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Introduction 
Spatial visualization is ubiquitous in human cognition. 
People visualize the spatial aspects of things in a variety of 
situations, ranging from mentally repositioning furniture to 
solving complex scientific and engineering problems. 
However, as anyone who has listened to complex directions 
over the phone can attest, our capacity to visualize spatial 
information is limited. Here we describe an ACT-R model 
(the spatial field model) of the underlying processes that 
limit visualization capacity, and apply this model to a 
measurement task called path visualization (Lyon, 2004). 
Like some other visualization tasks, (e.g., Brooks, 1968; 
Attneave & Curlee, 1983; Kerr, 1993) path visualization 
requires participants to imagine a series of movements (up, 
right, down…) in a two-dimensional or three-dimensional 
array of locations. Unlike these other tasks, path 
visualization requires participants to decide whether each 
new path segment intersects with any part of the existing 
path. This requirement to detect intersections forces a 
visualization strategy, rather than, for example, a verbal 
rehearsal strategy.  As the path gets longer, load increases, 
visualization capacity is exceeded, and accuracy declines.  
   The spatial field model predicts this decline very 
accurately by positing three key components of visualization 
capacity. These components are implemented using ACT-
R’s declarative memory processes. The model test reported 
here uses no free parameters, because (1) the values for all 
but two parameters are standard in ACT-R memory models, 
and (2) the values for the two remaining parameters were set 
previously using data from a different set of participants.        

Method 
Thirteen paid participants (6 women and 7 men) were each 
given five 30-trial path visualization sessions. During each 
trial, the participant saw a sequence of 15 text phrases 
presented on a CRT. Each phrase described the direction 
and distance (e.g. ‘Left 1’) of a segment of a path. There 
were six possible directions (Right, Left, Forward, Back, 
Up, Down); all distances were one. Each phrase was 
presented for 2000 msec, followed by a blank screen for 133 
msec, then the presentation of the next phrase. As each new 
phrase was presented, the participant decided whether or not 
the endpoint of the new path segment intersected with any 
previously presented part of the path, and pressed a key with 
the right index finger to indicate ‘yes’, or the left index 
finger to indicate ‘no’. In the rare event that no key was 

pressed during the presentation of a text phrase, the 
response was scored as incorrect, and the presentation of the 
next phrase proceeded normally. Participants were 
instructed to respond as accurately and quickly as possible. 
Small bonuses were paid for maintaining high overall 
accuracy and low response time.  

All paths started at the center of an imaginary 5 x 5 x 5 
cube (Figure 1). Segment directions were relative to a fixed 
frame of reference, so, for example, ‘Left 1’ was always 
toward the left side of the cube as depicted in the figure, 
regardless of the direction of the previous segment. No two 
successive segments could be on the same axis, so the path 
always turned to a new axis with each new text phrase. 
Paths were randomly generated with the restrictions that (1) 
a near-balance of intersection and no-intersection segments 
existed in the entire corpus of paths, and (2) 50% of the 
paths were restricted to a 2D plane; 50% were 3D. Although 
a picture similar to Figure 1 was shown in the instructions, 
no image was displayed during performance of the task. The 
path had to be visualized from the sequence of text phrases.  
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Figure 1: Depiction of a 3D path in an imaginary space. 

Spatial Field Model 
Previous research with path visualization (Lyon, 
Gunzelmann, & Gluck, 2004) suggested the existence of a 
very strong spatial interference effect. When sections of a 
path were clustered together, accuracy in detecting whether 
or not an intersection occurred was substantially worse than 
when the current segment was relatively far away from most 
of the rest of the path. We were able to emulate this spatial 
interference effect using the similarity mechanism in ACT-



R’s declarative memory representation. Similarity decreased 
exponentially as a function of the Euclidian distance 
between locations in a 3D space. Thus, prior path segments 
at locations very close to the current one had a greater 
chance to be retrieved through partial matching (error of 
commission), producing more false intersection responses. 

The model works as follows. Each time a new segment 
description is presented, the model reads the description and 
sets a goal to determine the location to which this new 
segment points. After this goal is accomplished, a chunk 
representing this location is stored in declarative memory. 
As each new segment is processed, the model attempts to 
retrieve a chunk from memory that represents the same 
location. If a chunk is successfully retrieved, the model 
decides that an intersection with a prior part of the path has 
occurred and responds ‘yes’, otherwise it responds ‘no’. We 
present path segments rapidly, leaving little time for 
rehearsing the previous path, for recoding the path in a 
different representation, or any other mnemonic device. 
Therefore the model does not include such processes. 

The spatial field model embodies the following three-
component theory of visualization capacity limits:  

1. Visualized elements in nearby locations interfere with 
each other (Lyon, Gunzelmann, & Gluck, 2004). Spatial 
visualization mimics real space in the sense that 
interference between visualized elements follows roughly 
the same spatial pattern as the elements themselves would 
form in real space.  
2. Visualized elements become less available with time. In 
ACT-R, this results from activation decay in declarative 
memory. 
3. ‘Re-visiting’ a visualized location makes it easier to 
access. ACT-R embodies this aspect of the theory with its 
base-level learning mechanism.  
The spatial field model uses commonly accepted values 

for most of ACT-R’s parameters, so we needed values for 
only two parameters: the new spatial interference parameter, 
and retrieval threshold. These values were obtained using 
data from a prior study with different participants.  

Results and Conclusion 
Figure 2 shows the decline in visualization accuracy as 
additional segments are added to the path, reflecting the 
limited capacity of human spatial visualization. The 
predictions of the spatial field model matched the 
participant data well (r = 0.95, RMSD = 0.023), with no 
parameter adjustments or any other tailoring of the model to 
this dataset.  Without the spatial interference mechanism, 
the model fits neither the segment load effect nor several 
other aspects of the data (e.g. accuracy for intersection 
versus no-intersection cases), even when retrieval threshold 
is allowed to vary to optimize fit. 

The tight fit of the spatial field model to human data 
suggests that the new spatial interference process it 
contains, combined with ACT-R’s existing memory 
activation processes, can account for the effects of 
exceeding human visualization capacity in this difficult task.   

 

 
Figure 2. Visualization accuracy by path segment, model 
predictions and human data. 
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   The spatial field model suggests a particular view of 
spatial visualization capacity.  Capacity may not be best 
conceived as a ‘number of items’ limit.  Instead, capacity 
limitations are viewed in this model as the result of a 
combination of decay and interference mechanisms that 
influence the probability of successful recall. In this respect, 
our model of spatial visualization is similar to ACT-R 
models of verbal declarative memory tasks.   
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