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ABSTRACT

The PUPS theory and its ACT* predecessor are computational embodiments of psychology’s effort to
develop a theory of the origins of knowledge. The theories contain proposals for extraction of
knowledge from the environment, a strength-based prioritization of knowledge, knowledge compila-
tion mechanisms for forming use-specific versions of knowledge, and induction mechanisms for
extending knowledge. PUPS differs from ACT* basically in its principles of induction which include
analogy-based generalization, a discrimination mechanism, and principles of making causal infer-
ences. The knowledge in these theories can be classified into the knowledge level, algorithm level,
and implementation level. Knowledge at the knowledge level consists of information acquired from
the environment and innate principles of induction and problem solving. Knowledge at the algorithm
level consists of internal deductions, inductions, and compilation. Knowledge at the implementation
level takes the form of setting strengths for the encoding of specific pieces of information

1. Introduction

This paper is an attempt to establish a perspective on the sequence of theories I
have been associated with. Anderson and Bower [9] wrote a book about a
system called HAM which was a theory of human declarative knowledge. This
was succeeded in 1976 by ACT [2] which augmented the declarative knowledge
component with a procedural component in the form of a production system.
In 1983 [S] ACT evolved into ACT* which had an elaborate theory of the
acquisition of production rules. More recently, Anderson and Thompson [12]
have developed the PUPS system which is an attempt to remedy deficits in the
ACT* theory. |

These theories have been iterations in an attempt to evolve a theory of the
origins of human knowledge. Before going into the claims of these theories it is
important to establish the larger historical perspective in which this research
takes place. Therefore, I will review the significant issues in the psychological
attempts to develop a theory of the origins of human knowledge. The major
factor that has caused our work to develop from these historical roots is the
emphasis that our theories have a firm computational foundation.
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After this historical perspective there will be an analysis of ACT* and PUPS.
Finally, I will try to identify where these theories stand on the issue of the
origins of knowledge. Despite the considerable technical work that has been
done on the theories we have never made them face up to this fundamental
issue.

2. Origins of Knowledge: A Psychological Perspective

2.1. Philosophical origins

Of course, the issue of the origins of human knowledge has been an issue of
philosophical debate ﬂpr centuries. While the philosophical subtleties were
many, there were essentially three positions about the origins of any piece of

knowledge: i

(1) Nativism. The person was born with that piece of knowledge or it
appeared in the mind according to some predetermined maturational process.
A common candidate for innate knowledge is our knowledge about the causal
structure of the world. This is the claim that we are born knowing that there
are causes and effects in the world even if we have to learn what causes what.
Another frequent suggestion in cognitive science is that there is innate knowl-
edge about the syntax of natural language (Chomsky [18]).

(2) Empiricism. The knowledge was planted in the mind by experience. A
common candidate for such knowledge is our knowledge about what words
mean. These word meanings are arbitrary associations we have to commit to
memory. 3

(3) Rationalism. The knowledge originated by the person engaging in some
reasoning process. More generally, we may think of rationalism as the position
that knowledge appears as the result of internal computation, without making
the commitment that this computation deserves the categorization of ‘‘reason-
ing.” Mathematical knowledge is an example of something that is often
thought to arise this way.

These three categories presumably exhaust the plausible sources of knowl-
edge. Therefore, one litmus test for the adequacy of any theory of human
knowledge is that it be able to categorize knowledge into these three
categories. If it cannot it is not coming to grips with the issue of the origins of
knowledge. Philosophers, being philosophers, were inclined to argue that all or
most knowledge was of one kind or another. However, even if one takes a less
extreme position, the above provides a useful categorization of possible origins
of knowledge and one can certainly argue about the origins of any particular
piece of knowledge. Fundamentally, such an issue is a scientific issue and not
one to be settled by introspection and logical argumentation.
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2.2. Behaviorism and a sciende of human knowledge

Psychology started out in the late 1800s as a science with one of its main goals
to settle empirically the issue of the origins of knowledge. The field had a great
deal of difficulty initially in making any headway on the issue. The problem is
that scientists need to have aﬁgreed-upon data and it took psychology a while to
establish consensus about what its data Were. The introspectionists (see Boring
[14]) took as their data self-observations of the content of thought. The
problem was that different researchers with different theories would observe
different things about their internal thoughts that confirmed their different
theories. For instance, some introspectionists claim they could have thought
devoid of sensory content while others claimed they could not. Because of
irresolvable controversies like this, it became clear that a more objective data
source was required. |

This was one of the stimLLli for the behaviorist movement that began around
1920, a movement much misunderstood, particularly by many of the behavior-
ists who practiced it. The behaviorist movement began with the observation
that the prime source of objective data was recordings of the behavior of
people. There were other possible sources of objective data such as physiologi-
cal recordings but these turn out to be much harder to obtain than behavior.
There are two essential features that distinguish behavioral data from intro-
spective data. The first is tjbat it is equally available to all scientists and not the
private domain of the scientist who is having the introspection. Second, the
psychologist is not constrained as to how to theoretically interpret the data.
Thus, if a subject of a psychological experiment says <] have a visual image of
a cat”, the scientist is free to propose any theory that will produce that verbal
protocol and is not required to propose visual images as part of the theory.
Because of the similarity of verbal protocols to introspective reports, many
behaviorists have refused to admit verbal protocol data. However, as Ericsson
and Simon [25] correctly argue, verbal protocols aré very appropriate and
powerful sorts of behavioral data, when treated as behavioral data and not as
introspective data.

However, there was a second point of motivation in stressing behavior as the
measure by which a theory of knowledge will be assessed. This arose out of an
emphasis on the functional natur€ of human knowledge. There was no point in
making distinctions about knowledge that did not have consequences for
behavior. If the person‘behaved the same whether he possessed knowledge X
or not, in what sense does he really know X7 If two pieces of knowledge result
in the same behavior in what sense are they really different? Such arguments
should be quite familiar to the Al community where we commonly talk about
equivalence among different knowledge representation schemes. This point of
view also anticipates the Turing-type tests for deciding if a system is intelligent.

The behaviorists frequently argued that there was no such thing as knowl-
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edge in the abstract; when W€ speak of someone having certajn knowledge we
mean that the persop has certain behaviora] Potentials. This Jed to prohibitions
against discussing mental structyreg and a claim that an objective science
should only talk about behavior, Here we see a basically correct observatjon

(1) Methodological. Behavioral datgq is the major data for deciding among
theories of knowledge Different theories that imply no difference for the
behavior (including verbal) of the System might g well be regarded gas
notational variants.

(2) Theoretical. The terms of 3 theory should be behaviora]. Since only
€xternal behavijor counts, a theory should not make reference to underlying
mental structures. |

existence of g mind denjed the Possibility of 3 contribution of the mind to
knowledge,
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2.3. Cognitive psychology and computational concerns

Cognitive psychology as a field of endeavor really began with the demise of
behaviorism. The development in cognitive psychology has closely paralleled
work in artificial intelligence, both contributing to that work and borrowing
from it. One of the major contributions of AI work was to provide demonstra-
tions that theories of internal structure and process could be scientifically
rigorous. This was constantly used to fend off the behaviorist critics of
cognitive psychology. |

In the 1960s and 1970s there appeared in cognitive psychology a set of
theories that were sufficiently well specified that they could be simulated on a
computer. Sometimes these theories even were. These theories tended to focus
on the performance of acquired skills. This nonlearning emphasis may have
arisen because of the perceived difficulty of addressing learning and because
some of the most telling criticisms of behavioristic theories were focused on
their inability to perform at adult-level competences, not on the issue of
whether these competences could be acquired. The standard remark of the
time was that we needed first to understand the system that learning produced
before we could try to understand how learning worked. Of course, a similar
attitude existed 1n artificial intelligence about learning research.

The emphasis in psychology became not what we know and how we acquire
it but rather how we implement what we know. One of the premier issues of
the time was whether various computations are performed in parallel or serial.
One domain where this was debated was the Sternberg task [56]. In a
prototypical experiment a subject was first told to keep in mind a set of one to
six digits and then asked whether a particular probe digit was in the memory
set. It is generally found that subjects take about 40 milliseconds longer to
make this judgment for each digit that is in the set. The serial model for this
task proposed that subjecJts serially matched the probe digit against each item
in the memory set taking about 40 milliseconds to make each comparison. The
parallel model for this task proposed that the digit was compared in parallel
against all members of tﬂe memory set but that there was 2 fixed capacity for
this parallel computation and the more comparisons were being performed the
slower any particular comparison was made. It was finally shown that in
general such parallel and serial models could be made mathematically equival-
ent (Townsend [57]). Researchers were forced to make their arguments on
vaguer claims such as whether the brain really could perform serial operations
at the rate of one per 40 milliseconds (J.A. Anderson .

Another example of a research issue of this type concerned the existence of a
separate short-term memory. It was observed that when we ar¢ told something
we remember it well initially but rapidly forget much of it. So, for instance, W€
can remember a phone number for a few seconds but an hour later we are
lucky to remember any of the number. One model (Atkinson and Shiffrin [13])
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proposed that there was an initial short-term memory in which information
could be held for a while. However, if the information decayed from short-
term memory or was pushed out by interfering information, it would be [ost
unless it was transferred to long-term memory. The contrary position (e.g.,
Wickelgren [59]) was that there was just a single long-term memory and thjs
initial rapid decay of information Wwas continuous with the general forgetting
curve for long-term memory which is characterized by being quite negatively
accelerated. Again, the field reasoned to the conclusion that these positions
were essentially indistinguishable (Crowder [20]).

I think these two episodes and many others like them Were symptomatic of
the fact that the field was theorizing at too concrete a level. It was trying to
resolve distinctions which fundamentally could not be resolved on the basis of
behavioral data. As a further observation, even if these issues could have been
resolved, their resolution would have shed no light on fundamental issues of

this review.

Establishing computational rigor was a major methodological contribution of
this era in cognitive psychology. The major theoretjcal contribution of this era
to the issues of the origin of knowledge was the work of Newell and Simon [46]
providing a coherent analysis of human problem solving. The basic concepts of
this analysis are extremely familiar to the AJ Community and do not need to be
repeated here. However, the essential feature from the point of view of
psychology is that it defined a mapping from goals and knowledge to behavior.
This provided the kind of computational basjs for a theory of human motiva-
tion that had not been available to the learning theorists. It was now possible
to rigorously address issues about the functional character of human
knowledge.

(3) That it address not just knowledge in the abstract but the functional
consequences of the knowledge for human behavior.



THEORY OF THE ORIGINS OF HUMAN KNOWLEDGE 319

(4) That it be cast with the precision that it can be a runnable simulation of
human behavior.

(5) That it be capable of being cast at a level of abstraction that ignores
irrelevant and often undecidable issues about how that knowledge is actually
implemented in the human head.

The series of theories that I have been associated with were motivated by
this agenda, although 1 must admit that I have only recently articulated to
myself the last criterion above. Certainly, my theorizing has not always
satisfied the last criterion as will be apparent from the review of that theory to
follow. Nonetheless, I will try to focus on the significant abstract claims of the
theory.

3. The ACT Learning Theory

The goal of this paper is 10 analyze the knowledge acquisition processes in the
pUPS theory (Anderson and Thompson [12]), which is currently our best model
of human knowledge acquisition. However, PUPS really is just a revision and
embellishment of the ACT theory. Therefore, the next section of the paper will
present 2 development of the ACT theory and the subsequent scction will note
the modifications involved in the PUPS theory.

3.1. The ACT architecture

Figure 1 illustrates the basic ACT production system architecture as developed
by Anderson [5]. There are three memories: a working memory, a production
memory, and, a declarative memory. Production rules had their conditions
matched to the contents of working memory and their actions could add to the
contents of working memory. This is the standard production system interpre-
tive cycle of the variety proposed by Newell [44]. Where the ACT series differs

DECLARATIVE PROCEDURAL
MEMORY MEMORY

RETRIEVE “E"ATCH 8

XECUTE

WORKING
MEMORY

ENCODE

Fig. 1. A representation of the general flow of information in the ACT* architecture.



IF one wants to Prove that the measure of angle 1 €quals the
measure of angle 2

and angle 1 js supplementary to angle 3,

An important feature of thijs architecture js that there is no way by which
experience can directly create €W productions. Productiong are created by g
learning system inspecting the trace of past production firings and Creating new
ones. Thus, procedural learning is 5 matter of learning by doing.

Another Important feature of the ACT architectyre was its use of activation-
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architecture. While the details would be a paper in themselves, Anderson [5]
went through a concerted effort to establish that the symbolic processing
involved in the theory could be implemented in terms that were plausible given
what is known about the nature of brain computations on neural activation
levels. Working memory is actually the portion of the knowledge structure
currently active. Activation has a rapid decay process so that without some
source of maintenance any particular piece of knowledge would rapidly decay.
Spreading activation, the retrieval process, was a mechanism for making active
the related portions of declarative memory. The process of matching produc-
tion patterns and selecting from among related productions (i.e. conflict
resolution) was implemented by excitatory and inhibitory computations taking
place on the production rule conditions.

Given this architecture, learning will involve either changes to declarative
memory or production memory. There are four basic kinds of learning
mechanisms in ACT. We will review them in rough order of increasing
complexity.

3.2. Declarative recording

Information from the environment is deposited in a declarative form in
working memory. Declarative information in working memory may be perma-
nently recorded in a long-term memory. Once in long-term memory the
spreading activation process can retrieve the information for later use. In the
ACT* theory the recording was a probabilistic process in which information n
working memory would onlyisometimes be permanently recorded. See [5] for a
review of the psychological literature that points to such a simple probabilistic
encoding process.

This is a particularly simple process but absolutely key to ACT’s theory of
knowledge acquisition as developed by Anderson [5]. It provides the empiricist
component of the theory in that this is the only way for knowledge to enter
from the outside into the system.

3.3. Strengthening ..

Both in declarative and production memory, knowledge is stengthened every
time it is used. Strengthening a piece of knowledge will make it more likely to
be selected at a later point in time. A production is considered to be used
whenever it is selected by conflict resolution and fired. A declarative fact is
considered to be used whenever it is matched to the condition of a production
rule that fires. As developed in [5] these strengths exert their influence
primarily through the congict resolution process, which decides which in-
stantiations of productions to fire. Strengthening is an interesting case of
learning in that it in no way changes the knowledge that is encoded in the
system but does change what knowledge will actually be manifested in be-
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havior. Thus, the strengthening mechanism is basically a means by which the

system concentrates processing resources on knowledge that is frequently used.
There is also a decay process that weakens the strength of knowledge if it is

not used for a while. The formula for the strength of a particular item is:

n
S=>14,
i=1

where the summation is over the 7 uses of the item and each t; 1s the time since
that use of the item. Basically we have a sum of a set of strengthenings each of
which is decaying as a power function (d is the exponent) of time. This is a
particularly straightforward process and one for which there is an abundance of
psychological evidence (for a review read [5]). What is interesting is the
amount of “wisdom” built into this equation about what knowledge is likely to
prove useful. !

(1) The equation has a strong recency component built into it in that it
effectively puts recent events into a “cache memory” from which they can be
retrieved.

(2) The equation uses frequency of occurrence information and prefers
knowledge that has proven useful multiple times in the past.

(3) The equation lets long-term tendencies dominate in the long term. If
there are two pieces of knowledge currently equal in strength but one whose
strength is based on a recent accumulation of strength and the other whose
strength was built up over a longer period, then in the future the more
established piece of knowledge will be preferred because its strength is
decaying less rapidly. ‘

Anderson [6] has shown that this strengthening function can be derived as an
optimal solution to the information retrieval demands facing the human.

3.4. Knowledge compilation

In ACT an extended computation can be replaced by a single production rule.
Often this new production rule will have built into it knowledge that had been
only in declarative memory before. To return to the supplementary angle
example given earlier, the definition of supplementary angle might have been
used by some general inference productions to come to the conclusion that it
would be a good idea to try to prove angles 2 and 3 supplementary. The
production given above would then be produced by the knowledge compilation
process as a summary of this process. Knowledge compilation is thus the way
knowledge can transform declarative to procedural knowledge.

In defining more precisely the knowledge compilation process it is necessary
to distinguish between two types of compiling mechanisms, one of which is
called composition and the other proceduralization. The description below
describes these two components of knowledge compilation as they are im-
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plemented in the GRAPES production system (Sauers and Farrell [53]), which is
intended to embody certain aspects of the ACT* theory.

3.4.1. Proceduralization

Proceduralization assumes a separation between goal information and context
information in the condition of a production. Consider the following pro-
duction:

Gl IF the goal is to create a structure
and there is an operation that creates such a structure,
THEN use that operation.

This is a classic working-backwards operator, an instance of a general, weak,
problem solving method. This production might apply if our goal was to insert
an element into a list and we knew that there was a LisP function, CONS, that
achieved this goal. In this production, the first line of the condition describes
the current goal and the second context line identifies relevant information in
declarative memory. Proceduralization eliminates the context lines but gets
their effect by building a more specific goal description:

D1 IF the goal is to insert an element into a list,
THEN use CONS.

The transition from the first production to the second is an example of the
transition from a domain-general to a domain-specific production.

To understand in more detail how domain-general productions apply and
how proceduralization oceurs, one needs to be more precise about the encod-
ing of the production, the goal, and the knowledge about CONS. With respect
to the production, we have to identify its variable components. Below is a
production more like its GRAPES implementation, where terms prefixed by =7
denote variables:

G1' IF the goal is to achieve =relation on =argl and =arg2
and =operation achieves =relation on —terml and =term2,
THEN use =operation.

When this production applies in the CONS case, the goal is “to achieve
insertion of argl into arg2,” and our knowledge about CONS is represented as
«“cONS achieves insertion of argumentl into argument2.” The production G1'
applies to the situation with the following binding of variables:

—relation:  insertion
=operation: CONS .
=argl: argl
=arg2: arg2
‘=terml: argumentl

| =term2: argument2
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matched to the definition (ie., =operation achieves =relation on =terml and

DI IF the goal is to achieve insertion of =argl into =arg2,
THEN use CONs,

elements.

In Act* proceduralization wouyld only eliminate matches to declarative
knowledge that wag pe€rmanently encoded in long-term memory. The claim was
that, since the knowledge was there, all that proceduralization did was
eliminate the need for its retrieval. Proceduralizatjon did not fundamentally
change the behavior of the system.

Since 1983 there has been a fajr amount of data (e.g., [19, 29, 47]) which

nonetheless capable of learning to solve problems such as the Tower of Hanoij
puzzle. When presented with the puzzle he will swear he has never seep it
before but nonetheless proceeds to solve jt perfectly (which he could not do
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While these patients have impaired long-term memories they have perfectly
functional short-term declarative memories. That is, while solving the problem
they can remember the instructions. The memory deficit only shows up when
they return to the task. This suggests that ACT* was wrong in the claim that
long-term declarative memory was a prerequisite to procedural knowledge.
Any declarative representation, even if it is only transient, seems adeanate.
This is the implementation of proceduralization within PUPS.

3.4.2. Composition

Composition (Lewis [35]) is the process of collapsing multiple productions into
single productions. Whenever a sequence of productions apply in ACT and
achieve a goal, a single production can be formed that will achieve the effect of
the set.

The original Lewis proposal was to collapse pairs of productions that
occurred in sequence. A problem with this is that often contiguous productions
have little to do with each other. We use the goal structures in ACT* to decide
what productions to compose. Basically, ACT composes productions that
generated a sequence of subgoals and actions that led to the satisfaction of a
particular goal.

While many times composition applies to sequences of more than two
productions, its effect on longer sequences is just the concatenation of its effect
on shorter sequences. Thus, if S1, S2 is a sequence of productions to be
composed and C is the composition operator, C(S1,82) = C(C(s1), C(s2)). So
all we have to do is specify the pairwise compositions.

Let “IF C1 THEN A1~ and “IF C2 THEN A2” be a pair of productions to be
composed, where C1 and C2 are conditions and A1 and A2 are actions. Then
their composition is “IF C1 & (C2- A1) THEN (Al-G(C2)) & A2.” C2 - Al denotes
the conditions of the second production not satisfied by structures created in
the action of the first. All the conditional tests in C1 and (C1— A2) must be
present from the beginning if the pair of productions are to fire. Al-G(C2)
denotes the actions of the first production minus the goals created by the first
production that were satisfied by the second.

As an example, consider a situation where we want to insert the first element
of one list into a second list. One production would fire and write CONS, setting
subgoals to code the two arguments to CONs. Then a second production would
fire to code CAR and set a subgoal to code the argument to CAR. Composing
these two together would produce the production:

C3 IF the goal is to insert the first element of =arg2 into =arg3,
THEN code CONs and then code CAR and set as subgoals to
(1) code =arg2
(2) code =arg3.

Composition differs from chunking as developed in SOAR (Laird, Rosen-
bloom and Newell [34]) in that it is defined on the productions involved
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whereas the SOAR mechanism is defined on the working memory elements
involved. In SOAR the same variable is introduced for the same working

The weakness of the SOAR variabilization mechanism can be seen in a case of
its application to algebraic problem solving (Golding [27]). It tries to chunk the
steps that transformed Y* R = § into ¥ = S/R. Note that it is moving R to the

3.5. Generalization and discrimination

The final category of learning mechanism in the ACT theories has been a
mechanism concerned with inductive learning—i.e. learning that goes beyond

the received knowledge to infer new knowledge. Clearly, such a learning

major issue in the evolution from AcCT* to PUPS has concerned the mechanisms
of induction. Generalization and discrimination were the two inductive mech-
anisms in the 1983 AcT* theory. They were defined on production rules and

The mechanisms of generalization and discrimination can be nicely illus-
trated with respect to language acquisition. Suppose a child has compiled the
following two productions from experience with verb forms:

IF the goal is to generate the present tense of KICK,
THEN say KICK +S.

IF the goal is to generate the present tense of HUG,
THEN say HUG +8S.

The generalization mechanism would try to extract a more general rule that
would cover these cases and others:
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IF the goal is to generate the present tense of =X,
THEN say =X+S8.

where =X is a variable.

The production rule formed is the maximally specific generalization of the
two productions allowed in the description language for the production system.
Given that the description language only allows conjunctions of variabilized
clauses, generalizations take the form of deleting clauses and replacing con-
stants by variables.

Discrimination deals with the fact that such rules may be overly general and
need to be restricted. For instance, the rule above generates the same form
independent of whether the subject of the sentence is singular or plural. Thus,
it will generate errors. By considering different features in the successful and
unsuccessful situations the discrimination mechanisms would generate the
following two productions:

IF the goal is to generate the present tense of =X
and the subject of the sentence is singular,
THEN say =X+S8.

IF the goal is to generate to present tense of =X
and the subject of the sentence is plural,
THEN say =X.

If there are multiple potential discriminating features, one is chosen at random
with a probability that is a function of its level of activation. Over multiple
opportunities a search is in effect performed over possible discriminations. The
strengths of individual production rules serve as evaluations of how well
various rules do and successful rules will be strengthened to the point where
they come to dominate. These learning mechanisms have proven to be quite
powerful, acquiring, for instance, nontrivial subsets of natural language [5]-

These discrimination and generalization mechanisms are very much like
similar knowledge acquisition mechanisms that have been proposed in the
artificial intelligence literature (e.g., [28,42,58]). In particular they can be
considered syntactic methods, in that they only look at the form of the rule and
the form of the contexts in which it succeeds or fails. There is no attempt to use
any semantic knowledge about the context to influence the rules that are
formed. A consequence of this feature in the ACT theory is that generalization
and discrimination are regarded as automatic processes, not subject to strategic
influences and not open to conscious inspection. The reports of unconscious
learning by Reber [49] seem consistent with this view. He exposed subjects to
examples of strings generated by an unknown finite-state grammar. He found
that these subjects were able to judge whether new strings were consistent with
the rules of the grammar without ever consciously formulating the rules of the
grammar.
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4. The pups Learning Theory

The PUPS theory (Anderson and Thompson [12]) basically continues the
assumptions of the ACT* learning theory €xcept on three scores:

(@) As noted, proceduralization does not require working memory structures
to be permanently recorded in long-term memory in order to delete matching
to them in production conditions.

(b) The inductive mechanisms of generalization and discrimination which
operated on productions have been replaced by inductive mechanisms of
analogy and discrimination which operate on declarative knowledge structures.

(c) There has been the introduction of mechanisms of causal inference.

example-based learning also fits wel] with our observations of Students learning
in domains like Lisp and geometry [5, 10, 48] where they seem to place a heavy
emphasis on using examples of problem solutions.
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4.1. Knowledge representation

Analogical problem solving in PUPS makes strong assumptions about the
representation of examples. Specifically, it assumes that problems are repre-
sented as forms achieving particular functions under certain preconditions. We
can encode this information about examples in schema-like structures where
function, form, and precondition are three slots among others in the schema-
like representation. Below is a representation we might want to impose on the
example LISP code (+ 2 3):

structurel
isa: function-call
function: (add 2 3)
form: (list + 2 3)
context: LISP
medium: CRT-screen
precondition: context: COMMONLISP

It is represented as a function call that adds 2 and 3 in the context of
COMMONLISP and which was executed on a CRT screen. The form information
states that the example is a list structure consisting of the symbols “+,” “2,”
and “3.” The precondition information states that it is essential that the
context be COMMONLISP for this form to achieve its function. It would not
succeed in INTERLISP, for instance.

4.2. The no-function-in-identity principle

There is a basic semantics underlying the relationship among the form,
function, and precondition slots. This semantics is basically that jointly the
form and the precondition imply the function. We can represent the example
above, for instance, by the following implication:

IF goal is to achieve the function (add 2 3)
and the context is COMMONLISP,
THEN use the form (list + 2 3).

However, this is a very specific rule. Suppose we wanted to achieve the
function of (add 6 8) in the context of COMMONLISP. This production will fail
because of the mismatch of the constant 6 to 2 and the constant 8 to 3. Faced
with such a mismatch PUPS will try to variabilize the rule embedded in the
example so that it will make the current problem. The production rule we want
in the current case is:

IF the goal is to achieve the function (add x y)
and the context is COMMONLISP,
THEN use the form (list + x y).
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PUPS could always variabilize the rule implicit in an example so that it would
match in the current context but at the cost of spuriously extending examples.
There has to be reason to suppose that the example above can be appropriately
variabilized without spuriously extending it. Note that in the example above 2
and 3 appear in both the function and the form. This is critical to the induction
that replaced them by x and y. The inductive principle underlying this is called
the no-function-in-identity principle. The basis idea is that it is not an accident
that 2 and 3 appear in both function and form. It is merely their positions in the
form, and not their identities which achieve their positions in the function. The
analogous function would be achieved by any elements that appeared in the
form. Thus, the “no-function-in-identity”’ principle allows us to respond to the
appearance of a term in both form and function of the example by replacing it
everywhere by the same variable.

To summarize, PUPS searches for some substitution of variables for constants
such that:

(a) each constant in the substitution must appear both in the condition and
the action.

(b) The production rule after the substitution matches in the current
context.

(¢) No more substitutions are used than is necessary to achieve (b). Thus, if
both the example and the problem share a constant a variable is not intro-
duced.

This production rule which PUPS extracts to solve the new problem is stored
away for future use—i.e., it becomes an explicit rule unlike the implicit rule in
the original example.

In extracting this production rule to apply to the next problem, PUPS has
basically computed an analogy from the example to the problem defined by the
mapping:

2—6,
3—-8.

All current analogy systems (e.g., [16, 26, 60]) involve putting one structure in
correspondence with another such that certain elements map to other ele-
ments. These theories differ in terms of their criteria for allowing a correspond-
ence. The “‘no-function-in-identity principle” is the principle in PUPS. Like all
analogical principles it is basically inductive in character.

4.3. The principle of functional elaboration

The example above is simple in that it can be achieved by variabilizing terms
that appear only in the example. However, in most interesting cases of
analogy, the terms that appear in the function do not directly appear in the
form. It is necessary to elaborate the form and/ or function descriptions to
come up with a representation that can be variabilized. For instance, suppose
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what we wanted to achieve was to multiply 6 and 8. The above variabilized
production would have a mismatch between ‘“add” and “‘multiply.” PUPS can
get over this hurdle if it has encoded that “+” implements “‘add” and ““*”
implements “‘multiply” encoded in the following PUPS structures:

+: isa: LISP function
function: (implements add)
form: (TEXT +)

*: isa: LISP function
function: (implements multiply)
form: (TEXT *)

One can embellish the representation of the plus example by including this
information about the function of the + symbol:

IF goal is to achieve the function (add 2 3)
and the context is COMMONLISP,
THEN use the form (list =function 2 3)
where =function implements add.

Note that the “+” has been replaced by the variable “=function” and
«“—fyunction” has been given the functional description of “+.” This reflects the
second inductive principle in PUPS analogy, which we call the principle of
functional elaboration. The inference is that any term which achieves the
function of the replaced symbol will do. There now is a variabilization of this
production rule which will extend it to the problem of multiplying 6 by 8:

IF the goal is to achieve the function (=op =x =Y)
and the context is COMMONLISP,
THEN use the form (list =function =x =y)
where =function implements =op .

The constraint ““=function implements =op” can be satisfied either by insert-
ing a term which satisfies this function or setting a subgoal to find such a term.
pUPS performs a search over functional elaborations of terms in the condition
and action side of the original production (implicit in the example) looking for
some embellished representation where the no-function-in-identity principle
can apply—i.e., where points (a)—(c) specified under that principle can be
satisfied.

Note that in extracting this production rule from the example and matching
it to the problem we have in fact calculated the following mapping of the
example onto the problem:

add — multiply,
+ — x|

2 - 6,

3 - 8.
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Thus, we have performed the analogy defined by this mapping. However, |
prefer to talk about rules and not the analogical mapping because PUPS does
store the production rule underlying this analogy. These productions are
basically proceduralizations in the sense defined earlier. They eliminate the
need to make reference to a declarative structure to repeat a computation. In
this case, the data structure eliminated is the PUPS encoding of the example.
Subjects do show a dramatic improvement in their problem solving after using
a single example and tend to drop out reference to an example in the
subsequent problem solving episodes [48].

An interesting question concerns how PUPS selects an example from which to
make an analogy. If it selects an example which will not work (because it
cannot find a variabilization satisfying the no-function-in-identity principle), it
simply tries another. Unguided it may have to go through a great many
examples before coming up with a successful one. However, PUPS uses a
spreading activation scheme and selects the most active example. This means
that it will tend to select a recent example and one that overlaps a lot with the
features of the current problem. These biases correspond to the biases in
human selection of examples for analogy [51].

4.4. Form to function analogy

One can use the same analogy mechanism to infer the function of a novel form.
The following example, adapted from the dissertation research of Shrager [54],
shows analogy operating in this fashion. Subjects were presented with a toy
tank that had the keypad in Fig. 2. They determined that the key labelled with
the up-arrow moved the tank forward and they had to figure out what the keys
with the down-arrow and left-arrow did. Below we have PUPS structures that
purport to represent their states of knowledge:

Daa=

SIS[S

OEaw
=)

Fig. 2. An example of the device used by Shrager [54].
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example
isa: button
function: (MOVE forward)
form: (LABELLED up-arrow)

up-arrow
isa: symbol
function: (DENOTE forward)

problem1
isa: button
function: ?
form: (LABELLED down-arrow)

down-arrow
isa: symbol
function: (DENOTE backward)

problem?2
isa: button
function: ?
form: (LABELLED left-arrow)

left-arrow
isa: symbol
function: (DENOTE leftward)

The example is encoded as an up-arrow with the further information that an
up-arrow is a symbol which conventionally means forward. The functions of
the other two buttons are not represented but we have represented the
conventional knowledge that down-arrows symbolize backward and left-arrows
left.

We can represent the knowledge encoded by the example by the following
variabilized production:

IF there is a structure with form (LABELLED =symbol)
and =symbol denotes =direction,
THEN the ‘tructure has the function (MOVE =direction).

This production can be extracted from the example using the “‘no-function-
in-identity” principle and the principle of “functional elaboration” and just
switching the form to the condition and the function to the action side of the
production. This production enables us to infer that the function of the
problem1 button is to move backwards. Similarly we can infer that the function
of the problem2 button is to move left. As it turns out only the first inference
was correct. The left-arrow button did not actually move the tank in the left
direction but rather only turned it in that direction. This is an example of
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where the “no-function-in-identity”’ assumption was violated. Some buttons
moved the tank in the specified direction and some turned. One simply had to
learn which did which. The actual identity of the direction determined the
function of the button. This just proves that analogy has the danger of any
inductive inference of coming to conclusions which are not in fact correct. The
important observation is that human subjects also made this misanalogy. Later
we will discuss discrimination mechanisms in PUPS for avoiding such over-
generalizations.

4.5. Function to function analogy

Function slots in PUPS can have multiple values corresponding to the basic
observation that an object can have multiple functions. The potential for
multiple function slots creates a third type of analogy. One can take an
example serving two functions and if one of these functions is analogous to the
function of a current problem, one can infer that another way to characterize
the function of the problem is in analogy to the second function of the
example. The following example illustrates this. One might have as a goal to
calculate the second element of the list:

Goal
isa: lisp-code
function: (second lis)
form: 7??7?

Even if one knew what the functions car and cdr did, one might not see their
applicability to this goal because one represented the function of car as
calculating first and cdr as calculating rest and these relationships do not make
immediate contact with the relationship of second. However, one might have
an example of calculating the second element of a list in some other domain
(e.g., the second card in a deck) where that was represented as the first of the
rest of the list:

example
isa: card
function: (second deck1)
g (first deck2)

deck2
isa: deck
function: (rest deck1)

From this example the following rule can be extracted:

IF there is a structure with function (second =lis1),
THEN the structure also has function (first =lis2)
where =lis2 is the rest of =lis].
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This analogical elaboration then allows one to refine the goal function so that
the car and cdr productions can apply.

4.6. Relationship to other work on analogy

There has been a fair amount of research on mechanisms of analogy and it
would be useful to relate this current system to other proposals:

4.6.1. Explanation-based generalization

Explanation-based learning (DeJong [21], Mitchell, Keller and Kedar-Cabelli,
[43]) has some interesting similarities with our analogy mechanisms. Kedar-
Cabelli [31] has extended Michell’s system to analogy which makes the
similarities all the more apparent. In explanation-based learning, the system is
given a high-level description of the target concept (the goal concept), a single
positive instance of the concept (the training example), a description of what an
acceptable concept definition would be (the operationality criterion), and a list
of facts about the domain. Included in these facts are abstract rules of
inference about the domain. EBG (explanation-based generalization) al-
gorithm tries to find a proof that the training example satisfies the goal
concept. To do this it simply expands the terms in high-level description until
all the terms in the description meet the operationality criterion. After a proof
is generated that the training example satisfies the goal concept, the proof is
generalized to form a rule which is capable of matching any instance of the goal
concept which meets this same low-level description.

The expansions done by the EBG method are not unlike the functional
elaborations done by the PUPS system. The essential difference is that, while
the EBG system expands until it either reaches a dead end or the (apparently
ad hoc) operational criterion is met, the PUPS system has an implicit oper-
ational criterion, which is that the expansion is sufficiently elaborate for the
no-function-in-identity principle to apply. A second difference is that PUPS
need not be given abstract rules of inference for the domain. It tries to infer
these directly from its encoding of examples. Thus, EBG starts out with a
strong domain theory and essentially composes new rules; while PUPS discovers
the rules hidden in its examples. A third difference is that the EBG method
simply characterizes the way in which a single object instantiates a concept,
while PUPS draws analogies in order to further problem solving efforts.

4.6.2. Winston’s analogies

Winston’s ANALOGY system [60] is very similar to the work of Mitchell and
Kedar-Cabelli discussed above. The major difference is that the rules of
inference are stored with the examples and not stored separately and thus the
example serves the additional function of providing rules of inference. One of
the big differences between ANALOGY and PUPS is that ANALOGY seems only
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capable of filling in function slots (i.e., doing form-to-function mapping). That
1S, ANALOGY would not be able to generate an example which served a specific
function (i.e., do a function-to-form mapping). Indeed, this observation could
be made of all the examples we have looked at, except for Carbonell’s work
(which is only capable of finding form that fills a particular function, and not
the reverse). PUPS is the only system we know of that can draw analogies in
either direction.

4.6.3. Gentner’s structure mapping

Gentner’s [26] structure-mapping approach to analogies distinguishes between
various types of features of the model. In particular, there are attributes, which
are predicates of only one object, and relations, which are predicates of two or
more arguments. In analogy, one is only concerned with mapping relations.
From this assumption, she distinguishes in a natural way those features which
should map when comparing the solar system to an atom. The method for
selection of what features will map to the target domain involves a causal
analysis of the domains. The Systematicity principle says that those relations
which are central to the functional description of the domain are much more
likely to get mapped than those which are not. So, for instance, the fact that
the sun is more massive than a planet in some way causes the planet to orbit
the sun. Thus, this relation is more likely to get mapped to the domain of
atoms than the assertion that the sun is hotter than the planets (which doesn’t
cause anything). The causal analysis is similar to Winston’s model. The central
idea is that if you cannot show a reason for a relation to get mapped, then you
shouldn’t map it.

The PUPS analogy mechanism does not require a commitment to which
relationships will be mapped. It will recruit all and only those functional
relationships that are required to enable the no-function-in-identity principle to
map. However, causal relationships provide an important type of functional
link as we will discuss.

4.6.4. Carbonell’s derivational analogy

Carbonell’s [16] work is different in kind than the systems so far discussed. His
basic strategy is to take a worked-out solution for a problem and convert it to
the current task. The problem solution may be represented at any level of
abstraction (corresponding to various points along the problem solving con-
tinuum) as a list of operators along with an elaborate description of the
dependencies among the operators and the parts of the problem domain. These
dependencies are then evaluated with respect to the current problem, and
various editing operations are performed to convert the solution to one
appropriate for the current problem.

A major difference between Carbonell’s work and our own is that he
represents problem solutions as a whole, and requires that the entire solution
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be transported (modulo certain possible transformations) into a solution to the
current problem. In our work, each operator application is done by a separate
step (which may either be a learned rule or an analogy), and our solutions may
therefore potentially borrow from many different examples. Also, since the
generalizations we learn describe an individual step in a problem solution
rather than the entire solution, these generalizations are more widely appli-
cable (our theory predicts more transfer to novel problems). We think this
more piecemeal approach is closer to the human use of analogy.

4.7. Discrimination

PUPS analogy is meant to replace the ACT* theory of generalization. The
compilation of the analogy to produce a production rule amounts to a
generalization. As in ACT, this generalization mechanism needs to be sup-
plemented with a discrimination mechanism which adds appropriate constraints
to the generalizations. The precondition slot of a PUPS structure is supposed to
encode the constraints on a form achieving its function. When a form fails to
achieve its intended function, it is assumed that this is because some critical
precondition is missing and an effort is made to find the precondition and
encode it within the PUPS structures. Currently, there are two ways such
precondition information can be added. Since such precondition information is
declarative structure, it can be added by encoding linguistic instruction or by
the output of other production actions. Alternatively, PUPS can engage in a
comparison of successful and unsuccessful analogies much as ACT* does,
looking for critical differences. Applied to the earlier misanalogy in the
Shrager situation (Fig. 2) the difference uncovered might be that left and right
require the tank to turn. However, even when PUPS engages in this compare
and contrast strategy it differs from ACT* in that the precondition is added to a
declarative data structure and so is available for inspection. This produces the
phenomenon noted earlier that when subjects make successful discriminations
they are able to articulate what the discriminating features are.

4.8. Causal induction

pUPS, being a developing theory, does not have a fixed set of learning
mechanisms. Recently, influenced by the work of Lewis [36] we have become
convinced that we need to work on principles of causal inference to make the
theory of learning more complete. The basic idea is that people have a capacity
to infer causal relationships among elements in their experience. Basically, in
PUPS terms, a causal induction involves encoding as a function of forml that
caused form?2. While we have experimented with mechanisms for causal
induction in PUPS, there is not a stable implementation as there is in the case of
analogy.
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Lewis has identified a number of principles for causal induction, including
the following two:

(1) The identity heuristic. This basically asserts that when two tokens of the
same element appear in a sequence, the first token had a role in causing the
second token. Thus, if we type (lis) into the computer and we see a message
“lis: unknown function object” we can use the identity of lis between what we
typed and the message to infer that our action caused the message.

(2) Previous action. This basically asserts that if an event has no other
apparent cause, ascribe as its cause the immediately preceding action. Thus, if
a computer responds immediately with “rubbish” to a symbol we typed we can
infer our typing caused the message.

We have built these two mechanisms into PUPS and have been exploring their
interaction with analogy. The following is an interesting example of how
analogy and causal induction work in concert.

To set the scenario for this example, imagine a learner who neither knew
English nor knew LIsp, interpreting the following interactions involving an
instructor and a computer user. First, an instructor says “Get the first element
of (a b c).” Then a computer user, sitting at a terminal, types (car ’(a b c)).
Finally, the computer responds with just a. Figure 3(a) shows pups analysis of
these three events which turns on these two principles for causal induction.
Using the principle of previous action it infers that the first event caused the

@)

Instructor: (Get (The First Element (Of (A B Q)
lCauses Reflects 1
User: (CAR (QUOTE (A B Cy)
Causes Reflects l
System: A

Principles of Contiguity and Identity

(b)
g Instructor: (Get (The First Element (Of (X Y 2))))
l Causes Reflects
User: (CAR (QUOTE (X Y 2)))
Causes Reflects
System: R X

Fig. 3. (a) An example of how PUPS develops a causal analysis of a sequence of three events. (b)
An example of how analogy extends to analysis in (a) to interpreting a new utterance.
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level, the algorithm level, and the implementation level." We need to under-
stand the epistemological claims of ACT of each level.

5.1. The knowledge level

Newell [45] is responsible for the term ‘‘knowledge level” and Dietterich [22]
has argued for its usefulness in analyzing issues of learning. It is the most
abstract level and refers to what a person knows independent of how it is
actually encoded and how it actually shows up in a piece of behavior. The
distinction between what is known and what is represented is easy to make in
the domain of logic. Suppose a system has encoded the logical formula p and p
implies q. Then that system also knows g even though that is not directly
represented. A system can be said to know all the entailments of what it has
encoded. Two systems with different encoded information can be said to know
the same knowledge if the entailments of these two sets of knowledge are
identical. So, curiously, a system that has ¢ and g implies p encoded knows the
same things as the earlier system because the two sets of premises have
identical entailments.

However, given the fundamental behaviorist insight it is a bit strange to talk
about human knowledge in terms of its logical entailments. We do not see
logical entailments; we see behavior. Therefore, Newell’s development of the
knowledge level hinges on the implications of the knowledge for behavior.” He
introduces what he terms the “principle of rationality”: “If an agent has
knowledge that one of its actions will lead to one of its goals, then the agent
will select the action.” Two encodings of knowledge are equivalent, then, if the
principle of rationality maps them onto the same behavior. Thus, it matters not
if a child has encoded “mother has baked oatmeal cookies” and “‘the cookie jar
contains what mother has baked” or encoded “‘the cookie jar contains oatmeal
cookies” and “whatever is in the cookie jar mother baked.” In either case a
polite oatmeal-loving child, who obeys the principle of rationality, should go to
the cookie jar and thank mother for the cookies.

Clearly, learning at the knowledge level is critical to the original philosophi-
cal discussions mentioned in the introduction of this paper. They were intended
to be about the knowledge level, but part of their confusion was that they
mixed in issues of learning at the other levels.

' These three levels bear obvious relationships to Marr's [39] three levels of computational
theory representation and algorithm, and hardware implementation. The major difference is that
the knowledge level is fashioned somewhat differently to help us address the epistemological issues
of concern here. The difference between the knowledge level and the other levels also has a clear
similarity to Chomsky’s [18] competence-performance distinction.

> As we will see there is a distinction between the actual behavior of a system and the
implications of knowledge for the behavior. A system may not behave as its knowledge implies it
should. The knowledge level is concerned with the implications and not the actual behavior.
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It is also an interesting fact that the procedural-declarative distinction is a
nondistinction when we talk about learning at the knowledge level. The
procedural-declarative distinction turns on whether knowledge is prepared for
a particular use (and hence is procedural) or not (and hence is declarative).
The knowledge level is defined by the principle of rationality which says that if
knowledge is there it will be used appropriately.

5.2. The algorithm level

While one might reasonably argue that learning at the knowledge level is the
most critical to issues of knowledge, it is by no means the only level nor is the
knowledge at this level the only type of knowledge we want to speak about
(despite the term Newell gave it). That this is so can be seen by considering
chess. One might argue that someone who knows the rules of chess knows how
to play a winning game since winning performance follows logically from such
knowledge. However, one does not necessarily have the means of turning the
knowledge into winning performance. Another example is that the postulates
of geometry should imply the ability to do proofs in geometry, but a great deal
of learning must occur after students have learned the postulates of geometry
before they are facile at generating proofs.

The algorithm level refers to the actual behavioral potentials of the system.
The analogy here is to the algorithmic specification of a computer program.
This is quite an abstract specification however. Just as a computer algorithm is
not committed to the programming language many of the details of the PUPS
implementation are irrelevant to understanding human knowledge at the
algorithm level. The declarative-procedural distinction is a significant distinc-
tion at this level, however. Knowledge that can or cannot be used in a
particular way will determine what the system can do.

In ACT* or PUPS, because any procedure must operate on the contents of
working memory, there is a close relationship between the algorithm level and
working memory. Any algorithm amounts to a specification for a series of
transformations of the contents of working memory. Thus, there is also a close
relationship between the algorithm level and protocol data because protocol
data involves a reporting of the contents of working memory by behavior
correlated with”these contents. Thus, in addition to verbal protocols [25],
protocols can include things like eye movements [30] where the assumption is
that the eye is fixated on objects that are represented in working memory.

5.3. The implementation level

The program or algorithm for applying the knowledge leaves under-specified
the actual performance of the system. This can be seen by analogy to computer
programs. The speed with which a program will run depends on how cleverly it
is compiled into code and on which machine it runs. The machine and compiler
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will determine whether the program will fit in memory, whether it will require
swapping, and whether it can run at all. Similarly, in the human situation we
can inquire as to the speed and efficiency with which the human program can
run. There is evidence that the time and attentional costs of a human skill
decreases continuously with practice [5]. In the ACT* theory this improvement
with practice is a result of its strengthening mechanisms.

Improvement in such resource costs can actually change fundamentally what
a person can do. If the resource demands of a particular algorithm are too high
a person will simply fail to be able to successfully execute the algorithm. For
instance, Anderson and Jeffries [11] argue that most novice errors in LISP
programming result from working memory being overwhelmed by the problem
demands. They also argue that experts’ increased working memory for domain
information means that they are able to cope with problem solving demands
and so make fewer errors.

5.4. The relationship among the three levels

It is worth noting that there is a subset-superset relationship among knowledge
at the three levels. Any knowledge at the knowledge level is also knowledge at
the algorithm and implementation level and any knowledge at the algorithm
level is knowledge at the implementation level. As one goes up the levels one
loses distinctions. At the implementation level we have an actual specification
of what someone will do including errors and actual timing. Anything that
changes the behavior will count as learning at the implementation level. At the
algorithm level we ignore differences among behaviors that amount to differ-
ences in exact time or differences due to working memory being overloaded.
Thus, differences in knowledge states that show up only because of perfor-
mance considerations are ignored at the algorithm level. On the other hand we
do pay attention to differences in behavior that are due to fundamental
differences in an algorithm. Thus, someone solving a geometry problem by
backward search from what is to be proven knows an algorithm different from
that used by someone searching forward from the premises. At the knowledge
level however, there might not be a difference in the knowledge of these two
people so long as their algorithms implied the same decision about whether the
conclusion followed from the premises.

Thus, two systems which yield different behavior may not be distinguishable
at the knowledge level but only the algorithm level. For instance, there may be
no difference between a knowledge level analysis of a chess expert and a
duffer. They may both know the same things about chess but the expert may
possess better algorithms for realizing that knowledge and better implementa-
tions of those algorithms. Knowledge level refers to what the person in
principle should be capable of doing, not what he actually does do—just as a
proof system should in principle be capable of recognizing the truth of a
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theorem even if it cannot find the proof in allotted time. By Newell’s own
admission the knowledge level is a “radical approximation” to the behavior of
most programs, “failing in almost all cases to explore the subtleties of the
matter.”

6. Classification of Knowledge in pups

This section will consider the various types of knowledge that pups proposes
are in the human head and ask the question of how each got there—is it built
in (nativism), is it acquired from experience (empiricism), or was it internally
computed (rationalism)? To help sharpen the discussion I will consider these
questions separately at the three levels of knowledge—the knowledge level, the
algorithm level, and the implementation level. Table 1 provides a summary of
the conclusions—we have classified knowledge into a three-by-three table
according to its three possible origins and the three possible levels of analysis.

6.1. Declarative recordings of the environment

In the PUPS theory, declarative recording is closely associated with the knowl-
edge level. Every time there is a declarative recording from the environment
there is a change in the knowledge level. The reason that all declarative
recordings from the environment constitute learning at the knowledge level is
that they constitute some change in the rational behavior of the system—if
only to the question “What happened at time X?” Thus, the situation stamping
of events guarantees that the recording of any event is not redundant in jts
rational consequences with the current knowledge. Of course, learning at the
knowledge level also implies learning at the algorithm and implementation
levels because of the subset relationships that exist among the levels.

The only changes that occur at the knowledge level are those that derive
from declarative recordings from the environment. One might think that it is
possible to have rationalist learning at the knowledge level—that is, to have

Table 1
Classification of knowledge at three levels of abstraction according to the origins of the knowledge
“ Knowledge Algorithm Implementation
Acquired Environmental — —
(Empiricist) recordings
Computed — Deductions Strengthening
(Rationalist) Inductions
Compilation
Built in Induction — Principles of
(Nativist) Causal inference operation (?)

Weak methods
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the system compute knowledge that changes its own knowledge state. For
instance, consider the cases in Fig. 3 where PUPS first inferred that the
speaker’s utterance caused the user’s command and then later predicted that
another utterance would cause a similar command. Why do these causal
inference and analogical extensions not constitute rationalist learning at the
knowledge level? The reason they are not is that when we dig down into what
the system is doing, we see that it at least implicitly possesses knowledge of
causation and induction and is just deriving the consequences of this knowl-
edge with respect to the current events. In the case of causation this prior
knowledge would include the identity heuristic and the principle of previous
action. In the case of analogy this prior knowledge includes the no-function-in-
identity principle and the principle of functional elaboration. It does not really
matter whether the system has explicitly represented the knowledge of these
principles and is reasoning in terms of this knowledge or if the knowledge is
only implicit in the computations. As far as the principle of rationality is
concerned, if the system is behaving as if it has the knowledge, then it does
have the knowledge.’

6.2. Deductions and inductions

In PUPS there are three ways declarative facts can be added to memory. These
facts can come from the outside which is the just analyzed case of learning at
the knowledge level. Second, a production rule can add a declarative fact to
memory. In this case we are just making explicit an implication already in the
system and we have algorithm level learning. Such declarative learning we
refer to as deductions.

The third possibility, is that inductive mechanisms of analogy, discrimina-
tion, or causal inference, might apply. By the preceding analysis such inductive
learning is really another case of learning at the algorithm level because we are
simply deriving the consequences of our principles of induction with respect to
the current event. Indeed, it is unclear that inductive learning is any different
than deductive learning under this analysis. That is to say, we could embed
these inductive principles as production rules and the inductions would just be
what is added by production actions.

6.3. Knowledge compilation

Knowledge compilation also involves learning at the algorithm level. This
might seem peculiar in that knowledge compilation is often thought of as only
improving the time or capacity demands of an algorithm. However, in addition

3 Note that this position differs from that of Dietterich who views inductive learning as learning
at the knowledge level. The view taken here is that such learning can be deduced from the
inductive principles and the existing knowledge.
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to these implementation consequences there are two ways in which the
behavior of the system changes.

(a) Knowledge compilation in ACT* can actually change the direction of
problem solving because of changes in the conflict resolution. In the terminolo-
8y of Lewis [35] compilation in acT* is “unsafe” in that it is possible that a
compiled production will fire in situations when the production(s) from which it
Was compiled would be blocked. This js regarded as a feature, not a bug, in the
theory because this allows the System to favor the more efficient rules it has
formed. Also, when it does lock the system into an overly narrow type of
behavior this corresponds to the Einstellung effect noted in human behavior
(Luchins [38]) where subjects will produce a learned solution in a new situation
when it is no longer optimal.

6.4. Strengthening

The strengthening Processes constitute learning at the implementation level in
that they do not change the behavioral potentials of the system, only the
capacity costs of performing these behaviors. Strengthening is a kind of
rationalist learning. It is a case of a system mulling over its experience and

It is interesting to note that strength adjustments are basically the only
learning mechanism underlying the connectionist models (e.g., McClelland and

Rumelhart [40], Rumelhart and McClelland [52]), and such adjustments are
said to produce learning that at least approximates learning at the knowledge

It is interesting to note that the actual implementation of ACT* is very much
a matter of neural computation despite the fact that its epistemological
assumptions are very different from connectionist theories. This reinforces a
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claim I have made elsewhere [8] that the fundamental issue between a
“symbolic” theory like ACT and a ‘“‘connectionistic’” model is not the issue of
neural implementation, where both basically agree, but rather the issue of
learning.

6.5. Innate knowledge

To summarize the discussion of the preceding sections, at the knowledge level
all learning is a matter of experience, by logical necessity. At the algorithm and
implementation level all learning is rationalist, by theoretical choice. What
remains to be specified is PUPS’s position on innate knowledge.

It is an interesting question what the epistemological status is of innate
processes in PUPS, such as those for spreading activation. Since these processes
only influence the performance properties of the algorithms people possess,
these processes must constitute innate knowledge at the implementation level if
they are innate knowledge anywhere. However, even to speak of these as
implementation knowledge is a bit strange. Innate knowledge seems only an
appropriate concept at the knowledge level.

I think at the knowledge level we can say that there are at least three kinds
of important innate knowledge in PUPS: knowledge about causal inference, the
inductive knowledge behind analogy and discrimination, and knowledge of a
set of weak problem solving methods.

The basic view of human behavior is one of a problem solver who has a set
of operators for solving problems and set of methods for applying these
operators. Such a system has to start out with a way of extracting operators
from experience. In PUPS these are the mechanisms of causal inference, which
basically infer that certain things cause certain other things. The actual
acquisition of such causal relationships is rationalist learning as we discussed.
The principles that underlie this rationalist learning are an important category
of innate knowledge about the nature of the world.

In addition to having these operators, we must have some means of
deploying them to solve new problems. These mechanisms must include
methods which do not have built into them knowledge of the particular
problem solving domain to which they apply. These are the so-called weak
methods. Analogy, besides being an inductive mechanism, is one weak method
which tries to map the solution of one problem to another. Its inductive
components enable it to extend the solution to novel contexts but analogy is
quite limited in its ability to generate a novel solution. Other weak methods
like hill climbing or means-ends analysis do more to concatenate the steps in
novel form. In the PUPS framework there is no way to acquire any of the basic
weak methods. They have to be built in.

It is interesting to compare PUPS on this score with the SOAR model (Laird,
Rosenbloom and Newell [34]) which is said to contain a single universal weak
method and that other weak methods emerge in response to encoding of
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knowledge about a domain. We could do the same thing in PUPS using analogy
as the universal weak method. If we encoded a solution to a problem as a
means-ends solution we could generate a means-ends solution to an analogous
problem. However, this ignores the question of where the original encoding
came from. If one traces it back it has to be because the encoding mechanisms
knew about means-ends solution. In the PUPS framework, all the weak
methods must be traced to innate knowledge. It is not clear the same would
not be true if we explored in SOAR where the encodings of domain knowledge
came from.

7. Summary

In summary, the following are the assertions of the current PUPS theory on
knowledge acquisition:

(0) The knowledge acquisition takes place within a production system
architecture which assumes a rich enough pattern-matching ability to match
operators to situations and to identify differences between goals and current
states.

(1) The system begins with

(a) a set of rules for inferring causal relationships in experience,

(b) a set of inductive principles for extending or restricting the causal
inference,

(c) a set of weak methods for deploying these causal inferences in
problem solving.

(2) Learning at the knowledge level is empiricist and consists of encoding
declarative representations of experience as received.

(3) Learning at the algorithm level is rationalist and involves compiling rules
that summarize existing computation, storing the declarative structures written
into working memory by production actions, and adding the results of induc-
tive procedures for causal inference and analogy.

(4) Learning at the implementation level is rationalist and involves
strengthening the procedural and declarative knowledge as a reflection of its
frequency of successful use.

”
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