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ABSTRACT: Training simulators have a specific need for accurate human behavior representation to best simulate 
conditions a trainee will encounter in the real world. This paper outlines a cognitive model of human pilots flying a 
Predator Unmanned Aerial Vehicle (UAV). The model was implemented to interact directly with a synthetic task 
environment (STE) built upon a validated flight dynamics model of the Predator RQ1A System 4 UAV. The model 
flies reconnaissance missions in the STE with the goal of maximizing the amount of surveillance footage that is 
obtained by maneuvering the Predator over a small hole in a layer of clouds. At the same time, the model must 
minimize the time spent in violation states (e.g., exceeding altitude restrictions or entering no-fly zones). Initial 
analysis shows that the model can complete simulated missions with performance characteristics similar to those 
observed in real pilots. 
 
1. Introduction 
 
In addition to helping develop our understanding of the 
human mind, cognitive modeling can serve many 
practical purposes. One of the most notable areas of 
contribution is in the augmentation of training 
environments by simulating interactive and cognitively 
plausible synthetic teammates. Many complex tasks 
performed by doctors, pilots, machine operators, and 
others are done in coordination with other people. 
Sophisticated training programs require humans of 
various levels of expertise to play the peripheral roles. 
Unfortunately, as jobs get more specialized and the 
interactions become more complex, it often becomes 
difficult and costly to coordinate training events where 
large numbers of people are needed to fill all the roles. 
Having simulated players that can accurately recreate the 
behaviors of human experts and interact with a trainee can 
make training more convenient and cost effective. 
 
Despite the obvious applications of cognitively realistic 
behavior representations, such models have rarely been 
transitioned to application environments. This is because 
of both the cost associated with creating detailed 

representations of human performance as well as existing 
limitations in our understanding of human perception, 
action, and cognition. The research described here is 
aimed at making progress on these issues. The model 
described flies reconnaissance missions within a Predator 
Unmanned Aerial Vehicle (UAV) Synthetic Task 
Environment (STE). The goals are to use the model to 
better understand the cognitive processes associated with 
performance, to continue to increase the psychological 
validity of such models, and to apply computational 
cognitive modeling methodologies to increasingly 
complex and naturalistic tasks. 
 
1.1 Predator Synthetic Task Environment 
 
The UAV STE is built upon a realistic simulation of the 
flight dynamics of the Predator RQ1A System 4 UAV. 
This core component of the STE has been used in other 
contexts and applications to train Air Force Predator 
pilots at Creech AFB. Additionally, Schreiber, Lyon, 
Martin, & Confer (2002) found that performance on the 
tasks in the UAV STE was better for experienced 
Predator pilots as compared to other expert pilots, 
indicating that the STE taps into skills that are unique to 
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flying the Predator, in addition to more general piloting 
skills. 
 
The STE builds upon the core aerodynamics model with 
three research tasks. First, there is a set of basic aircraft 
maneuvers, requiring precise, constant rate changes to the 
UAV’s speed, altitude, and/or heading. Gluck, Ball, 
Krusmark, Rodgers, & Purtee (2003) present an ACT-R 
model that performs this set of maneuvers with close 
correspondence to the human data. Important insights 
from that modeling effort have been applied in the model 
described here, particularly the instrument “crosscheck” 
that the model uses to monitor and maintain the UAV’s 
flight characteristics. Gluck, Ball, and Krusmark (2007) 
provide a comparison of alternative strategies for this 
process that vary considerably in their effectiveness. 
 
A second task requires individuals to perform an approach 
and landing with the UAV, a particularly challenging task 
given the Predator’s light weight and low clearance. The 
final task, and the one we focus on here, is a set of 
reconnaissance missions requiring the pilot to obtain 
surveillance footage of a target on the ground by 
maneuvering the UAV over a hole in a layer of clouds 
(see Figure 1). This requires that the plane be flown 
through the conic frustum over the cloud hole where the 
target can be filmed by using a gimbal camera located on 
the bottom of the plane. Individuals can toggle between 
the gimbal camera, which slews to focus on the target 
regardless of the position of the plane (Figure 2), and a 
nose camera view, which provides an out-the-cockpit 
view. In addition, a map of the area is provided, with the 
positions of the plane and target indicated (Figure 2). 

 
 
Figure 1. A cartoon depicting the Predator UAV viewing 
a target through a cloud hole during a reconnaissance 
mission. 
 
The task is made more challenging by imposing 
restrictions on altitude, introducing no-fly zones in the 
airspace, and including the influence of wind on the 
plane’s flight path. If restrictions are violated, or if the 
plane stalls, penalty time is assessed until the violation is 
corrected. In addition, when violations occur, the camera 
view goes blank, and information about the plane’s 
location on the map is removed, requiring the pilot to 

 

    
Figure 2. Screen shots illustrating the reconnaissance mission task within the UAV STE. Map and Gimbal camera 
view illustrating a situation where time on target is being obtained. The left side shows the target viewed through hole 
in the clouds in the gimbal camera view. The right side displays the map view. 
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correct the violation before this information is made 
available again. The goal of the task is to maximize the 
amount of time spent getting surveillance footage (time-
on-target, or TOT) during each 10 minute scenario, while 
minimizing time spent in violations. Scenarios vary in 
terms of the location of the cloud hole, the wind speed 
and direction, and the characteristics of the no-fly zone 
(size, shape, and position). In the next section we describe 
the model that has been developed to perform this task. 
 
2. Model Design 
 
Our model for this task was developed within the ACT-R 
cognitive architecture (Anderson, 2007). ACT-R 
represents central cognition as a production system where 
knowledge is represented as production rules consisting 
of condition-action pairs. At any point in the model’s 
performance of a task, rules are matched against the 
current state of the system and a single applicable rule is 
selected and executed (fired). The current state in ACT-R 
is represented in a set of buffers that contain information 
regarding different components of cognitive functioning. 
For instance, there is a retrieval buffer that holds the 
current item that has been requested from declarative 
memory. There are also perceptual and motor buffers to 
represent information encoded from the environment and 
for executing actions. These buffers serve as the interface 
between central cognition and functional modules, which 
contain the mechanisms for performing particular types of 
processing. 
 
Because of ACT-R’s implementation, it is able to interact 
directly with software-based tasks. However, this 
capability is not universal, and ACT-R cannot directly 
interact with the UAV STE. As a result, ACT-R flies the 
UAV STE by interacting with a reimplementation of the 
task interface that is written in Lisp (the same language as 
ACT-R). ACT-R sends commands to this 
reimplementation, which are then passed over a socket to 
the UAV STE, resulting in requested actions being 
performed within the simulation. Changes in the STE are 
then passed back through a set of variables that are used 
to maintain the state of the Lisp-based reimplementation. 
This setup allows us to utilize the detailed flight dynamics 
model embedded within the STE and collect detailed 
performance data for the model that is generated 
automatically by the STE. The cost, however, is that there 
is a substantial infrastructure required to manage the 
communication between applications and the interface 
with which ACT-R interacts. 
 
 
 

2.1 Model Strategy: Flying in Stages 
 
At the highest level, the process of flying a mission is 
broken into stages based on qualitatively different 
subtasks. The model’s behavior during a particular stage 
is influenced by a set of goals unique to each stage. All 
stages are associated with a set of ideal flight performance 
characteristics. These may take a quantitative form with a 
specified range of altitudes and a specific airspeed, or 
they may take a more qualitative form specifying relative 
changes such as to “go higher” or “go very fast.” 
Although the model flies well using either (or both) types 
of knowledge, the data described below is based upon 
knowledge of the qualitative nature of what should be 
done. 
 
This representation seems to capture human performance 
better since, unlike the basic maneuvering tasks 
mentioned above, precise control of the UAV’s 
performance characteristics is not required to perform the 
task successfully. Instead, more general constraints like 
“go slower when getting TOT” or “Turn around as fast as 
possible” are more appropriate.  
 
The model utilizes eight separate stages to control the 
goals of the simulated pilot. The model determines what 
stage it is in based on its current knowledge of the target 
viewing area (TVA), which is the conic frustum over the 
cloud hole within which the target is visible. Here we will 
describe the function of the stage specific procedures of 
the model.  
 
• Search for TVA: If the model has no information about 

the location of the TVA and the cloud hole is not 
visible through the nose camera view, the model enters 
this stage where it tries to locate the hole in the cloud 
layer. This involves banking to the side to bring more 
of the space into view through the limited field-of-view 
nose camera.  

 
• Orient to TVA: When the model can see the hole in the 

cloud layer through the nose camera view, it enters the 
“Orient to TVA” stage. Here, its primary goal is to turn 
until the plane is flying steadily toward the center of the 
cloud-break. Although the TVA may not perfectly 
coincide with the cloud hole if the target is not directly 
under it, there is generally some overlap.  

 
• Find TVA:  Once the model is oriented toward the 

cloud hole, it enters the “Find TVA” stage where it 
switches to the gimbal camera and flies until it 
encounters the cloud hole and flies through the TVA. 
Once the gimbal camera is selected, the model cannot 
rely on the egocentric nose camera for information 
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about the location of the hole. Thus, it relies on the 
information it encoded to identify a vector on the map 
along which the cloud hole must be located. During the 
“Find TVA” stage, the model flies along this vector to 
locate the hole’s position. Along the way, it tries to 
maximize its speed to maximize the amount of time 
available for getting TOT once at the TVA. The model 
also increases its altitude, since flying higher leads to 
more TOT per pass because the diameter of the TVA 
increases as altitude increases. Thus, this is a strategy to 
maximize TOT. 

 
• In TVA: Once the target can be seen through the hole in 

the cloud layer (i.e., the UAV enters the conic frustum 
that defines the TVA) the model enters the “In TVA” 
stage where it slows down as much as possible and 
levels out its flight to get as much TOT as possible 
during each pass. The first time this stage occurs, the 
model encodes an estimate of the location of the TVA 
that provides a reference point to fly to on future 
passes. This estimate gets refined in subsequent passes. 

  
• Fly out: After the vehicle has flown out of the TVA, the 

goal is to get back to the TVA as quickly as possible. It 
will also try to gain altitude while trying not to violate 
altitude restrictions. During the “Fly out” stage, the 
aircraft quickly speeds up to get some distance away 
from the target. This is necessary because the model is 
only given control of the flaps to adjust bank and 
cannot control the rudder to adjust yaw, resulting in 
wider turns. Consequently, to completely turn around 
and then return to straight and level flight requires the 
model to place some distance between itself and the 
target before beginning the turn.  

 
• Turn-around: Here, the model slows down, which 

allows it to turn more quickly, and turns the vehicle 
until it is flying steadily back toward the reference point 
it encoded to represent the location of the TVA. The 
model begins the turn by maximally adjusting its bank, 
and then eases off progressively as it approaches the 
desired heading (i.e., facing directly at the estimated 
location of the TVA). 

 
• Return to TVA: This stage signals the model to increase 

speed and fly at the TVA as quickly as possible.  
 
• Approach TVA: To maximize time over the target it is 

necessary to fly more slowly while over the TVA. 
Thus, the model makes an attempt to decrease airspeed 
as it approaches the estimated location of the TVA so 
that it is going more slowly when the TVA is reached.  

 

When the model encounters the TVA again, it should go 
back to the “In TVA” stage and cycle through the last five 
stages until time runs out. All stages utilize a similar set 
of productions that handle transitions into the stage. This 
includes recalling the appropriate goals for the stage and 
making immediate control adjustments. 
 
Outside of the stages, there are two sets of high-level 
behaviors. The first set of behaviors allows the model to 
maintain flight characteristics and make adjustments to 
control settings (i.e., stick and throttle positions) to 
accommodate changes in desired performance 
characteristics (i.e., speed, altitude, and heading). When a 
pilot is flying toward a specific location with preferences 
for certain altitudes and airspeeds, flight is guided by 
what were referred to as the crosscheck procedures above.  
The goal of the crosscheck is to monitor instruments and 
make any adjustments to the controls necessary to keep 
the plane “on track.” The other set of procedures is used 
to avoid violations. If the simulated pilot notices that the 
aircraft is too high and might violate the altitude 
restriction, or is traveling too slow and might stall, etc., 
this set of procedures augments the immediate goals of 
the pilot in order to prevent a violation from occurring. 
These sets of high-level behaviors of the model are 
described in the next sections.  
 
2.2 The Crosscheck 
 
The model’s division of the task into stages provides a 
framework for making decisions about what flight 
characteristics are appropriate given the current state of 
knowledge. The process of monitoring the aircraft’s state 
and making adjustments to control settings to achieve 
desired performance is referred to as the crosscheck. The 
crosscheck productions have a lower priority than other 
productions, meaning that they represent the background 
activity of the model when more specific actions are not 
required. 
 
The crosscheck productions allow for monitoring of 
airspeed, bank angle, altitude, pitch, and engine power 
(i.e., rpm). After the model has made its first pass through 
the TVA and an estimate of its location is known, the 
crosscheck will include checking the map to note the 
orientation of the UAV icon relative to the TVA (this 
impacts the stage that the model is in – for instance, Fly 
Out versus Return to TVA).  This information is also used 
to update the desired heading over the course of the trial, 
which varies depending on the stage of flight and the 
plane’s location and orientation relative to the target. 
 
The model follows a specific process during the 
crosscheck. First, it probabilistically chooses a flight 
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instrument according to ACT-R’s conflict resolution 
mechanism. Currently, all productions for selecting a 
particular instrument have an equal probability of being 
selected. It recalls from memory where that instrument is 
located, shifts visual attention to that location, and 
encodes the current information from that instrument. At 
this point, the model compares the instrument values to 
the flight goals. Any discrepancies are encoded as 
qualitative difference magnitudes. The model then 
probabilistically (again via ACT-R’s conflict resolution 
mechanism) decides whether it wants to adjust a current 
control position (relative update) or set either the stick or 
the throttle to an expected ideal control position (absolute 
adjustment). The motor system makes the appropriate 
changes to the controls. The system then returns to a state 
where the crosscheck can start over again.   
 
2.2 Avoiding and Recovering From Violations 
 
The crosscheck in the model represents the “business as 
usual” piloting of the plane. However, when the 
monitoring process detects an impending violation, a 
different set of knowledge is engaged to alter flight 
characteristics in order to avoid violations. As this 
description implies, this knowledge is currently highly 
reactive. The model engages in little or no planning up 
front to avoid these situations, but instead relies on 
corrective actions to avoid or minimize the time spent in 
violation states. 
 
Restrictions concerning altitude and airspeed (to avoid 
stalling) have straightforward solutions. When the model 
notices that it is approaching an altitude restriction, it 
reacts with a quick change of the control stick (pull back 
to climb or push forward to dive) and modifies any 
altitude goals to be safely within the appropriate range. 
Similarly the model increases throttle and modifies goals 
to keep itself safely away from the stall point when it 
notices that its airspeed is too low.  
 
Other restrictions require more complicated solutions. 
While attempting to maneuver toward the estimated TVA, 
the model may encounter a no fly zone (NFZ). Currently, 
the model deals with this situation in a reactionary 
manner. If the UAV is heading toward the NFZ, the 
model does not act until just before it believes it cannot 
avoid the NFZ and makes a hard turn away from the NFZ. 
In most cases, this is enough to avoid it completely. 
Occasionally, the model will slip into the NFZ for a few 
seconds, depending on the estimate and the details of 
performing the maneuver.  
 
When in the “Find TVA” stage, the model remembers its 
position and heading when it last saw the hole in the 

clouds through the  front camera. If it avoids a NFZ in 
this stage, it will return to tracking that same line once on 
the other side of the NFZ. 
 
Even when not immediately threatened by a NFZ, the 
model’s default behavior is to turn away from the NFZ. 
This behavior leads to a pattern of flying in figure-eights 
parallel to the nearest perpendicular to the line connecting 
the TVA and the center of the NFZ, which is observed in 
the performance of some participants.  
 
Occasionally, the model and actual pilots do cause a 
violation by entering a NFZ, violating altitude 
restrictions, or stalling. In all of these conditions, the 
simulator causes the camera view to go blank and the 
UAV icon is no longer visible on the map. One 
implementational limitation that still exists is that the 
instrument values are still visible in the STE during a 
violation, but these values are not updated for the model 
until the violation is corrected. Therefore, the model relies 
on knowledge of its own state before the violation 
occurred to react, which seems to lead to appropriate 
behavior in most circumstances. 
 
Most procedures that were designed to avoid violations 
will also work to get back to an appropriate state. This 
does not hold true for the NFZ, but this does seem 
somewhat appropriate. If the model cannot see itself on 
the map, then it cannot know it is in a NFZ. Currently, it 
is very rare for the model to not see a NFZ before it enters 
it. This situation is most prevalent when high winds push 
the aircraft into the NFZ even though it was not directly 
facing the NFZ. 
 
2.4 Accounting for Wind 
 
Many of the scenarios include wind. Wind speed and 
direction remain constant throughout each 10 minute 
scenario. It impacts the flight path of the Predator aircraft, 
even though it does not affect the location of the hole in 
the cloud (this remains constant throughout the trial). The 
model can accurately fly a mission without knowledge of 
the wind by regularly making corrections in heading 
during the crosscheck. However, this does not appear to 
be the appropriate cognitive strategy based upon evidence 
from expert pilots. 
 
A study done using Unites States Air Force reserve pilots 
(Park, 2006) had the pilots think aloud as they flew a 
number of reconnaissance missions. Transcripts of those 
flights were studied to identify the strategies used by the 
pilots to deal with the force of wind. It seemed very 
common for pilots to consciously make adjustments to a 
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target heading to adjust for wind. Some typical comments 
included: 
 

“I’ll do a little bit of crab left for the winds“ 
 
“So three-zero-zero looks like my heading but my 
ground track’s going to have to be two-eight-zero 
with the winds” 
 
“Accounting for the winds, I should go about five-
zero, that should be good” 
 

The model was, therefore, given knowledge about how to 
update an ideal heading based on the wind speed and the 
difference in direction between the wind and the ideal 
heading. A current limitation of this mechanism is that the 
model still estimates the direction it is traveling by 
monitoring the direction it is facing. The consequences of 
this are most apparent in the context of avoiding no-fly-
zones (NFZs). This issue was alluded to earlier – 
sometimes the model fails to notice that the wind is 
pushing it into a NFZ because the NFZ is not in front of 
the plane. This is one key area for improvement in the 
model currently.  
 
3. Model Validation 
 
3.1 Strategic comparison 
 
The ACT-R model presented here is intended to capture 
human-like performance. This includes making human-
like mistakes and being able to express human-like 
variability. Some pilots failed to locate the TVA during a 
pass and had to reinitiate a search for it. Some flew in a 
figure-eight pattern over the TVA while others made only 
left turns to circle back to the TVA. The current model 
produces such differences in performance with changes to 
declarative knowledge. Pilots also produced a variety of 
errors in flight control, including stalling the Predator and 
over-steering. The current model can account for some of 
these failures simply based on the stochastic nature of 
selecting procedures. We have not yet explored the 
capacity for such variations in the model to account for 
individual differences, but this is one potential avenue for 
future research. In addition, so far we have treated each 
10 minute run as an isolated trial. Another avenue for 
improvement is to explore learning across trials in the 
model to capture improvements stemming from 
experience with the task. 
 
In this paper we focus on how stochasticity influences the 
performance of the model. One aspect of the model’s 
performance where stochasticity is relevant is the 

crosscheck procedure. At the beginning of each cycle of 
the crosscheck, each instrument is equally likely of 
grabbing the attention of the model. One side effect of 
this is that it is possible for the model to ignore one or 
more of the instruments for a relatively long period of 
time, resulting in errors like over-steering. While turning 
around, the model may see that there is a large deviation 
in heading, which causes it to push the stick all the way to 
the left. It is possible for the model to subsequently 
consider altitude and make adjustments to the pitch and/or 
check airspeed and make adjustments to the throttle. By 
the time the model goes back to check the heading or the 
UAV icon on the map, the aircraft may already be facing 
the target position. Unfortunately, it takes several seconds 
for the model to return to straight and level flight after the 
stick is returned to a neutral position. The next time the 
model checks the icon, it will see that it has turned past 
the target and make an appropriate correction. Similar 
patterns can happen for other controls. These types of 
behaviors were observed on some occasions for some of 
the human pilots. 
 
3.2 Matching Human data 
 
Preliminary comparisons have been made between the 
model performance and the performance of human pilots. 
The pilots were USAF pilots selected as candidates for 
Predator training (Schreiber, Lyon, Martin, and Confer, 
2002). An important difference to note is that, in the 
empirical study, participants had access to rudder controls 
allowing them potentially to make tighter turns than the 
model. 
 
Figure 3 displays sample flight paths during a run through 
two scenarios for both the model and for a sample pilot. 
We have selected an easier scenario with a nontrivial NFZ 
as well as a more difficult scenario (because of the high 
winds and placement of NFZ relative to target) to 
compare flight paths. The illustrations in Figure 3 are 
intended to show that, in both cases, the path produced by 
the model is qualitatively similar to the path produced by 
human pilots. Of course, these are data from a single 
model run and from a single human participant. There is 
variability, both in the model runs and in human 
performance, although much more so in human 
performance across individuals. These examples were 
selected to emphasize the general consistency of the 
model with human performance on this task. In informal 
presentations, people knowledgeable of both the model 
and the human data were unable to reliably differentiate 
between the model and human flight paths. 
 
At the time of writing, the model has been run through a 
single trial of each of the 30 scenarios flown by human 
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participants. Because of the dependence on the external 
simulator, the model can only be run in real time. 
Consequently, ACT-R parameters have not been 
optimized for this task. Instead, we have used default 
ACT-R parameters to control the timing of perceptual, 
cognitive, and motor events. From these runs, we have 

been able to perform some initial qualitative comparisons 
between the model and human data, presented in Table 1. 
These comparisons are still at a high level, and further 
refinements to the model will be required to capture the 
human performance data at even finer degrees of 
resolution. 

 
 
 

 
Figure 3: Overhead views of flight paths for the model and a sample subject on 2 different scenarios. The aircraft starts 
in the middle at the southern edge of the map and follows a path toward the hole in the clouds. The highlighted circle 
indicates the target viewing area. The first scenario a) has no wind and a circular no fly zone indicated by a dotted 
outline that overlaps part of the hole. The second scenario b) has a 15mph wind coming in from the south and a 
polygonal no fly zone. 
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Table 1 shows performance characteristics averaged 
across all 30 scenarios for the models and for the pilots. 
Data from the pilots were averaged across all 11 pilots 
who participated in the original study by Schreiber et al. 
(2002). The top section shows mean data across all 10 
minutes of the scenario. The middle section shows data 
averaged across all times while the aircraft was in a 
position where it could view the target. The bottom 
section shows data averaged across all times when an 
aircraft has a bank angle greater than five degrees and is 
assumed to be turning. Bank angles are absolute 
deviations from 0 degrees regardless of direction. 
 
Table 1: Performance measures from the model and 
human pilots averaged across all 30 scenarios. An * 
indicates the model datum falling within one standard 
deviation of the mean across scenarios. A ** indicates 
falling within half of a standard deviation. 

   Model Pilots 
All distance from target 1064.8 m ** 969.51 m 

 Time on target  99.12  sec ** 109.14 sec
 Bank-angle violation 9.44 sec **     8.94 sec
 Stall violation  0.56 sec **     1.68 sec
 Altitude violation  0 sec ** 2.62 sec 
 Min altitude 11,998  ft 11,503 ft 
 max altitude 13,695 ft 12,439 ft 
 mean altitude 13,158 ft 11,954 ft 
 final altitude 13,481 ft 11,919 ft 

TVA Bank 2.1° ** 2.5° 
 Pitch 2.09° ** 1.74° 
 Speed 70.7  kn 64.8 kn 

Turn Bank 28.5° 25.3° 
 Pitch 1.4° * 2.4° 
 Speed 75.1  kn 65.9  kn 

 
It should be pointed out that these data do not capture 
some significant differences between the pilots and the 
current version of the model. In general, the model is 
actually getting more time-on-target in the easy scenarios, 
but the pilots are performing better on the more difficult 
scenarios. 
 
The table demonstrates that at this point, the model 
performs within the range of human performance on this 
task overall. This also gives us some idea about where the 
model can be improved. These improvements can come in 
the form of changes to declarative knowledge (the model 
currently is more aggressive than participants about 
maintaining a high altitude), changes in procedural 
knowledge (e.g., the model does not plan based on an 
expected future position), and changes in parameter 

values. As more data is collected from the model more 
detailed analyses of each scenario will provide further 
insights into how the model can be improved. 
 
4. Conclusions 
 
Though the model described here is not yet able to stand 
in for another human in a cooperative training 
environment, we have demonstrated that cognitive models 
can be successfully implemented to operate in complex 
and naturalistic tasks. Our model is able to perform 
reconnaissance missions in the UAV STE, and performs 
similarly to human pilots at qualitative and aggregate 
levels. 
 
This model extends other modeling work focused on 
maneuvering the Predator UAV (e.g., Gluck et al., 2003). 
The basic maneuvering tasks are difficult, both for 
humans and for the model. Whereas precise control of the 
Predator is not required to perform the reconnaissance 
missions, the task modeled here places additional 
demands on the architecture. For instance, control of the 
Predator must be performed while simultaneously 
reasoning about the reconnaissance task where decisions 
must be made regarding where to fly, how to maximize 
TOT, and how to efficiently avoid penalty time. 
 
The model that we have presented here captures human 
performance on this task at a high level, but additional 
refinement will be needed to increase its cognitive 
validity. Specifically, we are working to refine the model 
to better capture more detailed flight characteristics across 
the 10-minute trials (e.g., the altitude profile). In addition, 
Park (2006) recorded eye movements from pilots 
performing the reconnaissance task. As ACT-R interacts 
with the task, it generates predictions about sequences of 
attention fixations that we can compare to human eye 
movement data. Such comparisons will provide a highly 
detailed means for evaluating the model. 
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