
Best, B., Fincham, J., Gluck, K., Gunzelmann, G., & Krusmark, M. (2008). Efficient use of large-scale computational resources. In J.
Hansberger (Ed.), Proceedings of the Seventeenth Conference on Behavior Representation in Modeling and Simulation (pp.
180-181). Orlando, FL: Simulation Interoperability Standards Organization.

180

Efficient Use of Large-Scale Computational Resources

Brad Best
Adaptive Cognitive Systems

1942 Broadway St., Suite 305
Boulder, CO 80302

(303) 413-3472

Jon Fincham
Carnegie Mellon University
Department of Psychology

5000 Forbes Ave.
Pittsburgh, PA 15213

(412) 268-3498

Kevin Gluck, Glenn Gunzelmann
Air Force Research Laboratory

Warfighter Readiness Research Division
6030 S. Kent St.
Mesa, AZ 85212

480-988-6561 x-677

Michael Krusmark
L-3 Communications at

Air Force Research Laboratory
Warfighter Readiness Research Division

6030 S. Kent St.
Mesa, AZ 85212

480-988-9773 x-679

1. Introduction
We have recently seen some of the first forays into the
use of high-performance computing (HPC) resources
among scientists in the cognitive modeling community
(e.g., Gluck, Scheutz, Gunzelmann, Harris, & Kershner,
2007). HPC resources have been used to give cognitive
modelers a tool to explore parameter spaces so they can
better understand cognitive models and architectures.
Much of this research has focused on using HPC
resources to perform a sweep of the parameter space
associated with particular task models to identify the
models and associated parameter values that maximize fit
to the corresponding human behavioral data. One of the
lessons learned in the early stages of our use of HPC
resources has been the realization that, regardless of the
number of available processors, there will always be
interesting research questions that will stretch or exceed
the capacities of any HPC resource (i.e., available
resources will always limit the number and complexity of
questions that can be asked). The combinatorics of many
cognitive model parameter spaces are simply prohibitive.
Thus, there is a significant challenge in managing the
combinatorial explosion that results from considering
these larger cognitive modeling parameter spaces. The
goal of the current work is to explore methods for
improving the efficiency of HPC cognitive modeling
work through the application of Adaptive Mesh
Refinement (AMR) techniques.

2. Adaptive Mesh Refinement (AMR)
Adaptive Mesh Refinement is a general technique used to
narrow the search of a broad parameter space to those
areas that are “interesting” (Berger & Oliger, 1984; Rai &
Anderson, 1981). This smart exploration of parameter
spaces is accomplished through decomposing the
experimental space hierarchically, and focusing
computational resources on areas that are more
informationally rich. Visualization also takes advantage

of this decomposition, and the techniques often go hand-
in-hand under the rubric of “adaptive mesh refinement”,
or AMR. AMR is characterized by a breadth first
decomposition of the parameter space, leading to finer
and finer refinements in areas of the space that have some
measurable local curvature. Flat (linear) space is often
uninteresting and sampling it with higher frequency does
not provide additional information about the dynamics of
the system.

2.1 AMR Applied to Cognitive Modeling
Developing code for smart search of the parameter space
is complicated in the cognitive modeling domain by the
stochasticity of results (i.e., different model runs may
produce different results at the same parameter values),
and by the variance inherent in the underlying phenomena
to be modeled (human behavior). After exploring several
alternatives, we have implemented a version of AMR that
accounts for both stochasticity and curvature.

The essential method is multi-dimensional and
architecture agnostic, but it is best explained starting with
a single dimension for a particular architecture. Given an
ACT-R parameter space and two values of that parameter
for some dependent measure (e.g., reaction time at G=10
and G=20), the question that needs to be answered is
whether it is profitable to also sample the parameter space
at an intermediate value (G=15). Given a number of
samples at G=10 and G=20, it is possible to conduct a
power analysis to determine how many samples would be
necessary in order to detect a difference at G=15. The
null hypothesis we have implemented is that the surface
between the two points is linear, and thus we expect the
value at G=15 to have no statistically detectable
difference from the mean of the values sampled at G=10
and G=20. This can be used to both drive the number of
model runs at the point (through power analysis), and to
determine when the refinement is no longer necessary

181

(when the output for model runs using intermediate
parameter values are consistent with the linear
interpolations of the extreme values).

2.2 Distributing ACT-R runs
The ACT-R-AMR system is a client-server software
package capable of running multiple ACT-R 6.0 models
simultaneously on different CPUs for the purpose of
rapidly searching a parameter space. The system
combines AMR-based exploration of a parameter space
with visualization of that space using the VisIt
visualization software system developed by Lawrence
Livermore National Laboratory (LLNL).

The distribution of ACT-R runs is accomplished through
a client-server architecture. The client is a Lisp program
that connects to the server, requests a unique socket, and
then communicates with the server over that socket. The
client socket code is based on the ACT-R socket support
code, and is Lisp version agnostic (it contains code
specific to each of the Lisp platforms ACT-R runs on, and
so is portable across a variety of Lisp implementations
including all of those that ACT-R currently supports).
The server code, however, also leverages multi-threading
to allow simultaneous communication with multiple
clients and parallel pursuit of mesh refinement. This code
is based on the Allegro multi-threading model, and has
not been ported to other Lisp implementations. Thus,
while the client is platform independent, the server
currently requires Allegro Common Lisp.

2.3 Determining an Appropriate Number of
Model Runs
Due to their stochastic nature, ACT-R cognitive models
produce a distribution of results for a single set of
parameters. Experimenters typically run their models
repeatedly to get an accurate estimate of the mean.
Sometimes researchers run the model the same number of
times as there are experimental subjects (this is widely
known to be a questionable, if common, heuristic) and
sometimes they run the model through some relatively
large, fixed number of iterations, such as 100. The
approach we took was to run the model as many times as
is needed to generate a point prediction. That is, we used
the variance of the points at the corners of an unexplored
rectangular section of the parameter space (note that these
are actually n-dimensional hypercubes) to estimate the
variance at the center of the space, and use this estimated
variance combined with the means of the corner points to
generate an expected mean and variance for the midpoint
of the unexplored mesh section. This allowed the
application of a statistical power analysis using a t-test,
which was parameterized by the desired alpha and beta
levels for the t-test. Thus, given an experimenter
determined a-priori tolerance and measured local noise

(variance), the ACT-R AMR system will determine the
number of runs needed to detect a difference greater than
the specified tolerance between the expected mean
(obtained by averaging the corners of the rectangular
mesh) and the actual measured mean (obtained by running
the model at the mesh midpoint).

The core of the ACT_R_AMR system is the
implementation of a power-analysis based adaptive search
mechanism, embedded in the ACT-R-AMR software, that
concentrates effort of the system in areas where there is
unpredicted local curvature. This allows for more
focused and computationally efficient parameter searches,
and ultimately allows for the pursuit of a larger number of
ambitious questions with whatever computational
resources are available.

3. Efficiency Improvements
To determine whether the AMR algorithm increased the
efficiency of a parameter space search, an ACT-R model
of a simple research task was run on a full set of
parameter values and a space generated by the AMR
algorithm. Results suggest that qualitatively informative
results were obtained by sampling only 1% of the full
space. Moreover, visualizations of the AMR generated
space were of sufficient detail for the researcher to
understand the dynamics of the model across the full
parameter space.

4. Conclusions
The kind of combinatorial explosion that is possible out
of the many available parameter combinations in a
cognitive modeling system, such as ACT-R, can quickly
overwhelm any computing resource. Thus, the road
forward must include approaches that reduce the need to
sample some of the ranges of those variables through
intelligent search. The ACT-R AMR system described
here is one implementation that achieves this goal.

References
Berger, M., & Oliger, J. (1984). Adaptive mesh

refinement for hyperbolic partial differential equations.
Journal of Computational Physics, 53, 484-512.

Rai, M. M., & Anderson, D. (1981). Grid evolution in
time asymptotic problems. Journal of Computational
Physics, 43, 327-344.

Gluck, K., Scheutz, M., Gunzelmann, G., Harris, J., &
Kershner, J. (2007). Combinatorics meets processing
power: Large-scale computational resources for
BRIMS. In Proceedings of the Sixteenth Conference on
Behavior Representation in Modeling and Simulation
(pp. 73-83). Orlando, FL: Simulation Interoperability
Standards Organization.

