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1. Introduction 
We have recently seen some of the first forays into the 
use of high-performance computing (HPC) resources 
among scientists in the cognitive modeling community 
(e.g., Gluck, Scheutz, Gunzelmann, Harris, & Kershner, 
2007).  HPC resources have been used to give cognitive 
modelers a tool to explore parameter spaces so they can 
better understand cognitive models and architectures.  
Much of this research has focused on using HPC 
resources to perform a sweep of the parameter space 
associated with particular task models to identify the 
models and associated parameter values that maximize fit 
to the corresponding human behavioral data.  One of the 
lessons learned in the early stages of our use of HPC 
resources has been the realization that, regardless of the 
number of available processors, there will always be 
interesting research questions that will stretch or exceed 
the capacities of any HPC resource (i.e., available 
resources will always limit the number and complexity of 
questions that can be asked ).  The combinatorics of many 
cognitive model parameter spaces are simply prohibitive.  
Thus, there is a significant challenge in managing the 
combinatorial explosion that results from considering 
these larger cognitive modeling parameter spaces.  The 
goal of the current work is to explore methods for 
improving the efficiency of HPC cognitive modeling 
work through the application of Adaptive Mesh 
Refinement (AMR) techniques.   
 
2. Adaptive Mesh Refinement (AMR) 
Adaptive Mesh Refinement is a general technique used to 
narrow the search of a broad parameter space to those 
areas that are “interesting” (Berger & Oliger, 1984; Rai & 
Anderson, 1981).  This smart exploration of parameter 
spaces is accomplished through decomposing the 
experimental space hierarchically, and focusing 
computational resources on areas that are more 
informationally rich.  Visualization also takes advantage 

of this decomposition, and the techniques often go hand-
in-hand under the rubric of “adaptive mesh refinement”, 
or AMR.  AMR is characterized by a breadth first 
decomposition of the parameter space, leading to finer 
and finer refinements in areas of the space that have some 
measurable local curvature.  Flat (linear) space is often 
uninteresting and sampling it with higher frequency does 
not provide additional information about the dynamics of 
the system.   
 
2.1 AMR Applied to Cognitive Modeling 
Developing code for smart search of the parameter space 
is complicated in the cognitive modeling domain by the 
stochasticity of results (i.e., different model runs may 
produce different results at the same parameter values), 
and by the variance inherent in the underlying phenomena 
to be modeled (human behavior).  After exploring several 
alternatives, we have implemented a version of AMR that 
accounts for both stochasticity and curvature. 
 
The essential method is multi-dimensional and 
architecture agnostic, but it is best explained starting with 
a single dimension for a particular architecture.  Given an 
ACT-R parameter space and two values of that parameter 
for some dependent measure (e.g., reaction time at G=10 
and G=20), the question that needs to be answered is 
whether it is profitable to also sample the parameter space 
at an intermediate value (G=15).  Given a number of 
samples at G=10 and G=20, it is possible to conduct a 
power analysis to determine how many samples would be 
necessary in order to detect a difference at G=15.  The 
null hypothesis we have implemented is that the surface 
between the two points is linear, and thus we expect the 
value at G=15 to have no statistically detectable 
difference from the mean of the values sampled at G=10 
and G=20.  This can be used to both drive the number of 
model runs at the point (through power analysis), and to 
determine when the refinement is no longer necessary 
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(when the output for model runs using intermediate 
parameter values are consistent with the linear 
interpolations of the extreme values). 
 
2.2 Distributing ACT-R runs 
The ACT-R-AMR system is a client-server software 
package capable of running multiple ACT-R 6.0 models 
simultaneously on different CPUs for the purpose of 
rapidly searching a parameter space.  The system 
combines AMR-based exploration of a parameter space 
with visualization of that space using the VisIt 
visualization software system developed by Lawrence 
Livermore National Laboratory (LLNL). 
 
The distribution of ACT-R runs is accomplished through 
a client-server architecture.  The client is a Lisp program 
that connects to the server, requests a unique socket, and 
then communicates with the server over that socket.  The 
client socket code is based on the ACT-R socket support 
code, and is Lisp version agnostic (it contains code 
specific to each of the Lisp platforms ACT-R runs on, and 
so is portable across a variety of Lisp implementations 
including all of those that ACT-R currently supports).  
The server code, however, also leverages multi-threading 
to allow simultaneous communication with multiple 
clients and parallel pursuit of mesh refinement.  This code 
is based on the Allegro multi-threading model, and has 
not been ported to other Lisp implementations.  Thus, 
while the client is platform independent, the server 
currently requires Allegro Common Lisp. 
 
2.3 Determining an Appropriate Number of 
Model Runs 
Due to their stochastic nature, ACT-R cognitive models 
produce a distribution of results for a single set of 
parameters.  Experimenters typically run their models 
repeatedly to get an accurate estimate of the mean.  
Sometimes researchers run the model the same number of 
times as there are experimental subjects (this is widely 
known to be a questionable, if common, heuristic) and 
sometimes they run the model through some relatively 
large, fixed number of iterations, such as 100.  The 
approach we took was to run the model as many times as 
is needed to generate a point prediction.  That is, we used 
the variance of the points at the corners of an unexplored 
rectangular section of the parameter space (note that these 
are actually n-dimensional hypercubes) to estimate the 
variance at the center of the space, and use this estimated 
variance combined with the means of the corner points to 
generate an expected mean and variance for the midpoint 
of the unexplored mesh section.  This allowed the 
application of a statistical power analysis using a t-test, 
which was parameterized by the desired alpha and beta 
levels for the t-test.  Thus, given an experimenter 
determined a-priori tolerance and measured local noise 

(variance), the ACT-R AMR system will determine the 
number of runs needed to detect a difference greater than 
the specified tolerance between the expected mean 
(obtained by averaging the corners of the rectangular 
mesh) and the actual measured mean (obtained by running 
the model at the mesh midpoint). 
 
The core of the ACT_R_AMR  system is the 
implementation of a power-analysis based adaptive search 
mechanism, embedded in the ACT-R-AMR software, that 
concentrates effort of the system in areas where there is 
unpredicted local curvature.  This allows for more 
focused and computationally efficient parameter searches, 
and ultimately allows for the pursuit of a larger number of 
ambitious questions with whatever computational 
resources are available. 
 
3. Efficiency Improvements 
To determine whether the AMR algorithm increased the 
efficiency of a parameter space search, an ACT-R model 
of a simple research task was run on a full set of 
parameter values and a space generated by the AMR 
algorithm.  Results suggest that qualitatively informative 
results were obtained by sampling only 1% of the full 
space.  Moreover, visualizations of the AMR generated 
space were of sufficient detail for the researcher to 
understand the dynamics of the model across the full 
parameter space.   
 
4.  Conclusions  
The kind of combinatorial explosion that is possible out 
of the many available parameter combinations in a 
cognitive modeling system, such as ACT-R, can quickly 
overwhelm any computing resource.  Thus, the road 
forward must include approaches that reduce the need to 
sample some of the ranges of those variables through 
intelligent search.  The ACT-R AMR system described 
here is one implementation that achieves this goal.   
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