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ABSTRACT: Behavior representations in simulation environments have become increasingly sophisticated as 
computational power and understanding of human cognitive processes have increased. Despite improvements in the 
breadth and depth of models of human behavior, comparatively little research has explored how human cognition is 
moderated by external and internal factors. In this review paper, we focus on fatigue, a pervasive cognitive 
moderator that has dramatic and sometimes tragic effects on human cognitive functioning. We discuss prior and 
current research investigating models of how fatigue impacts human cognition and behavior, sometimes leading to 
dramatic degradations. The paper ends with a description of  our on-going efforts to identify mechanisms for fatigue 
within the Adaptive Control of Thought – Rational (ACT-R) cognitive architecture. Our approach involves integrating 
diverse research areas, especially biomathematical modeling of the effects of fatigue on neurobehavioral functioning, 
and computational cognitive modeling of human cognition and behavior. 
 
1. Motivation and Background 
 
Increasingly sophisticated human behavior 
representations are rapidly becoming a standard 
component of modern modeling and simulation 
capabilities. These entities can serve in a variety of roles, 
including adversaries, teammates, and neutral forces. 
They engage in complex tasks and have become critical 
to serving the variety of goals associated with immersive 
environments, simulations, synthetic tasks, and games, 
including training, education, analysis, and entertainment. 
 
As the tools, techniques, and implementations of human 
behavior representations have begun to mature, increasing 
emphasis has been placed on ensuring that they accurately 
reproduce the cognitive capacities, limitations, and 
processes of the human participants they replace. One 
particular area of increased focus is the impact of 
cognitive moderators (e.g., Gluck, Gunzelmann, Gratch, 
Hudlicka, & Ritter, 2006). Cognitive moderators are 
factors that influence human cognition, but are not 
necessarily part of the goal-directed thought that is the 
focus of information processing. In this paper we focus 
on mathematical and computational implementations of 
fatigue as a cognitive moderator. 
 

Psychological research has only begun to uncover the 
details of how cognitive moderators affect thought. In the 
case of fatigue, however, there is an extensive empirical 
literature documenting the negative consequences of sleep 
restriction, sleep deprivation, and the intrinsic circadian 
clock (e.g., Durmer & Dinges, 2005; Dinges, Baynard, & 
Rogers, 2005). In contrast, models of these processes, and 
the concomitant changes in cognitive functioning 
associated with these processes, are relatively few. Our 
goal here is to review significant prior and on-going 
efforts and accomplishments in the development of 
mathematical and computational theories of how fatigue 
impacts cognitive performance. 
 
The approaches are varied, but they are linked by a 
common overarching goal: The desire to make principled, 
quantitative predictions about how increased levels of 
fatigue will impact performance in applied settings. The 
applications of this research are extensive. A surprising 
number of industrial and commercial disasters have been 
attributed at least partially to fatigue (e.g., Caldwell, 
2003; Mitler et al., 1988), and so have a sizable 
proportion of other tragedies like automobile accidents 
(e.g., Horne & Reyner, 1999). One application of this 
research is to make predictions regarding an individual’s 
readiness to engage in a particular, cognitively demanding 
activity. In fact, some research on fatigue has led to 
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transitions of tools to industry to support decision making 
concerning work-rest schedules (e.g., Dean, Fletcher, 
Hursh, & Klerman, 2007). 
 
Another potential application of this research is in the 
development of synthetic entities to populate virtual 
environments. In training contexts it is valuable for the 
trainee experience to match as closely as possible the 
cognitive demands that will be present in the operational 
context. In many operational environments, restricted 
sleep and periods of acute sleep deprivation are the norm, 
meaning that most or all individuals will be operating at 
reduced levels of alertness. This is certain to have 
consequences for their performance. Thus, trainees 
should benefit from interacting with synthetic teammates 
that can display the appropriate consequences of fatigue, 
resulting in better preparedness for the real world context. 
 
In the next section, we review a number of research 
efforts aimed at developing quantitative models of 
fatigue. We begin with efforts directed specifically at 
developing behavior representations that exhibit fatigue-
related changes in performance, and then consider several 
projects that have focused on generating algorithms to 
quantify the dynamics of fatigue, but which are not 
connected directly to cognitive mechanisms to simulate 
human performance. Following this overview, we 
describe efforts at integrating these approaches, including 
our research, which represents a synthesis of these two 
broad approaches to understanding fatigue. 
 
2. Approaches to Modeling Fatigue 
 
Fatigue has been an important topic of research for 
decades within psychology. Behavioral studies of the 
effects of fatigue have a long history, and have 
documented the negative effects associated with lack of 
sleep across a broad range of tasks and domains (e.g., 
Durmer & Dinges, 2005; Dinges et al., 2005). As 
technological advances enabled more sophisticated 
neuroimaging research, investigations of fatigue focused 
more extensively on neurophysiological and 
neuropsychological data, uncovering a variety of changes 
in brain functioning associated with fatigue and circadian 
rhythms (e.g., Drummond, Brown, Salamat, & Gillin, 
2004; Drummond, Gillan, & Brown, 2001; Portas et al., 
1998). Most recently, some effort has been invested in 
using the extensive empirical literature to develop 
computational accounts of the dynamics of fatigue and 
circadian rhythms and the impact of those factors on 
cognitive functioning.  
 
2.1 Architected Models of Fatigue 
 
There have been two prior efforts over the last 10 years to 
incorporate mechanisms for fatigue into architecture-
based behavior representations. In both cases these appear 

to have been single-model investigations of this topic. 
The goal in each case was to increase the cognitive 
validity of the model, to better reflect the limitations of 
human arousal and motivation. 
 
2.1.1 Modeling Within-Task Fatigue in ACT-R 
 
Jongman (1998; Jongman & Taatgen, 1999) conducted 
research to understand how to represent the impact of 
extended time on task within the ACT-R cognitive 
architecture (Anderson et al., 2004). Although this is 
related to the topic of sleep- and circadian-influenced 
fatigue, it seems worth emphasizing that the cognitive 
fatigue associated with extended time on task may be 
distinct from fatigue caused by long periods of 
wakefulness. Jongman and Taatgen developed a task 
requiring participants to determine the weights of packets 
of coffee (under a set of constraints), and identified two 
general strategies for completing the task. One of the 
strategies required more effort to execute effectively, but 
led to better performance compared to the alternative 
strategy, which was easier to execute but less successful. 
They found that participants tended to shift from the more 
effective to the less effective strategy when mentally 
fatigued. 
 
The model developed by Jongman and Taatgen 
instantiates the two strategies for performing the task. The 
transition that occurs as mental fatigue increases is 
achieved by manipulating a parameter that controls the 
likelihood of selecting one strategy versus another. Using 
this mechanism, Jongman and Taatgen were able to 
account for strategy shifts for individual participants, 
including relatively good fits to performance on 
individual trials. 
 
2.1.2 Modeling Pilot Fatigue with Soar 
 
Using the Soar cognitive architecture, Jones, Laird, & 
Neville (1998) added mechanisms for fatigue to enhance 
the realism of behavior representations within the TacAir-
Soar model of human pilot performance (Laird et al., 
1998), by adding mechanisms to model the effects of 
cognitive moderators on performance. To accomplish 
this, Jones et al. (1998) made reference to a mathematical 
model developed by Neville (1997) and colleagues 
(Neville et al., 2000) to represent the dynamics of fatigue 
(the SILCS model described below). The model includes 
mechanisms to produce both a slowdown in cognitive 
functioning and an increased prevalence of “lapses” in 
cognitive functioning, representing two popular 
hypotheses regarding the mechanisms through which 
fatigue impacts performance (e.g., Dinges & Kribbs, 
1991). 
 
To introduce fatigue effects into the TacAir-Soar model, 
Jones et al. (1998) modified Soar’s mechanisms to allow 
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for the introduction of artificial delays in processing. 
Once these mechanisms were implemented, Jones and 
colleagues compared the performance of “fatigued” pilot 
models to “non-fatigued” pilot models, however their 
comparisons were based only upon preliminary data and 
anecdotal evidence regarding the validity of the model’s 
behavior. In addition, it is not clear that the model from 
Neville (1997) was integrated into TacAir-Soar to 
generate differential predictions across different levels of 
fatigue or at different points in the circadian cycle.  
 
Despite the limitations, this research does represent 
perhaps the first serious attempt to develop robust 
behavior simulations that show performance decrements 
as a consequence of sleep-related fatigue. Indeed, the 
methodology pursued by Jones et al. (1998) shares 
similarities with our own approach to developing 
mechanisms for fatigue, which we describe below. One 
important commonality is the interest in integrating a 
mathematical model representing the dynamics of fatigue. 
Such models have been developed independently from 
direct attempts to produce behavior models. Some of 
these efforts are described in the next section. 
 
2.2 Mathematical Algorithms for Fatigue  
 
2.2.1 The Sleepiness-Induced Lapsing and Cognitive 
Slowing (SILCS) Model 
 
SILCS is an empirically-derived model for describing the 
behavioral dynamics of human performance (Neville et 
al., 2000) under conditions of total sleep deprivation. 
Interesting strengths include a solid theoretical basis for 
the components of the model (hemi-circadian, circadian, 
and sleep homeostat) and fits to multiple dependent 
measures. Neville and colleagues explicitly state that the 
intended application for SILCS is in synthetic warfighters 
for high fidelity simulation systems. SILCS itself is 
comprised of three functions representing the three 
empirical findings of interest to its developers: lapse 
frequency, lapse duration, and general response slowing. 
Each of these three functions includes parameters 
representing hemi-circadian, circadian, and sleep 
homeostat components, as well as a baseline performance 
parameter.  
 
The SILCS modeling methodology involves finding the 
best-fitting mathematical parameters for the empirical 
result relevant to that function. For instance, Neville et al. 
(2000) computed the number of lapses occurring per 
minute in their empirical results, and then fit the “Lapse 
frequency per min” function to that result.  They did the 
same, separately, for mean lapse durations and also for 
mean response times, with different best-fitting parameter 
values for the different dependent measures.  Neville et 
al. did not provide quantitative fit metrics, such as 
correlations or deviations, but they did plot their model 

predictions and the empirical human data from two 
studies, which allows for a qualitative visual assessment 
of the goodness of their account. For many measures, the 
fit appears to capture qualitative trends, although there are 
several cases where the model predictions stray 
considerably from the observed data. 
 
2.2.2 The Fatigue Degradation (FADE) Algorithm 
 
French and Morris (2003) describe a development and 
validation approach for their FAtigue DEgradation 
(FADE) algorithm that is similar in spirit to that used for 
SILCS, but extends the methodology employed by 
Neville et al. (2000) in a couple of interesting ways. The 
fundamental similarity is that the FADE algorithm 
parameters are derived from a sample of human subjects 
in a sleep deprivation experiment. The algorithm itself is 
simpler, however, comprised of a linear “time awake” 
component and a cosine “circadian oscillation” 
component. French and Morris fit the FADE algorithm to 
data from a 52-hour sleep deprivation experiment and 
found that it correlated .92 with the human subjects data. 
They then did a zero-free-parameter fit of the same model 
to data from a different task in the same 52-hour sleep 
deprivation experiment and found that it correlated .87 
with those data. This zero-free-parameter prediction is 
one way in which French and Morris went beyond the 
methodology of Neville et al. 
 
French and Morris also extended their model by adding a 
parabolic recovery component that allows them to make 
predictions about fatigue levels over longer periods of 
time and varying levels of sleep restriction. With this 
extension in place, French and Morris then compared the 
fatigue levels predicted by two maritime work-rest 
schedules: the centuries old 4-hour watch standard that is 
in common use today, which FADE predicts results in 
unacceptably high fatigue levels after just 8 days of 
deployment, and an alternative schedule that appears to 
maintain acceptable fatigue levels indefinitely. There is 
no validation of these predictions against human data, but 
the effort speaks to an intended application of fatigue 
models of this sort, which is to guide policy and practice. 
 
2.2.3 Biomathematical Models of Fatigue 
 
The approaches to modeling fatigue described so far have 
been developed by researchers whose focus is on 
developing behavior representations. In contrast, 
biomathematical models represent the main approach to 
modeling the effects of fatigue that have come out of the 
sleep research community. There are a number of these 
models (see Klerman & St. Hilaire, 2007; Mallis, Mejdal, 
Nguyen, & Dinges, 2004; Van Dongen, 2004), which all 
share a common theoretical origin in a two-process theory 
of human arousal and alertness (Acherman, 2004; 
Borbely & Acherman, 1999). This theory posits that there 
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are two main influences on overall alertness, a sleep 
homeostatic pressure that increases with time awake and a 
circadian rhythm that varies over the course of 
approximately 24 hrs. 
 
Biomathematical models have been developed on the 
basis of extensive empirical investigations of human 
neurobehavioral performance under conditions of sleep 
deprivation. Participants in these studies are monitored 
continuously (often in a hospital environment) and 
perform a wide array of experimental tasks over the 
course of sometimes extensive laboratory stays. In 
addition to performance data from experimental tasks, 
physiological measures are also obtained, including core 
body temperature, hormone levels, and often 
neurophysiological data (e.g., EEG, fMRI, etc.). From 
these data, models of the dynamics of the sleep 
homeostatic pressure and circadian rhythm have been 
developed that accurately capture the relative changes in 
human neurobehavioral functioning observed under 
conditions of sleep deprivation. 
 
Biomathematical models have been influential in the 
sleep research community, and have been transitioned to 
applied settings where they are used in planning and 
scheduling to maximize overall effectiveness. Perhaps the 
most impressive case of transition for this class of models 
to date is the example set by the Sleep, Activity, Fatigue, 
and Task Effectiveness (SAFTETM) model (Hursh et al., 
2003). SAFTETM is based on the same general two-
process model as the others cited above, and also includes 
a sleep inertia component that accounts for the well-
documented period of sleepiness that persists briefly after 
awakening. It makes predictions about cognitive 
effectiveness, relative to a well-rested baseline. SAFTETM 
has been incorporated into a software package called the 
Fatigue Avoidance Scheduling Tool (FASTTM).  To their 
credit, Hursh et al. performed a quantitative evaluation of 
the validity of the cognitive effectiveness predictions of 
SAFTETM using empirical data from two studies, 
resulting in very high correlations. 
 
All models have their weaknesses and the 
biomathematical models are no exception. They suffer 
from at least two important limitations. First, on the 
whole they have been developed with little attention to 
results from sleep restriction studies of fatigue. Thus, 
whereas they make fairly accurate predictions regarding 
the relative changes in overall functioning resulting from 
sleep deprivation, they are much less accurate in 
predicting the dynamics associated with long-term 
restricted sleep. 
 
The other main limitation of biomathematical models of 
alertness is that they produce only predictions of overall 
level of functioning. That is, these models do not generate 
predictions of performance in particular tasks. In many 

cases, the output from these models is scaled to particular 
dependent measures to produce quantitative estimates of 
performance in specific contexts (e.g., Van Dongen, 
2004). While this may be a useful approach in some 
circumstances, it is not ideal in complex, real-world 
settings, where the relevant data regarding human 
performance may be difficult or impossible to collect 
ahead of time. In these cases, models are needed that can 
produce accurate, a priori, quantitative estimates of 
human performance. In the next section, we describe 
integrated approaches to modeling fatigue, which are 
aimed at achieving this goal. 
 
2.3 Hybrid Approaches 
 
2.3.1 PMFServ 
 
PMFServ is a human behavior emulation system that 
synthesizes dozens of performance moderator functions 
(PMFs) into a unifying framework (Silverman, 2007).  
PMFs are mathematical characterizations of the 
influences of individual factors (sleep, affect, role in 
group) on performance. They are organized into seven 
modules: perception, biology/stress, 
personality/culture/emotion, memory, social, decision 
making, and expression. The implementation of the 
effects of fatigue is located in the biology/stress module, 
as a component of the Gillis and Hursh (1999) model of 
stressed performance, which is a linear additive model 
that includes event stress, time pressure, and effective 
fatigue (Silverman, Johns, Cornwell, & O’Brien, 2006).  
Effective fatigue is described in Silverman et al. as “a 
normalized metric based on current level of many of the 
physiological reservoirs” (p. 147) Regarding the validity 
of the fatigued performance predictions generated by 
PMFServ, we are unable to find an explicit comparison 
with quantitative human performance data. 
 
2.3.2 IMPRINT Pro 
 
IMPRINT Pro is the latest in the line of IMProved 
Research INTegration (IMPRINT) task network modeling 
tools, which allow analysts to develop human 
performance models for estimating manpower, personnel, 
and training (MPT) requirements and constraints for new 
weapon systems very early in the acquisition process.  
IMPRINT Pro includes a variety of new features, one of 
which is the incorporation of fatigue as a moderator for 
its performance predictions (Alion Science and 
Technology, personal communication).  The approach 
that was adopted for achieving this was to build the 
cognitive effectiveness algorithms from SAFTETM into a 
plugin (.dll) that can be loaded into the IMPRINT Pro 
software.  With this feature loaded, as cognitive 
effectiveness predictions deviate from maximal, those 
changes affect task completion times.   The incorporation 
of this feature into IMPRINT Pro is a very new 
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development and there are not yet any validation studies 
completed. 
2.3.3 ACT-R/F 
 
Our research on fatigue is in very much the same spirit as 
the efforts described above. We aim to develop a 
psychologically valid theory of fatigue that can be used to 
understand and predict changes in cognitive functioning 
resulting from extended periods of wakefulness, restricted 
sleep, and circadian rhythms. Part of what is distinct 
about our research, however, is that we bring together 
mathematical modeling research and cognitive 
architectures in the development of behavior 
representations that attempt to capitalize on the strengths 
of both approaches in a flexible and generalizable way. 
 
We have adopted an approach that begins with careful 
validation of mechanisms in detailed laboratory tasks, 
followed by applying those mechanisms to account for 
human behavior in more complex, naturalistic tasks. The 
result, we believe, is a more detailed and powerful 
account of fatigue that will facilitate making predictions 
about human performance in applied contexts. Our goal 
in this paper is not to review in detail our modeling 
results, but rather to describe our approach and its 
contribution to research in this area. For details on the 
modeling results, the interested reader is directed to the 
publications that are cited throughout this section. 
 
At the core of our research is a focus on understanding 
the details of human performance, and how that 
performance changes as fatigue levels increase. We use 
the ACT-R cognitive architecture to represent “normal” 
human cognitive performance (Anderson et al., 2004), 
and identify mechanisms within ACT-R that can be 
manipulated to produce performance decrements 
associated with fatigue (e.g., Gunzelmann, Gluck, Van 
Dongen, O’Connor, & Dinges, 2005). This work has 
allowed us to identify mechanisms in multiple 
components of ACT-R that appear to be sensitive to the 
negative effects of sleep deprivation (e.g., Gross, 
Gunzelmann, Gluck, Van Dongen, & Dinges, 2006; 
Gunzelmann et al., 2005; Gunzelmann, Gluck, Kershner, 
Van Dongen, & Dinges, 2007). 
 
Identifying mechanisms within ACT-R that are impacted 
by fatigue is a critical step in our research. However, to 
bring us closer to the goal of making a priori predictions 
about the impact of fatigue, it is important to have some 
constraint on selecting parameter values within those 
mechanisms and for identifying the dynamics of those 
parameters as time awake increases and time of day 
changes. For this purpose, we leverage existing 
biomathematical models of alertness (e.g., Gross et al., 
2006; Gunzelmann et al., 2007; Gunzelmann, Gluck, 
Kershner, Van Dongen, & Dinges, under review). 
Specifically, we use a function to map biomathematical 

model predictions of alertness to parameters in ACT-R. 
Thus far, we have used linear functions of the form: 
 

IAsP tx +⋅=  
 
In this equation, Px represents a particular parameter x in 
ACT-R, sx represents the slope of the linear equation, and 
Ix is the intercept. At is the predicted level of alertness at 
time t from the biomathematical model. Using this 
straightforward approach, we have been able to 
successfully account for changes in human performance 
as a consequence of fatigue in multiple tasks emphasizing 
different components of ACT-R (see Gross et al., 2006; 
Gunzelmann et al., 2007; Gunzelmann, Gross, et al., 
under review). These results are described in the 
following subsection. 
 
In our research efforts, we have focused on developing 
accounts for changes in human performance on relatively 
simple laboratory tasks, which rely differentially on 
various components of cognitive functioning. This 
strategy allows us to get “close to the architecture” 
(Newell, 1990), which is helpful when trying to find 
architectural mechanisms that explain empirical results, 
and it allows us to rely on academic collaborators for 
human subjects experiment data, which is helpful for 
evaluating the validity of our theory. We began by 
investigating a sustained attention task, emphasizing 
central cognition (e.g., Gunzelmann et al., 2005; 
Gunzelmann, Gross, et al., under review). Since then, we 
have expanded this research to a serial 
addition/subtraction task requiring the retrieval of simple 
math facts (Gunzelmann et al., 2007) and to a dual-task 
reaction time paradigm (Gunzelmann, Byrne, Gluck, & 
Moore, under review). 
 
2.3.3.1 Sustained Attention Performance 
 
Sustained attention performance has been shown to be 
highly sensitive to the negative consequences of fatigue 
(e.g., Dinges & Powell, 1985; Dorrian, Rogers, & Dinges, 
2005). To explore computational mechanisms associated 
with declines on this task, we developed a model to 
perform the Psychomotor Vigilance Test, or PVT (Dinges 
& Powell, 1985). This task requires participants to 
monitor a location on a computer monitor for the 
presentation of a stimulus. When the stimulus appears, 
participants respond by pressing a response button. 
Stimuli are presented with moderate frequency, at delays 
distributed uniformly from 2-10 s. However, the duration 
of a session, 10 minutes, makes the task challenging to 
perform, particularly under conditions of fatigue (e.g., 
Dinges & Powell, 1985; Doran, Van Dongen, & Dinges, 
2001). 
 
To model these effects in ACT-R, we considered task 
constraints, previous theoretical work in ACT-R (e.g., 
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Belavkin, 2001; Jongman, 1998), and neuropsychological 
findings on attention and fatigue (e.g., Drummond, et al., 
2001; 2004; Portas et al., 1998) to target our search for 
appropriate mechanisms in the architecture. All of these 
constraints suggested that ACT-R’s production system, 
representing a central cognitive bottleneck in processing, 
was the appropriate mechanism to target to understand 
degraded performance on the PVT. 
 
Indeed, manipulations to parameters that influence this 
mechanism result in degraded model performance on the 
PVT that corresponds to the kinds of decrements 
observed in human participants (e.g., Gunzelmann et al., 
2005). Further, the dynamics of these parameter changes 
can be constrained using biomathematical models of 
alertness, resulting in an account that is both strongly 
theoretically motivated and also able to produce 
quantitative performance predictions that correspond 
closely to observed empirical data (see Gross et al., 2006; 
Gunzelmann, Gross, et al., under review). 
 
2.3.3.2 Serial Addition/Subtraction 
 
To understand degradations in cognitive performance on 
tasks requiring significant use of declarative knowledge, 
we investigated changes in performance on the Walter 
Reed Serial Addition/Subtraction Task, or SAST (Thorne 
Genser, Sing, & Hegge, 1985). With increased fatigue, 
performance on this task degrades both in terms of 
average response time and accuracy (Van Dongen et al., 
2001). An initial investigation showed that the procedural 
mechanisms used to model fatigue effects in the PVT 
were not sufficient to capture changes in performance on 
the SAST. Thus, to model these effects we added 
mechanisms in ACT-R’s declarative memory module that 
are analogous to the mechanisms manipulated in our 
account of the PVT within ACT-R’s procedural 
knowledge. In both cases, the mechanisms are associated 
with the availability of knowledge and the likelihood that 
it will be used in a particular context. Once again, the 
decrements in the model corresponded to the effects 
observed in human participants. We were also able to 
constrain the dynamics of the parameters in this account 
using biomathematical model predictions of alertness (see 
Gunzelmann et al., 2007). 
 
It was not surprising that our procedural mechanisms 
were not sufficient to account for fatigue effects in  a 
more complex task with a more substantial reliance on 
declarative knowledge. Physiological changes in brain 
functioning stemming from fatigue are widespread. This 
leads to an expectation that mechanisms in multiple 
components of ACT-R will be required to capture the 
broad effects that are observed in human participants. 
 
Importantly, in our model of human performance on the 
SAST, we included the mechanisms implemented in 

ACT-R’s procedural memory in our account of fatigue. 
Our motivation for this was based upon the recognition 
that fatigue has consistent effects on cognitive 
performance regardless of the task being performed. 
Differences in how severely performance is degraded is a 
function of how dependent task performance is on 
particular components of cognitive functioning, rather 
than variable effects of fatigue. Thus, for a truly general 
account, all of the mechanisms we identify must be 
applied across tasks, rather than picking and choosing 
which components to use on a task by task basis. 
 
2.3.3.3 Dual Task Performance 
 
Most recently, we have attempted to generalize the 
mechanisms developed to account for fatigue effects in 
the PVT to a dual-task paradigm and the psychological 
refractory period (Gunzelmann, Byrne, et al., under 
review). The task involves an auditory two-choice 
reaction time task combined with a visual two-choice 
reaction time task. The delay, or stimulus onset 
asynchrony (SOA), between the onset of the auditory 
stimulus (Task 1) and the presentation of the visual 
stimulus (Task 2) is varied. Reaction time on Task 2 
when the SOA is long (i.e., 1000 ms) is faster than when 
the SOA is short (i.e., 50 ms), because individuals are 
done responding to the Task 1 stimulus before the Task 2 
stimulus appears at the longer SOA. The difference in 
Task 2 reaction time from short SOA’s to long SOA’s is 
referred to as the psychological refractory period (PRP). 
 
In this effort, we have demonstrated that our account of 
fatigue in the PVT task also provides a sufficient account 
of changes in performance on each task in the dual task 
paradigm and changes in the magnitude of the PRP effect 
resulting from increased fatigue (Gunzelmann, Byrne, et 
al., under review). We continue to use the 
biomathematical model predictions of alertness to 
constrain the dynamics of the parameters in this model. 
This model has also provided evidence regarding 
theoretical arguments about the causes of performance 
decrements, suggesting that a general slow-down in 
cognitive processing is not necessary to account for 
changes in human performance resulting from fatigue. 
 
3. Challenges & Future Directions 
 
Thus far, we have been encouraged by the results of our 
efforts to develop computational mechanisms for fatigue 
within the ACT-R cognitive architecture. In particular, 
the integration of a cognitive architecture with 
biomathematical model predictions of alertness has added 
real explanatory power while reducing degrees of 
freedom in fitting our models to empirical data. We have 
been able to build upon the strong foundation ACT-R 
provides as a validated theory of human cognition, and 
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make connections to carefully developed and validated 
models of the dynamics of the human arousal system. 
 
Despite the encouraging progress made thus far, there 
remain many important and challenging questions, which 
will only be answered through the integration of research 
efforts using multiple methodologies in multiple domains. 
For instance, we have only begun to explore mechanisms 
within the ACT-R cognitive architecture that may be 
impacted by fatigue. Thus far, we have focused on the 
production system in central cognition and ACT-R’s 
declarative memory, the two components of ACT-R with 
the longest history and most well-validated mechanisms. 
However, ACT-R comprises other functional capabilities 
as well, including multiple learning mechanisms, as well 
as perceptual and motor modules. There is evidence that 
these aspects of cognitive functioning may degrade with 
fatigue as well (e.g., Atkinson, Coldwells, & Reilly, 1993, 
Heuer, Spijkers, Kiesswetter, & Schmidtke, 1998; Tassi, 
Pellerin, Moessinger, Eschenlauer, & Muzet, 2000). 
Thus, important extensions to our account are necessary 
before we can claim to have a general theory that can be 
applied across tasks and domains. 
 
A related issue to exploring mechanisms in other 
cognitive functions is extending accounts of fatigue to 
larger and more complex tasks. Above we described 
research that implemented mechanisms for fatigue within 
a complex aircraft pilot model (Jones et al., 1998). This is 
an example of the kind of application where quantitative 
models of fatigue are needed. On the one hand, Jones et 
al. (1998) did not include careful empirical validation in 
their modeling efforts. On the other hand, our efforts are a 
long way from scaling up to such complex, knowledge-
rich environments, although the architectural mechanisms 
themselves should scale unproblematically. 
 
There are also limitations of the biomathematical models 
that have been developed to represent the dynamics of 
alertness in relation to time awake and circadian rhythms 
(Klerman & St. Hilaire, 2007). These models make 
relatively accurate predictions regarding the dynamics of 
alertness under conditions of total sleep deprivation. 
However, their accuracy diminishes substantially for 
making predictions when sleep is restricted, such as 
obtaining only 4 or 6 hours of sleep per night for several 
weeks continuously (Van Dongen, 2004). To be useful in 
applied contexts, these models must be able to make 
predictions for such scenarios, since restricted sleep is 
prevalent in applied contexts and operational settings. 
 
Within our own research efforts, there is need to fully 
integrate the biomathematical models into the ACT-R 
cognitive architecture. Such an integration would allow 
modelers to vary the time of day and the sleep history of 
the model in a simulation and produce differential 
predictions about performance. This functionality would 

provide a potentially powerful tool for understanding the 
trade-offs intrinsic to planning operations and work-rest 
schedules. 
The challenges, however, run much deeper than issues of 
integration and scope. In addition to understanding the 
relationship between alertness and human information 
processing mechanisms, there is also the tricky issue of 
how the dynamics of alertness are impacted by interaction 
with the environment. There is evidence that the 
deleterious effects of fatigue are modulated by the task 
environment, which can have an arousing effect on the 
cognitive system when the task is engaging (e.g., 
Caldwell & Ramspott, 1998; Drummond et al., 2004; 
Pilcher, Band, Odle-Dusseau, & Muth., 2007). In addition 
to these interactions, there are the complicated 
relationships of fatigue with other cognitive moderators, 
like stress, emotions, and drugs. Drugs may be an 
especially important topic, given the prevalence of 
substances like caffeine, Dexedrine, and modafinil for 
offsetting the negative effects of sleep loss (e.g., Bonnet 
et al., 2005). 
 
Finally, the ultimate achievement of this research is not to 
predict changes in performance under conditions of 
fatigue at the aggregate level, but rather to develop a tool 
that would allow the relevant parameters to be tailored to 
the capabilities and sensitivity to fatigue of particular 
individuals. Such a tool would allow decision makers in 
applied settings to judge the suitability of schedules and 
assignments on the basis of quantitative predictions of 
performance for a particular person based upon particular 
assumptions regarding that individual’s history of sleep 
and wakefulness. We are still far from such a vision. To 
achieve it will require advances in understanding how 
fatigue impacts cognitive performance, as well as 
improved models of the mechanisms of human cognition 
more generally. There are myriad challenges associated 
with these areas of research,  but the research that has 
been conducted in this area has begun to lay the 
foundation for success. 
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