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Abstract 

Sustained attention is necessary in a variety of real-world 
settings, from baggage screeners and air traffic controllers to 
lifeguards and drivers on highways. Individual differences in 
performance on these tasks are prevalent, leading to questions 
about the sources of these differences. In this paper we 
compare the behavior of computational models to empirical 
data to evaluate the validity of cognitive architectural 
mechanisms as explanations for individual differences in 
sustained vigilant attention. The models indicate that 
individual differences in performance on the Psychomotor 
Vigilance Test (PVT) are not merely the result of quantitative 
differences in the timing of actions, but are a consequence of 
differences in sensitivity to perceptual events as well, which 
lead to qualitative differences in how the task is performed. 

Keywords: Sustained Attention; Individual Differences; 
Psychomotor Vigilance Test; Cognitive Model; ACT-R. 

Introduction 
In a variety of applied settings, maintaining focused 
attention is critical to task performance. Baggage screeners 
and air traffic controllers at airports face a constant barrage 
of visual information and must sort through it to identify the 
critical stimuli (e.g., Hitchcock et al., 2003). Drivers in 
heavy traffic must maintain awareness of the cars around 
them and monitor their driving situation to avoid accidents. 
Drivers facing little or no traffic must be equally vigilant to 
identify rare, but potentially dangerous, elements of the 
driving environment (e.g., a deer running across the road, or 
another driver wandering from his or her lane). 

There has been a considerable amount of research on 
sustained attention performance in humans from a variety of 
perspectives (e.g., Davies & Parasuraman, 1982; Matthews 
& Davies, 2001. Sakai, Baker, & Dawson, 1992; Thiffault 
& Bergeron, 2003; Van Dongen & Dinges, 2005). Much of 

this research has been targeted at understanding the so-
called “vigilance decrement,” which refers to progressively 
worse performance that is observed on vigilance tasks as the 
duration of those tasks increases (e.g., Davies & 
Parasuraman, 1982, Matthews & Davies, 2001; Methot & 
Huitema, 1998). This is particularly true in tasks where the 
probability of a target event or stimulus is low (e.g., Methot 
& Huitema, 1998). 

Research on sustained attention has sought not only to 
understand the characteristics and limits of human vigilance, 
but has also identified significant differences among 
individuals in their performance on sustained attention tasks 
(e.g., Matthews & Davies, 2001; Methot & Huitema, 1998; 
Parasuraman, 1976; Sakai et al., 1992; Thiffault & 
Bergeron, 2003). Much of this research has focused on 
associating differences in vigilance with cognitive and 
personality factors (e.g., Koelega, 1992; Matthews, Jones, & 
Chamberlain, 1992), generating correlational data about the 
relation between these factors and sustained attention 
performance. 

Understanding the mechanisms of sustained attention, 
including sources of individual differences, has obvious 
applications. Given the variety of settings where vigilant 
attention is required, researchers have identified numerous 
opportunities to improve human performance through 
careful design of task environments and work schedules, as 
well as potential applications in the area of selecting 
individuals for such tasks (e.g., Matthews et al., 1992). In 
many military settings, like long-range bombing missions, 
intelligence analysis, or monitoring at security checkpoints, 
there are long periods where no target events or stimuli are 
present, punctuated by brief periods when targets appear and 
swift action is required. Understanding the mechanisms of 
human sustained attention can inform our understanding of 
these kinds of tasks, leading to improved technologies and 
approaches for maintaining high levels of performance. 
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Despite the interest demonstrated in the scientific 
community and the obvious value in applied settings, 
research on sustained attention performance has not resulted 
in the development of detailed cognitive process models that 
implement validated mechanisms for performing such tasks. 
Whereas computational models have been developed for 
various attention phenomena, including the attentional blink 
(e.g., Taatgen, Juvina, Herd, Jilk, & Martens, 2007, menu 
search (e.g., Hornof, 2004), and the Stroop task (e.g., Lovett, 
2005), none of these models address critical issues associated 
with sustained attention. Rather, they focus more on the 
capacities and limitations of immediate attention, exploring 
how attentional resources are allocated to perform tasks. In 
addition, this work has not focused on individual differences. 
Here, we expand upon previous modeling research by 
exploring mechanisms involved in sustained attention, and by 
generating a computational account of individual differences 
that captures the range of human performance on sustained 
attention tasks.  

There are two means by which computational cognitive 
process models can explain individual differences: variations 
in knowledge and variations in underlying cognitive 
architecture. The former explanation (variations in 
knowledge) is rooted in the fact that different people have 
different life histories – types of relevant experiences, levels 
of training, proficiency, and expertise – that can lead to 
differences in method or strategy in any given performance 
context (e.g., Nellen & Lovett, 2004). The latter explanation 
(variations in underlying architecture) is rooted in the fact that 
different people have different fundamental cognitive abilities 
or capacities that impact their performance in any and all 
contexts (Parasuraman, 1976). Generally, performance is 
determined by a mixture of these two sources of individual 
differences. In the present study, however, the task is so 
knowledge-lean, so “close to the architecture” (Newell, 
1990), that we propose the better explanation is that the 
individual differences are in fact architectural. Here we 
investigate the extent to which such mechanisms do, in fact, 
provide an adequate account of these differences. 

Our own interest in individual differences and sustained 
attention performance lies at the intersection of vigilance and 
the negative consequences of sleep deprivation (e.g., Gross, 
Gunzelmann, Gluck, Van Dongen, & Dinges, 2006; 
Gunzelmann, Gluck, Van Dongen, O’Connor, & Dinges, 
2005; Van Dongen, Baynard, Maislin, & Dinges, 2004). We 
have developed a model to perform a sustained attention task 
called the Psychomotor Vigilance Test (PVT; Dinges & 
Powell, 1985), and have used that model to develop 
mechanisms to account for the negative impact of sleep loss 
on human performance on such tasks. In the current research, 
we present efforts to extend our model to account for 
individual differences in human performance on this task. As 
a first step, we focus in this paper on individual differences in 
baseline performance on the PVT task, without the 
complicating effects of sleep loss. 

The Psychomotor Vigilance Test 
The PVT is a sustained attention task used frequently in 
research on sleep deprivation because of its sensitivity to 

changes in alertness associated with time awake and circadian 
rhythms (Dorrian, Rogers, & Dinges, 2005). In this task, 
participants monitor a computer screen for the onset of a 
stimulus. When the stimulus appears, participants respond by 
pressing a button. Stimulus presentations occur with relatively 
high frequency (at intervals between 2 and 10 seconds), but the 
10-minute duration of a typical session is sufficient to tax 
attentional resources. 

Responses in the PVT can be classified into four different 
categories. Prompt responses to the stimulus are referred to as 
“alert responses” and are defined as responses that occur within 
500 ms of the stimulus onset. When participants take longer 
than 500 ms to respond, the responses are categorized as 
“lapses.” These two response categories account for the vast 
majority of responses. However, participants also sometimes 
produce “false starts,” which are button presses occurring 
before the stimulus appears or within 150 ms of stimulus onset 
(faster than should be possible given human perceptual-motor 
limitations). Lastly, when participants are highly sleep deprived 
they sometimes fail to respond within 30 seconds of the 
stimulus onset. These cases may be referred to as “sleep 
attacks,” and they result in a beep to alert the participant for the 
next trial. Sleep attacks are quite rare in well-rested individuals 
(Dorrian et al., 2005). 

One interesting aspect of the PVT is that there is virtually no 
learning associated with performance on the task. Thus, the 
task seems to provide a relatively pure measure of sustained 
vigilant attention. However, in this paper we are focused on an 
aspect of performance on this task that has received less 
attention in the literature - the large and stable differences in 
baseline performance among individuals.  

Empirical Data 
The empirical data presented below come from a study of total 
sleep deprivation described in Van Dongen and Dinges (2005). 
In the experiment, 13 participants were given 8 hours in bed 
per night for 3 nights under controlled conditions to establish 
common sleep-wake patterns and ensure participants were well 
rested. At 7:30 AM following the third night, participants were 
kept awake continuously for 88 hours. Every two hours for the 
duration of the study, including the three-day acclimation 
period preceding the sleep deprivation, participants completed 
a battery of tasks including the PVT. We are using the data 
from the three-day acclimation period and the first day of the 
sleep deprivation period when participants arose at 7:30 AM 
after a full 8 hours in bed. During this period, most participants 
completed 26 10-minute PVT sessions. One participant missed 
a single session (completed 25), and another missed two 
sessions (completed 24), during the baseline period. 

The aggregate human data for the baseline period are shown 
in Figure 1. This figure illustrates the proportion of responses 
classified as false starts, lapses, and sleep attacks. Alert 
responses are shown as proportions of responses within 10 ms 
bins from 150 ms to 500 ms to illustrate the distribution of 
response times that are observed on this task. Later we present 
similar response distributions for individual participants to 
illustrate the extent to which performance varies across 
individuals and to evaluate our ability to account for those 
differences. 
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Figure 1: Aggregate human data for the Psychomotor 

Vigilance Test on the baseline (no sleep deprivation) period 
of the study reported in Van Dongen and Dinges (2005). 

Modeling PVT Performance in ACT-R 
ACT-R, or Adaptive Control of Thought – Rational, is a 
general theory of human cognition, implemented as a running 
simulation (Anderson et al., 2004). ACT-R is a production 
system where productions (condition-action pairs) are matched 
to the state of the system and one is executed (fired) to produce 
some change. This may involve cognitive actions like 
retrieving information from memory or perceptual-motor 
actions like shifting visual attention or pressing a key. In 
addition to this central cognitive cycle, ACT-R is comprised of 
a set of modules representing processing subsystems, which 
operate in parallel to produce behavior. There are separate 
modules for declarative knowledge, vision, and motor action, 
among others. 

In previous research we developed an ACT-R model of 
aggregate human performance on the PVT (Gross et al., 2006; 
Gunzelmann et al., 2005). To facilitate the current discussion, 
this model is described in some detail here. The ACT-R model 
performs the task by explicitly waiting for the stimulus to 
appear. When the stimulus is presented, the model has 
knowledge allowing it to attend to the stimulus presentation 
and then press a key to respond. Each of these three actions 
(wait, attend, respond) is represented in the model by a 
production, constrained to fire only when appropriate to the 
task context. Thus, when the stimulus appears, two productions 
must fire before a response is made. The default execution time 
for a production is 50 ms, to which we add noise drawn from a 
uniform distribution such that the actual execution time ranges 
from 33 to 67 ms. 

Besides this knowledge, the model contains an additional 
production that executes a keypress regardless of whether a 
stimulus is present on the screen or not. This gives the model 
the capacity to produce false starts in the PVT. Thus, at any 
point in a trial, two categories of activity can take place: a task 
appropriate action or a random keypress. Notice that it is 
possible for a random keypress to produce an appropriate 
response, depending on when it occurs. 

This model also incorporates mechanisms to account for 
sleep deprivation, capturing how human performance on the 
PVT changes as time awake increases. Although accounting 
for sleep deprivation effects is not the focus of this paper, the 
mechanisms are relevant to fitting individual participant data, 

as they can be used to capture differences in alertness/arousal 
or motivation/effort. To represent such differences, we 
manipulate two parameters, G and Tu, which are involved in 
ACT-R’s utility equation that is used to select which 
production to fire from among alternatives: 

 
ε+−= iii CGPU  

 
In the utility equation, we use G to represent alertness or 

arousal. Pi is a parameter representing the probability of 
achieving the current goal by using production i, and Ci is the 
estimated cost associated with achieving that goal with the 
production. ε is a noise parameter, which adds stochasticity. 
Tu does not appear in the equation, but represents the 
threshold for action. The production with the highest Ui is 
selected, but the value must exceed Tu for it to be fired. Tu is 
used to represent motivation or effort, with lower Tu values 
representing higher levels of effort. In cases where Ui does 
not exceed Tu, no action is performed during that cognitive 
cycle and a new cycle is initiated after this “micro-lapse” in 
cognitive processing. Because these empty cycles are 
indicative of diminishing alertness, we decrement G by a 
small value when they occur. 

Earlier we stated our hypothesis that the better explanation 
for individual differences in sustained attention performance in 
this task is the “architectural differences” explanation. There 
are two ways to accomplish this. First, it is possible to adjust 
numerical architectural parameters in the model. Alternatively, 
it is possible to generate variations of the model just described, 
which differ with regard to the basic actions needed to produce 
a response in the task. We have found in our research that both 
types of mechanisms are necessary to account for the wide 
human variation in performance on the PVT. 

Figure 2 illustrates model variations we have identify that 
vary in the sequence of actions required for performing the 
task. The essential difference among these models is how 
sensitive they are to the onset of the stimulus in the PVT, with 
less sensitive models requiring more explicit cognitive actions 
to generate a response. Note that Figure 2 presents idealized 
model performance. Stochastic architectural features and the 
interaction with the mechanisms for alertness and effort 
produce distributions of behavior around the normative results 
illustrated. Detailed descriptions of the three model variants 
follow. 

High Sensitivity Model 
This model represents the best-case scenario for responding 
to the presentation of a stimulus in the PVT in ACT-R. The 
model is similar to the one described above, except that it is 
more sensitive to the onset of the visual stimulus. The 
advantage for the model is that this allows automatic 
processes within ACT-R’s vision module to initiate the 
encoding of the stimulus when it is presented, without the 
need for an explicit cognitive request. Because the need for 
this top-down control over attention is avoided, the model is 
faster relative to the model described above, by about 50 ms 
on average. Because of this, the model captures the behavior 
of some participants that cannot be accommodated by the 
original model. 
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Figure 2: Comparison of PVT model variants. Diagram 
illustrates active modules in ACT-R and default execution 

times for each step in the process. 

Moderate Sensitivity Model 
This is the original version of the model, which was used to 
account for aggregate human performance. Here, the onset 
of the stimulus is automatically detected by the model, but it 
does not initiate the process of directing attention to the 
stimulus. As a result, an explicit cognitive action is required 
to request an attention shift from the vision module, which 
leads to encoding the stimulus. This extra cognitive action 
adds approximately 50 ms onto the response process. In 
addition to adding increasing the amount of time required 
by the model to respond to the presentation of the stimulus, 
this also produces a wider distribution of reaction times, as a 
result of the noise added to the cognitive cycle time. 

Low Sensitivity Model 
The final ACT-R model variant for the PVT represents 
particularly low sensitivity to the stimulus onset in the task. 
In this model, it is the case that explicit cognitive actions are 
required for all steps in the task. This differs from the 
moderate vigilance model in that an additional cognitive 
action is required to identify the location of the presented 
stimulus (i.e., where to shift attention). In the other model 
variants this information is encoded automatically when the 
stimulus is presented, representing sensitivity within the 
vision system to the stimulus onset. In this model, however, 
it is noted explicitly through the firing of a production. 
Thus, this model is engaged in continual top-down 
monitoring to identify the stimulus onset and encode it. This 
serves to increase reaction times by an additional 50 ms on 
average relative to the moderate sensitivity model, and 
further widens the distribution due to the noise added to the 
50 ms cognitive cycle time. Once again, this model variant 
captures the behavior of some individuals more accurately 
than the original model, as described next. 

Model Performance 
The empirical study from Van Dongen and Dinges (2005) 
consisted of 13 participants. To evaluate our model, we 
began by identifying the best fitting parameter combination 
(G and Tu) for each model variant for the data from each 
participant for the baseline period of the study. These fits 
were determined by finding the parameter combination that 
produced the closest match to the proportions of false starts, 
lapses, and sleep attacks, measured using root-mean squared 
deviation (RMSD). Consequently, to the fit to the 
distribution of alert reaction times was not done explicitly, 
but stems from the dynamics of the model variants 
themselves. Figure 3 shows the predictions for each model 
variant based upon the best-fitting combination of G and Tu.  

 

 

Figure 3: Comparison of model variants to individual 
human performance on the PVT. Each figure shows the 

predictions using the best-fitting parameter values for each 
of the three model variants. 

Our model fitting process involves several degrees of 
freedom, however given the exploratory stage of this 
research and the limited work on developing computational 
models of individual differences in sustained attention, we 
believe that such a model fitting procedure is warranted. To 
reduce the degrees of freedom somewhat, we did not vary 
the decrement assessed to G when a “micro-lapse” occurs, 
but rather used a fixed value of 0.028, which produced 
reasonable results for all participants and model variants. 
Table 1 presents statistics evaluating the quality of the fit 
between the human data and each of the model variants. In 
Table 1, the statistics for the best-fitting model variant are 
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highlighted in bold, based upon RMSD calculated using the 
proportion data shown in Figure 3. 

Table 1: Quantitative comparison of model predictions to 
human data; r indicates correlation; D indicates root-mean 
squared deviation (RMSD). Statistics are based upon the 
data shown in Figure 3. The best-fitting model for each 

participant (based upon RMSD) is indicated in bold. 
 

 
 

Participant 

High 
Vigilance 

Moderate 
Vigilance 

Low
Vigilance 

r D r D r D
A .95 .022 -.33 .068 -.49 .070
B .94 .017 -.17 .055 -.49 .060
C .45 .041 .39 .038 -.49 .055
D .89 .012 .73 .018 .39 .029
E .32 .032 .79 .017 -.13 .039
F .25 .034 .79 .016 -.08 .036
G .34 .028 .78 .015 .01 .033
H .32 .027 .85 .012 .08 .029
I .15 .032 .97 .008 .50 .025
J .12 .030 .96 .006 .43 .025
K .08 .031 .97 .006 .75 .017
L .12 .034 .86 .014 .92 .011
M .42 .027 .92 .010 .97 .006

Aggregate .64 .018 .67 .016 .07 .029
 
From the results in Figure 3 and Table 1, it is apparent that 

the performance of different participants is best characterized 
by different model variants. The data from eight of the 
participants are fit best by the moderate sensitivity model, 
which corresponds to the variant used to model aggregate 
human performance. However, the high sensitivity model is a 
better explanation for three of the participants’ data, and the 
low sensitivity model is a better explanation for two 
participants’ data. 

Recall that the human data are aggregated over all of the 
baseline PVT sessions, which were presented every two hours 
across the baseline days of the study and during the baseline 
day of the sleep deprivation period. This includes from 24 to 
26 test sessions, depending on the participant, with 
approximately 80 responses per 10-minute session per person. 
We can look at each session individually to investigate the 
reliability of our conclusions regarding the best fitting model 
for each participant. On average, 87.5% of the sessions are 
best fit by the model variant that best fits the aggregate data 
for that participant. This percentage ranges from just over 
50% (participants C & D) to 100% (participants A, F, & J). 
For 9 of 13 participants, at least 90% of the sessions were best 
fit by the same model variant as the aggregate data for the 
individual participant. Thus, the individual differences shown 
in Figure 3 appear to reflect stable differences among 
individuals in sustained attention performance, rather than 
random variability. 

Conclusions 
We have presented a model of sustained attention that 
accounts for individual differences in performance on the 
Psychomotor Vigilance Test (PVT). The variants of the 

model differ in terms of sensitivity to visual onsets and 
produce variations in performance that correspond to 
substantial differences in human behavior. Note that this 
research does not address the “vigilance decrement” 
mentioned in the introduction. One direction for future 
research will be to extend our account to more detailed data 
addressing changes in performance within sessions. 

The variants of the model embody our theoretical account 
for differences in human performance on the PVT. In the 
most sensitive model variant, the onset of the stimulus 
engages mechanisms in the vision module directly, causing 
attention to shift and the item to be encoded. Central 
cognition is needed only to initiate the response once the 
stimulus is encoded. Meanwhile, in the least sensitive model, 
cognitive control is required both to identify the location and 
to shift attention to encode the stimulus when it is presented. 
In the moderately sensitive variant, the stimulus partially 
engages the vision module, which encodes the location where 
the stimulus appears, but does not trigger an automatic 
attentional shift to encode the item. 

What these models suggest is that individual differences in 
sustained attention may be a function of how much top-down 
control is required to orient and focus attention. In the less 
sensitive models, more cognitive activity is required to direct 
attention to the stimulus so that it can be identified before 
making a response. One could posit other explanations for 
this variability in behavior. The alternative we have described 
here implicates differences among individuals in sensitivity 
within the visual system. Strong or salient stimuli can result 
in bottom-up attentional capture. It is possible that for some 
participants, the stimuli presented in the PVT are adequate to 
trigger such mechanisms, while others must rely on more top-
down control to perform accurately. This explanation is 
captured in the model variants implemented in ACT-R. 

Another alternative is that individual differences in 
performance reflect differences related to individual ability to 
maintain attention across the delay periods. As the research 
moves forward, we intend to conduct evaluations to 
differentiate between these two alternative explanations, 
allowing us to generate a cognitively valid account of why 
there are such large differences in performance on this task. 

The results shown in Figure 3 and Table 1 illustrate the 
need for considering multiple model variants for the task 
within ACT-R. No single model provides a compelling 
account for all 13 participants, and each of the 3 models 
provides the best fit for at least two of the participants. 
However, one may question why we have used a single 
model variant, rather than a probabilistic mixture of the three, 
to fit the individual participant data. It is quite possible, even 
likely, that participant performance is best construed as being 
a mixture of these possibilities. In theoretical terms, this may 
be captured by positing a (noisy) sensitivity threshold that 
varies continuously across individuals. Implemented in this 
way, probabilistic mixtures of the three model variants would 
be produced depending on the intensity of the stimulus 
relative to the sensitivity threshold on any given trial. 

A continuous sensitivity mechanism could improve the 
fits shown in Figure 3 for many of the individual 
participants, whose baseline reaction time distributions 
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appear to fall between two of the model variants. However, at 
the current state of the research, this would complicate both 
the explanation of performance and the evaluation of the 
model. At the same time, the “pure” model variants we have 
tested seem to provide relatively good accounts of 
performance for individual participants. Thus, although it 
may be the case that a mixture of model variants would 
improve the fits, it seems that the performance of any 
particular participant can be reasonably classified as 
reflecting primarily a single model variant. Even so, we plan 
to conduct additional experiments to refine our ACT-R 
account of individual differences in PVT performance, both 
under baseline conditions and during sleep deprivation. 

Acknowledgments 
The views expressed in this paper are those of the authors and 
do not reflect the official policy or position of the Department 
of Defense or the U.S. Government. This research was 
sponsored by the Air Force Research Laboratory’s Warfighter 
Readiness Research Division and by grant 07HE01COR from 
the Air Force Office of Scientific Research (AFOSR). Human 
data collection was sponsored partly by AFOSR grants 
F49620-95-1-0388 and F49620-00-1-0266, and by NIH grant 
RR00040. HVD was supported by AFOSR grant FA9550-06-
1-0055, and DFD was supported by AFOSR grant FA9550-
05-1-0293. 

References 
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., 

Lebiere, C., & Qin, Y. (2004). An integrated theory of the 
mind. Psychological Review, 111, 1036-1060. 

Davies, D. R., & Parasuraman, R. (1982). The psychology of 
vigilance. New York, NY: Academic Press. 

Dinges, D. F., & Powell, J. W. (1985). Microcomputer 
analyses of performance on a portable, simple visual RT 
task during sustained operations. Behavior Research 
Methods, Instruments, & Computers 17(6), 652-655. 

Dorrian, J., Rogers, N. L., & Dinges, D.F. (2005). 
Psychomotor vigilance performance: Neurocognitive assay 
sensitive to sleep loss. In C. A. Kushida (Ed.), Sleep 
Deprivation. Clinical issues, pharmacology, and sleep loss 
effects (p. 39-70). New York, NY: Marcel Dekker. 

Gross, J. B., Gunzelmann, G., Gluck, K. A., Van Dongen, H. 
P. A., & Dinges, D. F. (2006). Computational modeling of 
the combined effects of circadian rhythm and sleep 
deprivation. In R. Sun & N. Miyake (Eds.), Proceedings of 
the 28th Annual Meeting of the Cognitive Science Society 
(p. 297-302). Mahwah, NJ: Lawrence Erlbaum Associates. 

Gunzelmann, G., Gluck, K. A., Van Dongen, H. P. A., 
O’Connor, R. M., & Dinges, D. F. (2005). A 
neurobehaviorally inspired ACT-R model of sleep 
deprivation: Decreased performance in psychomotor 
vigilance. In B. G. Bara, L. Barsalou, and M. Bucciarelli 
(Eds.), Proceedings of the Twenty-Seventh Annual Meeting 
of the Cognitive Science Society (pp. 857-862). Mahwah, 
NJ: Lawrence Erlbaum Associates. 

Hitchcock, E. M., Joel S. Warm, J. S., Matthews, G., Dember, 
W. N., Shear, P. K., Tripp, L. D., Mayleben, D. W., & 
Parasuraman, R. (2003). Automation cueing modulates 
cerebral blood flow and vigilance in a simulated air traffic 
control task. Theoretical Issues in Ergonomics Science, 
4(1-2), 89-112. 

Hornof, A. J. (2004). Cognitive strategies for the visual 
search of hierarchical computer displays. Human-
Computer Interaction, 19(3), 183-223. 

Koelega, H. S. (1992). Extraversion and vigilance 
performance: 30 years of inconsistencies. Psychological 
Bulletin, 112, 239-258. 

Lovett, M. C. (2005) A strategy-based interpretation of 
Stroop. Cognitive Science, 29, 493-524. 

Matthews, G., & Davies, D. R. (2001). Individual differences 
in energetic arousal and sustained attention: A dual-task 
study. Personality and Individual Differences, 31, 575-589. 

Matthews, G., Jones, D. M., & Chamberlain, A. G. (1992). 
Predictors of individual differences in mail-coding skills 
and their variation with ability level. Journal of Applied 
Psychology, 77, 406-418. 

Methot, L. L., & Huitema, B. E. (1998). Effects of signal 
probability on individual differences in vigilance. Human 
Factors, 40(1), 102-110. 

Nellen, S. & Lovett, M. C. (2004). Towards a theory of 
balancing exploration and exploitation in probabilistic 
environments. In M. Lovett, C. Schunn, C. Lebiere, and P. 
Munro, Proceedings of the Sixth International Conference 
on Cognitive Modeling (pp. 214-219). Mahwah, NJ: 
Lawrence Erlbaum Associates. 

Newell, A. (1990). Unified theories of cognition. Cambridge, 
MA: Harvard University Press. 

Parasuraman, R. (1976). Consistency of individual 
differences in human vigilance performance: An abilities 
classification analysis. Journal of Applied Psychology, 
61(4), 486-492. 

Sakai, L. M., Baker, L. A., & Dawson, M. E. (1992). 
Electrodermal lability: Individual differences affecting 
perceptual speed and vigilance performance in 9 to 16 
year-old children. Psychophysiology, 29(2), 207-217. 

Taatgen, N. A., Juvina, I., Herd, S., Jilk, D., & Martens, S. 
(2007). Attentional blink: An internal traffic jam? In R. L. 
Lewis, T. A. Polk, and J. E. Laird (Eds.) Proceedings of the 
8th International Conference on Cognitive Modeling (pp. 
91-96). Ann Arbor, Michigan: University of Michigan. 

Thiffault, P. Bergeron, J. (2003). Fatigue and individual 
differences in monotonous simulated driving. Personality 
and Individual Differences, 34, 159-176. 

Van Dongen, H. P. A., Baynard, M. D., Maislin, G., & 
Dinges, D. F. (2004). Systematic interindividual 
differences in neurobehavioral impairment from sleep loss: 
Evidence of trait-like differential vulnerability. Sleep, 
27(3), 423-433. 

Van Dongen, H. P. A., & Dinges, D.F. (2005). Sleep, 
circadian rhythms, and psychomotor vigilance. Clinical 
Sports Medicine, 24, 237-249. 


