the process itself? One simple account is that people quickly select a strategy and only deviate
when that strategy fails to produce a solution. In this case, a single selection occurs. Aborted move-
ments do not require further deliberation, but instead reflect default use of the remaining solution
method after the initially favored method failed. We have two arguments against this account. First,
because the correct solution could always be found with the calculator, participants should have never
redirected movements from the calculator to the answer box. Second, movement aborts occurred
around 1–3 s. The time required to solve N � NN and NN � NN problems mentally far exceeds this time
(Siegler & Lemaire, 1997). Therefore, late aborts could not have required completion of mental solu-
tions, as suggested by this account.

While features of the data seem to indicate that participants were engaging in two discrete selec-
tions, an initial selection based on a quick evaluation and a later selection based on a more deliberate
evaluation, this is not the only possible account of the data. A feasible alternative is that within-trial
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preferences emerged from an ongoing deliberation process that drew on gradually accumulating
information, as envisioned for instance in Busemeyer & Townsend’s (1993) dynamical decision field
theory. The initial direction of movement might be based on an early read of the accumulated evi-
dence and a decision to redirect to the other solution based on a later read of the accumulated evi-
dence. Diederich (2003) provides evidence for such a basis for preference reversals. Whether
participants engaged in a discrete or a continuous decision process, however, these analyses quite
clearly show that participants continued to deliberate as they acted, and that they exhibited progres-
sively greater sensitivity as they approached a final decision.
5. General discussion

Adaptive strategy selection is a pervasive characteristic of human performance. People adaptively
select between solution methods in diverse tasks and across the life span (Siegler, Adolph, & Lemaire,
1996). The reported work extends these findings to situations that require selection between mental
and technologically facilitated strategies. In our experiments, people accurately represented the utility
of mental and technologically facilitated strategies, and they selected accordingly. This conclusion fol-
lows from two observations. First, factors that influenced relative strategy utility, as assessed during
no-choice trials, also influenced selections during choice trials. Second, mental solutions were faster
during choice than during no-choice trials, as would be expected if participants adaptively applied
mental solutions to the most suitable problems.

These findings are consistent with, but distinct from, existing work on distributed cognition (Clarke
& Chalmers, 1998; Hutchins, 1995; Kirsh & Maglio, 1994; Zhang & Norman, 1994). Although previous
studies have shown that people rely on internal and external representations of information, the cur-
rent studies more directly show that people accurately represent the utility of internal and external
solution methods. When choice is afforded, people seamlessly switch between methods to generate
the required information.

While we have stressed the benefits of choice, selections do incur costs. For instance, calculator
solution times for NN � NN problems were about 450 ms slower during choice than during no-choice
trials (Experiment 1: F(1,20) = 8.57, p = .008; Experiment 2: F(1,19) = 35.59, p < .0001).5 The interac-
tion between choice and calculator condition was also significant (Experiment 1: F(1,20) = 7.67,
p = .01; Experiment 2: F(1,19) = 8.61, p = .008), such that the temporal cost of selecting a calculator solu-
tion was greater in the delay condition. This interaction likely reflects the fact that the optimal choice in
the delay condition was less clear, prompting longer deliberation during choice trials. Additionally, men-
tal solutions were favored during the delay condition, resulting in fewer direct movements to the calcu-
lator during choice trials. When strategies are assigned, the time required to select a strategy and the
time spent modifying selections is eliminated. Despite these saving, however, the benefit of being al-
lowed to choose the more suitable strategy far outweighed the costs in these experiments.

Participants’ motor behavior was revealing. Although people rapidly initiated movement towards
the calculator or answer box, they frequently redirected their initial motions. Thus, some trajectories
were direct while others first approached the non-selected box. We interpret this as evidence for an
iterative decision process. Participants quickly initiated movement corresponding to an initially fa-
vored strategy, and they then decided whether to complete the problem using that strategy. By con-
ducting a more thorough evaluation while moving, participants could reduce trial completion times.

As these studies show, the implementation of a single solution method can follow multiple subtler
behaviors. Here, these behaviors include the initial adoption of a movement direction and the ultimate
commitment to a solution strategy. We can then consider the sensitivity exhibited in each behavior.
As seen, the proportion of movements initiated towards the answer box exceeded the probability of a
mental solution paying as much or more than a calculator solution. It seems that participants initially
overestimated their mathematical prowess or underestimated the value of using a calculator, as also
found by Siegler and Lemaire (1997).
5 Corresponding comparisons for mental solutions are compromised because participants could choose the easiest problems in a
category for mental solutions, whereas all problems in a category are equally difficult with a calculator.
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Although participants initiated a disproportionate number of movements towards the answer box,
the likelihood of ultimately using a mental solution was remarkably similar to the probability of a
mental solution paying as much or more than a calculator solution under those circumstances. In this
sense, participants’ ultimate selections were decidedly adaptive. Highly refined ultimate selections are
consistent with the idea that participants carefully considered the problem after initiating movement.
More generally, differences between initial directional selections and ultimate strategy selections are
consistent with the idea that participants evaluated an increasingly broad set of option attributes as
they moved towards a solution (Diederich, 2003).

One consequence of this evaluation process is that the initial adoption of a movement direction
influences the final selection of a solution method. Participants were significantly more likely to use
a strategy if they had begun towards the associated box, which makes sense because the cost of
accessing a box decreases as one approaches it. This sort of self-fulfilling prophecy is not unique to
our task. For instance, when navigating an online database, one’s early hyperlink selections influence
the cost of accessing the desired information via different paths. As one pursues a specific path, it be-
comes increasingly sensible to follow that path to completion rather than to backtrack to the initial
decision point. This illustrates that a poor initial decision can veil an otherwise rational selection pro-
cess. However, as we have shown, that initial decision is more often right than wrong. Moreover, the
practice of making a rapid initial decision is adaptive, even if the decision is sometimes wrong, be-
cause of the afforded motor savings.

The fact that participants initiated predictive motions within about 200 ms is surprising. Had they
actually begun to consider the problem by that time? We suspect so. Trajectories were aligned with
either the calculator or answer box as early as 100 ms following movement initiation. Because motion
during this brief initial-impulse phase is ballistic, and hence not subject to correction (Meyer, Abrams,
Kornblum, Wright, & Smith, 1988), it seems that participants were sensitive to problem type and cal-
culator condition at movement onset. This timescale is substantially shorter than other reports of ra-
pid strategy selection. Reder and colleagues showed that people take 600–700 ms to decide whether
to retrieve or compute answers during mental arithmetic (Reder & Ritter, 1992; Schunn et al., 1997).
Our task differs from the paradigm used by Reder and colleagues in an important way, however. In
their task, participants were required to use the selected strategy. In our task, participants could alter
initial selections as they moved. It makes sense that strategy selection times would increase with re-
quired commitment, particularly because people perceive irreversible decisions as being especially
demanding (Beach & Mitchell, 1978; McAllister, Mitchell, & Beach, 1979). How would people act if
the cost of redirecting initial movements varied incrementally? As redirection costs increased, partic-
ipants would likely exhibit graded increases in movement initiation time and decreases in late abort
frequency. This prediction can, of course, be tested in future studies.

Thus far, we have discussed the influence of initial movements on strategy use within trials. Motor
behaviors also influenced strategy use between trials. As previously found, participants were more
likely to use a strategy on the current trial if they had used the strategy during the preceding trial (Lov-
ett & Anderson, 1996; Lovett & Schunn, 1999). Surprisingly, participants were also more likely to use a
strategy on the current trial if they had initiated movement corresponding to that strategy during the
previous trial. Why would past movements have such a pervasive effect? We can think of two reasons.
First, by initiating consistent motions between trials, participants could rely on memory of past target
positions and spatio-temporal motor plans to reduce current movement planning costs (Jax & Rosen-
baum, 2007; Marteniuk & Roy, 1972; Van der Wel, Fleckenstein, Jax, & Rosenbaum, 2007). Second, the
selection of an initiation direction was based on relatively stable estimates of strategy utility. As a re-
sult, the correlation between initial directional selections across neighboring trials could relate to the
correlation between perceived strategy utilities across neighboring trials.
6. Conclusion

These experiments show that people can adaptively select between strategies, both while rapidly
initiating action and then while carefully considering the decision as they act. The current experi-
ments may under-represent people’s actual ability to adaptively change their minds. In our experi-
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ments, participants were required to use a strategy once they clicked in the associated box. In actual-
ity, such points of finality are rare and they are reached more gradually, allowing people more oppor-
tunity to alter initial choices as more information becomes available. While relatively brief decision
episodes characterized our task, real-life decisions may emerge across multiple stages with more
information available at each.

Two aspects of these experiments’ results caution for a tempered view of the human as an adaptive
decision maker, however. First, although participants’ ultimate selections were highly tuned, partici-
pants were probability matching rather than optimizing. One could argue that they should have al-
ways chosen the more successful strategy. However, this line of reasoning ignores the fact that
participants do not possess perfect knowledge of the relative success of each strategy, and that partic-
ipants acquire more precise estimates by sampling both strategies. Also, the relative values of the two
strategies may evolve over the course of the experiment, making it worthwhile to resample. Probabil-
ity matching effectively balances the needs to exploit the best option and to explore the space of avail-
able options (Hardy-Vallée, 2007).

Second, the proportion of movements initiated towards the answer box exceeded the probability of
a mental solution paying as much or more than a calculator solution. A similar, though weaker, bias for
mental solutions was apparent in final selections. Perhaps our measure of strategy profitability was
too restrictive. By frequently using mental solutions, participants may have increased the efficiency
of the mental strategy through practice. Repeated mental solutions would also allow participants to
determine whether that strategy was indeed becoming more effective with practice.

Collectively, these studies highlight the adaptivity of the human performer. The sensibility exhib-
ited in ultimate strategy use follows a series of subtler choices. These subtler choices include the rapid
initial selection of a movement direction, and the further consideration of whether it is best to proceed
in that manner or to change one’s mind.

Appendix A.

A.1. Problem sets
NN � 10
 N � NN
 NN � NN
10 � 13
 3 � 17
 6 � 39
 12 � 16
 12 � 23

10 � 14
 3 � 26
 6 � 41
 12 � 17
 12 � 26

10 � 15
 3 � 29
 6 � 47
 12 � 21
 12 � 29

10 � 16
 3 � 34
 6 � 48
 12 � 28
 12 � 31

10 � 17
 3 � 37
 7 � 13
 13 � 14
 13 � 22

10 � 18
 3 � 42
 7 � 16
 13 � 19
 13 � 24

10 � 21
 3 � 46
 7 � 19
 13 � 28
 13 � 27

10 � 23
 3 � 49
 7 � 24
 13 � 29
 13 � 32

10 � 25
 4 � 18
 7 � 27
 14 � 16
 14 � 26

10 � 27
 4 � 23
 7 � 31
 14 � 18
 14 � 29

10 � 29
 4 � 27
 7 � 35
 14 � 19
 14 � 31

10 � 31
 4 � 31
 7 � 48
 14 � 23
 14 � 32

10 � 32
 4 � 36
 8 � 14
 16 � 18
 16 � 13

10 � 34
 4 � 38
 8 � 17
 16 � 22
 16 � 21

10 � 35
 4 � 43
 8 � 21
 16 � 27
 16 � 23

10 � 38
 4 � 46
 8 � 28
 16 � 29
 16 � 28

10 � 39
 5 � 19
 8 � 35
 17 � 14
 17 � 13

10 � 42
 5 � 23
 8 � 38
 17 � 21
 17 � 16

10 � 45
 5 � 26
 8 � 41
 17 � 24
 17 � 18

10 � 46
 5 � 29
 8 � 43
 17 � 26
 17 � 28

10 � 49
 5 � 34
 9 � 13
 18 � 13
 18 � 12

10 � 51
 5 � 37
 9 � 16
 18 � 22
 18 � 19
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Appendix A (continued)

NN � 10
 N � NN
 NN � NN
10 � 52
 5 � 39
 9 � 18
 18 � 24
 18 � 21

10 � 53
 5 � 49
 9 � 24
 18 � 27
 18 � 23

10 � 54
 6 � 14
 9 � 32
 19 � 12
 19 � 16

10 � 56
 6 � 21
 9 � 36
 19 � 23
 19 � 17

10 � 58
 6 � 28
 9 � 42
 19 � 26
 19 � 22

10 � 60
 6 � 32
 9 � 47
 19 � 27
 19 � 24
Experiment 1 used all NN � 10 and N � NN problems and the left column of NN � NN problems. Exper-
iment 2 used all N � NN and NN � NN problems and no NN � 10 problems.
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