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Abstract

To explain latency effects in picture-word interference tasks, cognitive models need to account for both interference and stimulus onset
asynchrony (SOA) effects. As opposed to most models of picture-word interference, which model the time course during the task in a
ballistic manner, the RACE model (retrieval by accumulating evidence) presented in this paper accounts for semantic interference during
the interval between the retrieval onset and the actual retrieval. RACE is implemented as an extension to the ACT-R architecture of
cognition. By modeling the retrieval process, RACE offers a more precise account of semantic memory retrieval latencies in different
interference and SOA conditions than other ACT-R models. In this paper, we discuss the architectural assumptions underlying RACE
and simulations of a picture-word interference experiment [Glaser, W. R., & Diingelhoff, F. J. (1984). The time course of picture-word

interference. Journal of Experimental Psychology: Human Perception and Performance, 10(5), pp. 640-654.].
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1. Introduction

Often, symbolic models of cognition can be thought of
as giving a stroboscopic account of cognition. By illuminat-
ing a process such as a movement with a stroboscope, the
movement is sliced into discrete steps that together repre-
sent the original, continuous, movement. However, infor-
mation about the movement is lost when the stroboscope
does not flash, and an observer will not be aware of how
the movement develops during these brief flash intervals.
Similarly, symbolic models of cognition reflect a continu-
ous cognitive process on a higher level of analysis, but on
a lower level of analysis, analogous to a single flash of
the stroboscope, these models provide a discrete account
of that process. In most cases, interpreting the higher level
of analysis as a continuous process is sufficient for under-
standing cognitive functioning, but in some tasks, the
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underlying discrete account might provide a misinterpreta-
tion of the process.

As a general example of such a task, consider the way
retrieval of memory chunks is modeled in the ACT-R
architecture of cognition (Anderson et al., 2004; Anderson
& Lebiere, 1998). Retrieval latency is based on the activa-
tion of the to-be-retrieved memory chunk:

RT, = Fe ™ (1)

Eq. (1) states that the retrieval time (RT) of a chunk (i) is
inversely proportional to the exponentionally scaled activa-
tion of that chunk (4;), with F a scaling parameter. If a re-
trieval request is made to the declarative memory system,
the activations of all chunks are compared, and the highest
is selected for retrieval. The latency is calculated according
to the above equation and, after the appropriate amount of
time has passed, retrieval of that chunk is reported. Even if
new information is presented between the retrieval request
and the actual retrieval, the retrieval result and latency can-
not be influenced.

However, many experiments show that information that
is presented shortly before or after a target stimulus can
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influence both the timing and accuracy of the task at hand
(e.g., MacLeod, 1991; Neely, 1991). In a picture-word
interference task for example, participants respond slower
in the picture-naming task when a distractor word is pre-
sented, even if that distractor word is presented shortly
after the target stimulus.

Since ACT-R has been successfully applied to numerous
memory related tasks (e.g., Anderson, Bothell, Lebiere, &
Matessa, 1998; Pavlik & Anderson, 2005; Taatgen &
Anderson, 2002), it should also provide an explanation of
picture-word interference phenomena. However, given the
ballistic nature of the way memory retrieval is currently
modeled in ACT-R, the question becomes how ACT-R
can be extended to include interference phenomena on very
short latencies. In this paper, we will present a means to
extend the ACT-R architecture of cognition to incorporate
these interference effects. While we extended the memory
system of ACT-R, we have made sure that the main char-
acteristics of the tested and proven declarative memory
equations were not altered. This way, we made sure that
our approach towards semantic interference fits in with a
broader theory of cognition, while at the same time we
add a new phenomenon to the subset of cognition that
ACT-R can account for.

A candidate explanation for semantic interference
effects comes from the field of choice behavior modeling.
In sequential sampling models of simple choice behavior,
the choice between candidates is modeled by competition
between candidates. Sequential sampling is based on the
idea that choosing one option over the other is based
on sampling of inherently noisy neural representations
of these choices, until one has sampled enough evidence
to be chosen (Ratcliff & Smith, 2004). The RACE
(Retrieval by ACcumulating Evidence) model presented
in this paper is very similar to a specific instance of
sequential sampling models: The leaky competing accu-
mulator model as discussed by Usher and McClelland
(2001).

RACE is implemented using the same basic principles as
the leaky competing accumulator model: (a) it consists of a
set of non-linear stochastic accumulators, all of which rep-
resent one memory chunk that can be retrieved. (b) The
activations of the accumulator units are increased by exter-
nal input and recurrent activation, but are decreased by lat-
eral inhibition and decay. However, the actual
implementation of some aspects differs, most importantly
different activation and evidence accumulator functions,
both of which have been adapted to fit RACE in the
ACT-R framework.

2. RACE architecture

The name RACE (Retrieval by ACcumulating Evidence)
reflects both the accumulation of evidence for memory rep-
resentations and the competition between memory chunks
during retrieval: The comparison with a race between
chunks seems appropriate in this respect.

The activation levels of memory chunks in RACE con-
sist of two components: A long-term component that gov-
erns the global activation of chunks and a short-term
component that comes into play during the retrieval pro-
cess. The long-term component is represented by the
ACT—IIK base-level activation equation (Anderson et al.,
2004):

B;=In (i tj"> (2)

where ¢; is the time since the jth presentation of a memory
chunk and d is the parameter that controls decay, which is
fixed at 0.5, as is common practice for ACT-R models
(Anderson et al., 2004). The idea is that memory decays
over time unless attention is shifted to a memory chunk
and its activation is strengthened.

RACE’s short-term component, called accumulated
activation (C; to avoid confusion with the general symbol
for activation A; used in ACT-R), is continuously com-
puted from the moment that a request for retrieval of a
chunk is made. The accumulated activation of chunks
changes as a consequence of positive and negative influ-
ences from other chunks. Chunks from the same chunk
type inhibit each other, thereby competing for accumulated
activation increase. Chunks of different chunk types exci-
tate each other, spreading their activation in the classical
sense (Collins & Loftus, 1975). Thus, by continuously
updating positive and negative spreading-activation, some
chunks may reach a level of activation at which retrieval
can take place.

The accumulated activation can be described as a system
of two dependent equations (Egs. 3 and 4 presented below).
As stated earlier, these equations incorporate the basic
assumptions of Usher and McClelland (2001), but are
adapted to fit in the ACT-R framework.

EEr) =) eMtls,; = Y et b, (3)

Jjék Ik

The system functions as follows: At every time step, posi-
tive associative values (reflected by the first term of Eq.
(3)) and negative associative values (second term of Eq.
(3)) towards a memory chunk are computed, and the differ-
ence is calculated. This is called the net evidence (E%(¢)) of
chunk i of chunk type k at a certain time ¢. Since relative —
not absolute — activation values are what count in ACT-R,
an exponential scaling is applied to calculate net evidence.
Also, both positive and negative associative values are
weighted by the associative strengths (S;; and S;) that exist
between sources of activation and the chunk i. There are
two types of sources of activation in RACE: Chunks (/ in
Eq. (3)) of the same chunk type (k) spread negative activa-
tion to each other, while chunks (j) of different types spread

! Note that Eq. (2) has been critized by Kennedy and Trafton (this
issue). See also Petrov (2006) for an alternative approach to long-term
learning in ACT-R.
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positive activation. This is analogous to neurobiological
findings from which it is clear that lateral inhibition be-
tween cortical representations of visual stimuli (Kastner,
De Weerd, Desimone, & Ungerleider, 1998) as well as
excitatory projections to other cortical layers (Callaway,
1998) exist. Note that most ACT-R models do not place
constraints on the functional role of chunk types (although
it does play a role in production compilation, Taatgen,
2005).

Ci(t) = Ci(t — 1) + 5O —g* . InT (4)

At each point in time, the net evidence determines the accu-
mulated activation growth (Eq. 4). Accumulated activation
increases exponentially according to the amount of net evi-
dence and a scaling factor . If net evidence is negative
(that is, more inhibition than excitation), then growth is
negative. At all time steps, evidence decays with & - InT
(represented by the second term of (Eq. (4))), in which T'
is the time since the start of the accumulation and d*“° a de-
cay parameter. This way, accumulation decay in RACE
resembles decay in the ACT-R optimized learning equation
(Anderson & Lebiere, 1998; Petrov, 2006).

The activation of a chunk at any time is the sum of base-
level and accumulated activation, plus a small normally
distributed noise sample. A chunk is retrieved if this total
activation crosses the accumulation threshold.” The retrie-
val latency is defined as the time between the retrieval
request and the time that the total activation of a matching
chunk reaches this accumulation threshold.

If no evidence is sampled, accumulated activation
decreases, because of decay. Therefore, continuous evi-
dence-based positive reinforcement is necessary for success-
ful retrieval, and absence of positive evidence results in
prolonged retrieval latencies or retrieval failures.

3. Picture-word interference

One of the most well-known experimental paradigms in
cognitive psychology is the Stroop-task (Dyer, 1973;
Stroop, 1935), where, in the original setup, participants
have to either name the color a word is written in, or read
the word, which is always a color name. It turns out that
naming the color is much more difficult than reading the
word — especially if color and word of a single stimulus
do not correspond — as is reflected in increased reaction
times and decreased accuracy in the color naming condi-
tion. The Stroop-task can be regarded as an instance of a
more general class of experiments that demonstrate inter-
ference effects in various naming tasks between pictorial
stimuli and word-form stimuli. These experiments are gen-
erally called picture-word interference experiments (Glaser

2 The accumulation threshold is a different concept from the retrieval
threshold in default ACT-R. Where the retrieval threshold determines the
minimum activation at which a chunk may be retrieved, the accumulation
threshold determines the amount of activation at which a chunk is
retrieved.

& Diingelhoff, 1984; MacLeod, 1991). In the case of the
Stroop-task, the pictorial stimulus is the word color.

We tested the RACE model in a picture-word interfer-
ence task, using two tasks and four different conditions,
similar to the experimental setup by Glaser and Diingelhoff
(1984, Experiment 1). One task consisted of reading a word
(target stimulus) while a picture is presented as distractor;
the other task consisted of naming the depicted item (target
stimulus), while a word is presented (distractor). In both
tasks, the distractors were presented at different SOAs
(Stimulus Onset Asynchronies). If a distractor was pre-
sented at a negative SOA, it was presented before the target
stimulus. At positive SOAs, the distractor was presented
after the target stimulus. Fig. 1 presents stimuli examples
of the different conditions. The first condition (Fig. 1a)
was one in which both target and distractor stimulus refer
to the same concept. This is referred to as the concept-con-
gruent condition. In two other conditions, target and dis-
tractor stimulus refer to different concepts. In the
category-congruent condition the concepts belong to the
same semantic category (e.g., a picture of a house and
the word church were presented, Fig. 1b), in the incongru-
ent condition the concepts do not belong to the same
semantic category (e.g., a picture of a house versus the
word cat, Fig. 1¢). In the neutral condition the target stim-
uli were accompanied by non-word or non-picture distrac-
tors, respectively, to minimize the amount of processing of
the distractor stimulus (Fig. 1d and e).

Glaser and Diingelhoff (1984) found that interference is
highest in the category-congruent condition, which is
known as the semantic gradient effect. They also showed
facilitation in the concept-congruent condition, meaning
that latency is decreased when both target and distractor
stimuli refer to the same concept. A third effect they report
is a clear asymmetry between the picture-naming task and
the word reading task. The semantic gradient and facilita-
tory effect virtually disappear in the word-reading task, but
they are prominent in the picture-naming task.

HOUSE

b g

HOUSE
8

Fig. 1. Example stimuli. (a) concept-congruent condition, (b) category-
congruent condition, (c) incongruent condition, (d) neutral condition in
word-reading, (e) neutral condition in picture-naming. The example
images are taken from the image set by Rossion and Pourtois (2004).
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4. Picture-word interference model

We will begin our discussion of the picture-word inter-
ference model with a review of the WEAVER-++ model
of speech production (Levelt, Roelofs, & Meyer, 1999).
WEAVER-++ is similar to RACE in some ways, but lacks
the integration in a cognitive architecture that we provide.
WEAVER++ has a similar memory structure as RACE,
and a similar activation accumulation mechanism as
RACE. In WEAVER-++ however, it remains unclear
how the model is connected with other aspects of cognition
besides language production. Although WEAVER++ and
previous versions of that theory have been demonstrated to
fit an impressive number of data sets (e.g., Levelt et al.,
1999; Roelofs, 1992, 1997, 2003), it lacks a unified account
of cognition, that for instance ACT-R does provide.
RACE’s integration in the ACT-R framework ensures that
our account can be naturally integrated in models of other
aspects of cognition. One example of this is the subliminal
priming model described by Van Maanen and Van Rijn
(2007).

Word production in WEAVER-++ goes through a
sequence of stages, one of which is the retrieval of the to-
be-spoken word from semantic memory. In WEAVER++
this response selection stage (choosing a lemma) is followed
by response programming and execution stages. Since our
focus has been on the retrieval process, these vocalization
aspects of the task are not included in our model of pic-
ture-word interference. The RACE mechanism is similar
to the mechanism proposed for the lexical selection stage
in WEAVER++ (Roelofs, 1992).

The lexical processing stage from WEAVER-++ is mod-
eled as follows: A network of conceptual nodes is con-
nected to a network of lemma nodes. The conceptual
nodes convey meanings, and are connected with labeled
links. For instance, The concept DOG(X) represents the
meaning of the noun dog, and has a labeled connection
of the type IS-A to the concept node ANIMAL(X), indicat-
ing that a dog is an animal (Roelofs, 1992). The nodes in
the lemma network represent the syntactical dependencies
of the concept nodes. Each lemma node has a labeled
SENSE link to the corresponding concept node, labeled
links to syntactic properties — grammatical gender, syntac-
tic category. The links between concept nodes and between
concept and lemma nodes differ in their connection
strength, indicating a difference in accessibility. Via a
spreading-activation mechanism, activation of one node
influences activation of neighboring nodes. Activation is
also mediated by decay.

If the ratio of the activation of one lemma node against
the activations of the others exceeds a predefined (relative)
criterion, selection of that lemma node takes place, and
WEAVER-++ will proceed with the retrieval of the mor-
pho-phonological properties of that lemma.

Analogous to WEAVER++, our model of picture-word
interference comprises three chunk types (Fig. 2): Icons,
lemmas, and concepts. The concept chunks can be

concepts

icons lemmas

Fig. 2. Processing route for pictures and words in the picture-word
interference model. The route for words is shorter, since words do not
require concept retrieval. Interference takes place between concept type
chunks.

regarded as representations of semantic properties. Chunks
of the icon type represent iconographic instances of the
stimuli. This might be similar to Roelofs’ (1992) object-
form memory store. Chunks of the lemma type can be
regarded as sets of both orthographic and syntactic proper-
ties of a word. Note that this is a simplification of Roelofs’
(1992) model, in which the response selection stage (choos-
ing a lemma) is followed by response programming and
execution stages. Since our focus is on the retrieval process,
these vocalization aspects of the task are not included in
our model of picture-word interference.

Positive activation is spread between chunks of different
types. That is, icons spread to concepts and vice versa, and
lemmas spread to concepts and vice versa. As in Roelofs’
(1992) model, no direct spreading-activation was allowed
between lemmas and icons. The concept chunks also have
negative associations between them and spread negative
activation to each other.

At different SOAs, distractor stimuli were presented to
the model, except in the neutral condition in which only
a target stimulus was presented. We tested the same four
conditions as Glaser and Diingelhoff (1984) did. The only
deviation from the original experiment was the neutral con-
dition: Glaser and Diingelhoff presented the participants
with a non-word distractor and a non-picture distractor
respectively in the picture-naming and word-reading neu-
tral condition. As said, these were chosen in such a way
as to minimize the amount of picture or word processing
as possible. Assuming a successful operationalization by
Glaser and Diingelhoff, we simulated this condition by
not presenting a distractor in the neutral conditions.

In the concept-congruent condition, the distractor con-
sisted of a word stimulus referring to the same concept as
the target, but of a different stimulus type (as in Fig. 1a).
When activation spreads through the model, both distrac-
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tor and target activate the same chunks, but not in the
same order. The word will activate its associated lemma
directly, whereas the picture will first activate the associ-
ated icon and concept chunks. In the category-congruent
condition and the incongruent condition, the distractor
and the target refer to different concepts. However, in the
category-congruent condition, associations between
chunks representing these concepts exist, reflecting the fact
that the target and distractor stimuli belong to the same
semantic category.

The distractors were presented at SOA times relative to
the onset of the target stimulus of —400, —300, —200, —100,
0,+100,+200,+300, and +400 ms, similar to the original
Glaser and Diingelhoff experiment. The stimuli presenta-
tions were modeled as a fixed increase in activation of
the lemma or icon type chunks during the period that a
stimulus was presented.

Since the task was a verbalization of either the picture
name or the word, a trial was finished when the stimulus-
designated lemma was retrieved or after two seconds, indi-
cating a retrieval failure.

In the picture-naming task, the model predicts the fol-
lowing behavior: In the concept-congruent condition with
negative SOAs, a distractor word is presented before the
target picture. The word activates a lemma chunk, which
increases the activation of the associated concept chunks,
but inhibits the activation increase of other lemma chunks.
The higher activation of the concept chunks increases the
activation of the associated icon chunks. Thus, after the
distractor is presented, all chunks that are involved in nam-
ing the picture (one icon, one concept, and one lemma
chunk) have an increased activation. When the target is
presented, all concept-congruent chunks have a higher acti-
vation as compared to the stimulus onset in the neutral
condition, and thus a shorter retrieval latency. In the con-
cept-congruent condition with positive SOAs, the same
process occurs, but to a lesser extent since the distractor
lemma’s activation has less time to influence the activation
of the target lemma before it is retrieved: The picture has
already increased the target lemma’s activation before the
word is presented.

In the incongruent and category-congruent conditions
(both at negative and positive SOAs), the activation of
the chunks that are activated by the distractor interferes
with the activation of the chunks that are activated by
the target, because the target and the distractor stimulus
activate different sets of chunks.

5. Results
Fig. 3 summarizes the results of our simulation studies.’

The figure represents the latency differences in different
conditions relative to the neutral condition. Since the focus

3 An R implementation of RACE and the picture-word interference
model can be retrieved from http://www.ai.rug.nl/~leendert/RACE.html.

of our model is on the retrieval part of the picture-naming
and word-reading tasks, we can compare the latency differ-
ences between the different conditions from the model to
the data. The observed latencies from the data set also
comprise timing effects from other subtasks, such as pro-
nunciation or perceptual encoding.

Negative values in Fig. 3 indicate faster retrievals than
in the neutral condition, and positive values indicate slower
retrieval than in the neutral condition. The qualitative
effects observed in Glaser and Diingelhoff (1984, Experi-
ment 1) can be seen in the predicted latency differences
from the RACE model. The semantic gradient effect can
be observed by noting the different relative latencies of
the category-congruent and incongruent conditions. The
higher latencies in the category-congruent condition com-
pared to the incongruent condition indicate that higher
associations between concepts result in stronger inhibition.

The facilitatory effect in the picture-naming task is also
apparent, although the effect appears to be too large. Our
explanation for this increased effect is that the activation
of the target lemma chunk is too high when the target stim-
ulus is presented, probably caused by too little decay after
the previous retrieval initiated by the distractor stimulus.
Another consideration might be that the base-level activa-
tion goes to near infinity directly following a retrieval, thus
causing too much increase in activation of the target lemma
chunk. This may also explain the observed effect in the sim-
ulation of the word-reading task. Thus, it seems that the
base-level activation may not be a good measure of the
level of activation of a chunk at these short time intervals.
Because RACE is intended as an extension of the ACT-R
framework, it did not seem appropriate to change the
way in which the global, long-term activation is computed.

When comparing the differences between the two simu-
lated tasks (picture-naming and word-reading), the asym-
metry observed by Glaser and Diingelhoff is also shown
by RACE. We explain this asymmetry by two effects: The
shorter processing route and the faster encoding of word
type stimuli. As (Glaser & Glaser, 1989; La Heij, Happel,
& Mulder, 1990; Roelofs, 1992) noted, pronouncing words
does not require retrieving a concept from memory, there-
fore processing word type stimuli can be much faster than
processing pictorial stimuli. In Fig. 2 it can be seen that the
route in our model from a picture to the associated lemma
is much longer than from the word to the associated
lemma: Two intermediate steps have to be taken (that is,
processing of icon chunks and processing of concept
chunks), before the lemma chunk is retrieved. Thus, poten-
tially interfering pictures do not activate lemma chunks
before the target lemma is retrieved. Only at high negative
SOAs an effect can be seen (Fig. 3), because under that con-
dition there is enough time for the distractor stimulus to
activate the inhibiting distractor lemma and interfere with
retrieval of the target lemma.

A difference in encoding speed is incorporated to
account for the observation that word recognition is an
automated process and picture recognition is not. Without
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Fig. 3. Simulation results and experimental data (Glaser & Diingelhoff, 1984, Experiment 1), for the picture-naming task and the word-reading task.

this difference, the model processes pictures nearly as fast
as words, and picture-naming in the incongruent condition
is as fast as in the neutral condition. The faster encoding of
words reinforces the effect that the lemma associated with a
word is processed before the lemma associated with the pic-
ture stimulus is retrieved.

6. Discussion

We have shown that a sequential sampling model can
account for the time course of memory retrieval during
asynchronously presented stimuli. This is an extension of
the results from Usher and McClelland (2001) in which
they only investigated accumulators with equal onset times.
Moreover, RACE can be regarded as an extension of the
ACT-R theory of cognition. It combines the long-term
base-level activation equation of ACT-R with a short-term
accumulated activation used for retrieval. RACE replaces
the retrieval mechanism in ACT-R represented by Eq. (1).

The general fit of our model of picture-word interference
is quite reasonable, thereby indicating that the RACE
equations can provide for semantic interference effect in
memory retrieval. Retrieval in the concept-congruent con-
dition seems to be too fast, however. We hypothesize that
this is a result of the way we modeled the global, long-term
activation component, namely by using ACT-R’s base-level
activation equation. Because in the concept-congruent con-
dition the target and distractor stimuli both refer to the
same chunks, retrieval of these chunks — caused by the dis-
tractor stimulus — increases their base-level activations. The
high activation of these chunks will result in a very short
latency for the retrieval caused by the target stimulus. It
seems that the base-level activation equation is a better pre-
dictor of activation at slightly larger time scales, when the
retrievals are more spaced. This is supported by the obser-
vation that retrievals in most ACT-R models are tempo-
rally more separated than ~100 ms. Further research in
the interaction between the base-level activation and accu-

mulated activation seems necessary to correct for the fast
retrievals in the concept-congruent condition.

Also, our model accounts for facilitatory effects. In line
with the findings from Glaser and Diingelhoff (1984),
RACE predicts that semantic facilitation occurs if target
and distractor both refer to the same concept.

In the past, ACT-R models of semantic interference
effects have been proposed (Altmann & Davidson, 2001;
Lovett, 2002, 2005). The WACT model (Altmann &
Davidson, 2001) seems similar to RACE at first sight, since
it combines ACT-R with insights from the WEAVER++
model. However, WACT describes retrieval in a Stroop-
task as ballistic, but with a retry-mechanism that checks
if a retrieved lemma chunk matches already retrieved con-
ceptual information; If not, retrieval is retried. Thus,
WACT accounts for inhibitory effects by multiple retrievals
caused by retrieval failures. As such, WACT is a perfect
example of a stroboscopic account of cognition. Retrieval
latency for one trial can be the latency associated to one
retrieval attempt, or two retrieval attempts, or many, but
nothing in between. Therefore, the distribution of reaction
times predicted by WACT is clustered around the time it
takes for one or multiple retrieval attempts. This does
not correspond with the general assumption that partici-
pants’ reaction times in the Stroop-task are unimodally dis-
tributed (Heathcote, Popiel, & Mewhort, 1991).

NJAMOS (Lovett, 2002, 2005) is an ACT-R model of
the Stroop-task that theorizes that the Stroop effects are
due to utility differences in the production rules for word
and picture recognition. In the model, a general production
rule is assumed that fires if a stimulus is present that has
some word-like qualities, irrespective of the current task
(color naming or reading). In addition, a more specific pro-
duction rule is assumed that only fires if the task is color
naming. The second rule has a lower utility than the first,
meaning that the system has a preference to execute the
first rule over the second. Therefore, in most cases (because
of noise over the utility values), the second rule will only be
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selected after the first production has fired. In those cases
the first rule has not completed the task successfully,
because the task was color naming, not word-reading.
The second rule thus has to fire to complete the task. This
two-step procedure for color naming is intended to explain
the Stroop asynchrony between reading and color naming.

If the color and the word are congruent, the chunk that
encodes the word-like features of the stimulus spreads acti-
vation to the chunk that encodes the color information.
The activation of that chunk will increase, resulting in
the facilitatory effect at negative SOAs. In the incongruent
condition, negative spreading-activation is introduced to
explain the interference effects.”

At small positive SOAs (e.g., +100 ms), NJAMOS also
predicts a divergence between the latencies for different
conditions, although smaller than that observed in the data
(Lovett, 2002). Given the ballistic retrieval latency equa-
tion of ACT-R, it seems that these latencies can only be
explained by averaging over several trials. That is, either
one (the general rule) or two production rules (both general
and specific) will fire, resulting in a bimodal distribution of
the data. Again, the distribution of the Stroop-latencies
does not seem bimodal (Heathcote et al., 1991).

We suggest that not fully processed words at small posi-
tive SOAs might explain this difference between model and
data. Perhaps a combination of the utility-based explana-
tion Lovett proposes combined with RACE will produce
a better fit to the data.

The picture-word interference experiment shows that the
RACE model can be a useful extension of the ACT-R
architecture of cognition. However, one crucial feature of
RACE is not supported by the ACT-R architecture. In
RACE, all chunks in declarative memory spread activation
to all other chunks. ACT-R assumes that only chunks that
are presently in the buffers spread their activation (Ander-
son et al., 2004).° Global spreading-activation was not
included in the architecture, because it appeared that no
second-order priming effect exists, indicating that spread-
ing of activation through declarative memory was not nec-
essary (Anderson, 1990). However, more recent evidence
suggest a second-order priming effect, although very weak,
that cannot be explained by assuming only first-order asso-
ciations between prime and stimulus (Livesay & Burgess,
1998). Therefore, we consider this deviation of ACT-R the-
ory reasonable.

Experiments using subliminal primes indicate that prim-
ing may also occur when a prime is not fully processed
(Marcel, 1983; Merikle, Smilek, & Eastwood, 2001), which
hints that priming already occurs before chunks in the buf-

* Note however that this is an undiscussed deviation from standard
ACT-R, where spreading-activation is intended to be positive, because it
represents the increased likelihood of needing one chunk when another
chunk is present.

> In ACT-R 6.0, chunks in all buffers can spread activation, as opposed
to ACT-R 5.0, in which only chunks in the goal buffer could be a source of
activation.

fers are fully identified. A dynamical activation mechanism
such as RACE may provide accurate modeling accounts
for this observation. In RACE, activation of chunks —
either in the buffers or in declarative memory — always
affects the activation of other chunks, even before the accu-
mulation threshold is reached and a chunk might be
retrieved. A RACE model of a subliminal priming task
has been shown to account for retrieval latencies typically
observed in these kinds of tasks (Van Maanen & Van Rijn,
2007).

This paper demonstrated how RACE can account for
picture-word interference phenomena. We believe that
RACE can account for all effects that involve semantic
interference or facilitation. Using RACE, an explanation
of these effects can be provided on a higher level of abstrac-
tion than connectionist modeling (as has been done for
Stimulus-Response Compatibility by Grecucci, Cooper, &
Rumiati (this issue), because it is integrated in a full cogni-
tive architecture. This way, RACE combines insights from
multiple levels of abstraction.
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