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Opinion
The methodologies of cognitive architectures and
functional magnetic resonance imaging can mutually
inform each other. For example, four modules of the
ACT-R (adaptive control of thought – rational) cognitive
architecture have been associated with four brain
regions that are active in complex tasks. Activity in a
lateral inferior prefrontal region reflects retrieval of infor-
mation in a declarative module; activity in a posterior
parietal region reflects changes to problem representa-
tions in an imaginal module; activity in the anterior
cingulate cortex reflects the updates of control infor-
mation in a goal module; and activity in the caudate
nucleus reflects execution of productions in a procedural
module. Differential patterns of activation in such central
regions can reveal the time course of different com-
ponents of complex cognition.

Introduction
This paper will describe a rather unexpected convergence
of an empirical and a theoretical methodology. The empiri-
cal methodology involves functional magnetic resonance
imaging (fMRI), which has become a major research tool in
cognitive science. The theoretical methodology involves
cognitive architectures, which are formalisms for modeling
the mental interactions that occur in the performance of
complex tasks. These twomethodologies are rather distant
members of the cognitive science field: one has strong ties
to traditional neuroscience whereas the other has strong
ties to traditional artificial intelligence. However, they can
be brought together such that fMRI data provide conver-
ging evidence for architectural assumptions, and the
architectural assumptions provide explanations for when
certain brain regions will show correlations in their acti-
vation andwhen theywill not. Our specific casewill involve
the ACT-R (adaptive control of thought – rational) cogni-
tive architecture and its relationship to several brain
regions that are often active in the performance of complex
tasks.

ACT-R [1,2] has been used to model people’s behaviors
in a great variety of tasks including categorization, learn-
ing algebra and geometry, driving while talking on a cell
phone and air traffic control (see ACT-R [http://act-r.psy.
cmu.edu/] for the variety of tasks researchers have mod-
eled). By specifying behavioralmodels within such a frame-
work, one is forced to make the theory computationally
explicit, thus allowing for true evaluation of the theory as
well as allowing for predictions in novel circumstances.
According to the ACT-R theory, cognition emerges through
the interaction of several relatively independent modules.
Figure 1 illustrates the modules in a model of solving
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equations such as 7x + 3 = 38. In Figure 1, the visual
module is extracting information about the equation; the
retrieval module is obtaining arithmetic facts relevant to
this information; and the imaginal module is changing the
representation of the solution to incorporate the retrieved
information.

Before our work in brain imaging, ACT-R addressed
only behavioral measures, such as the timing of keystrokes
or patterns of eye movements. These behavioral data
sources failed to test detailed assumptions about which
modules were active in the performance of a task. We have
recently been engaged in a process of using imaging data to
provide converging data on module activity. Figure 2 illus-
trates the associations we have made between the six
modules in Figure 1 and brain regions. Coordination
among all of these components occurs through actions of
the procedural module, which is mapped to the basal
ganglia. Box 1 describes the methodology by which we
are able to use the time course of the activity of themodules
to make predictions about the blood-oxygen-level-depend-
ent (BOLD) response obtained in fMRI.

The basic information processing circuit
Although perceptual and motor modules can be very
important to the performance of a task, this paper focuses
on the four central modules and their associated areas,
which we have shown to be independent of the modality of
input or output [3]:

(i) T
ier Ltd.
he module responsible for controlled retrieval from
declarative memory is associated with a lateral
inferior prefrontal region (Talairach coordinates
x = +/�40, y = 21, z = 21) around the inferior frontal
sulcus.
(ii) T
he module responsible for constructing imagined
representations is associated with a parietal region
centered at x = +/�23, y = �64, z = 34, on the border of
the intraparietal sulcus.
(iii) T
he module associated with setting controlling goals
is associated with the anterior cingulate cortex
centered at x = +/�5, y = 10, z = 38 in the medial
frontal cortex.
(iv) T
he module associated with procedural execution is
associated with the head of the caudate nucleus, part
of the basal ganglia, centered at x = +/�15, y = 9, z = 2.
Many researchers have noticed that these regions tend

to activate together (e.g. see Refs [4–6]). However, there are
systematic differences in the factors that these regions
respond to, and these differences can be predicted from
the properties of their associated modules. Below, we
review evidence about each of these mappings and their
regions. Box 2 illustrates an experiment in which specific
regional responses were successfully predicted for each
All rights reserved. doi:10.1016/j.tics.2008.01.006 Available online 10 March 2008
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Figure 1. A representation of the basic module operations in ACT-R to implement the unwind strategy in ACT-R to solve the equation 7*x + 3 = 38. (i) The visual module

encodes pieces of the visual display such as fragments of an equation, for example ‘+ 3’. (ii) The retrieval module holds retrieval cues such as ‘8 – 3’ to drive the retrieval of

task-relevant facts. (iii) The imaginal module creates and transforms problem representations, such as intermediate answers in the equation solution. (iv) The goal module

sets control states to direct the path of information processing, such as whether information is to be retrieved or the equation is to be transformed. (v) The manual module

programs the output such as the keying of 5 as the final answer. (vi) The procedural module executes productions that recognize patterns of activity in other modules,

selects appropriate actions and relays information to the other modules. The height of the boxes in Figure 1 represents the time a module is active in doing things such as

retrieval or constructing an internal problem representation. While a module is engaged during one of these activities, it might be performing a great many computations in

parallel to achieve its objectives, such as the retrieval module matching a pattern against declarative memory. It places the results of its computation in its buffer associated

for access by other modules. Multiple modules can work in parallel, but the need to pass information among modules imposes some seriality on the overall processing.
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region by the computational properties of their associated
modules.

When interpreting this research, it is important to
understand the basic processing cycle that involves all of
the modules associated with these regions in the ACT-R
theory. At any point in time the state of the system is
defined by the contents of the buffers of these modules.
Because of the way computations are distributed across
modules, four basic operations tend to repeat whenmoving
to a new state:

(i) P
rocedural: some mental action is selected (e.g. add a

number to both sides of an equation) that is
appropriate to this current state.
(ii) G
oal: thismight result in some change in the goal that
is controlling the current step (e.g. get rid of the + 3
before the x).
(iii) R
etrieval: frequently, it will be necessary to retrieve
information (e.g. an addition fact) from declarative
memory.
(iv) I
maginal: the problem representation is often
updated to incorporate the retrieved information
(e.g. ‘7x = 38 – 5’ to ‘7x = 35’)
It is difficult to come up with tasks that omit any of the

activities 1–4 altogether. When showing the unique con-
tribution of each brain region, it is necessary to find some
manipulation that affects only its activity or affects all
other regions apart from this region.

Lateral inferior prefrontal cortex reflects controlled
retrieval
The human prefrontal cortex is a large structure that
consists of many distinct areas, both in terms of structure
and function (e.g. see Refs [7,8]). The region we have
selected has been associated with retrieval factors in ima-
ging studies (e.g. see Refs [9–12]). These imaging results
are not particularly surprising given evidence about the
memory deficits associated with prefrontal lesions [13,14].
This region is active in many tasks, particularly those
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Figure 2. An illustration of how the various cortical modules of ACT-R are coordinated through the procedural module that is associated with the basal ganglia. VLPFC,

ventrolateral prefrontal cortex.
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involving language. As noted in Ref. [15], this involvement
in such tasks can be understood in terms of accessing the
information needed to perform the tasks.

In ACT-R, we conceive of this region as serving the role
of maintaining the retrieval cues for accessing information
stored elsewhere in the brain. The longer it takes to
complete the retrieval successfully, the longer the cues
will have to be maintained and the greater the activation.
Focused studies that manipulate retrieval difficulty pro-
duce systematic differences in the activation of this region.
In our own research, we have found that the lateral inferior
prefrontal cortex (LIPFC) (and not the other three regions)
tends to respond to manipulations of fan or associative
interference [16,17], retention delay [18] and repetition
[19]. All of these factors influence the duration of a single
retrieval from declarative memory.

Perhaps the major competing interpretation of this
prefrontal region is that it is activated in conditions that
require difficult selections among retrieved information
(e.g. see Refs [20,21]). However, it has been argued that
these effects are due to greater retrieval demands in the
more difficult conditions [12,22]. It has also been argued
that a more anterior prefrontal region is sensitive to
retrieval, whereas this region is sensitive to selection
demands [23,24]. Recently, it has been suggested [25] that
the distinction between retrieval and selection could be a
false dichotomy, and certainly it is not a distinction that
has any meaning in the ACT-R architecture. What drives
the magnitude of response is the amount of time that this
region has to hold the cues for retrieval, and this will
increase when selection is harder.

The posterior parietal cortex reflects representational
activities
The imaginal module in ACT-R is responsible for trans-
forming problem representations, such as a change to an
equation or a planned state in Tower of Hanoi task.
138
Although it could be said that the whole cortex serves a
representational role, what distinguishes the imaginal
module of ACT-R is that it supports manipulations of
representations that are not perceptually present. We
assume that it is changes or updates to these states (not
maintenance of the states) that drive activation in an fMRI
study. There is considerable evidence to support the
assumption that the parietal region plays this sort of role
in visual–spatial and verbal representations. It is engaged
in verbal encoding [26,27], mental rotation [28–30] and
visual–spatial strategies in a variety of contexts [31–33].
Other authors (e.g. see Ref. [34]) have also proposed a
representational role for the parietal region.

In our own laboratory, we have shown that this parietal
region responds most strongly to manipulations of repres-
entational difficulty. This region responded more strongly
than any other of our four regions in the Tower of Hanoi
task [35], in which planning makes strong demands to
represent future states of the problem. In a paired-associ-
ate memory study [18], we manipulated whether partici-
pants were simply shown a paired associate or had to
construct one as part of a fragment-completion task.
Despite the fact that the LIPFC is usually the region that
responds in memory tasks, it responded equally in the two
conditions; it was only the parietal region that differen-
tiated between them, responding more strongly when
participants had to construct the paired associate.

The anterior cingulate cortex reflects control activities
The ACT-R goal module is responsible for setting control
states that enable different courses of information proces-
sing to be taken when conditions are otherwise equal. It
thus enables internal control of cognition independent of
external circumstances. The control states can be con-
ceived of as determining which branch is taken at decision
points in the information processing. This sense of ‘control’
is basically the same as in computer science, in which it



Box 1. Predicting the BOLD response

The BOLD response obtained in a brain region can be predicted from

the time course of activity of modules in an ACT-R model. While a

module is engaged, it will drive a metabolic demand in the

corresponding region producing a hemodynamic response. Figure I

illustrates the postulated activity of a module from the experiment

reported in Ref. [3]. This figure represents the proportion of time the

module should be engaged during each 1.5 s scan in a trial.

To model the hemodynamic function, we have adopted the

standard gamma function that has been used (e.g. see Refs [60–63])

for the hemodynamic response. If the module is engaged, it will

produce a BOLD response t time units later according to the function:

HðtÞ ¼ m

�
t

s

�a

e�ðt=sÞ

where m governs the magnitude, s scales the time and the exponent a

determines the shape of the BOLD response such that with larger a the

function rises and falls more steeply. Figure Ib illustrates the function

assumed in [3]. As is typical of such functions, it shows a slow

response that peaks �4–5 s after the actual activity. The peak of the

function is at a*s. The parameter a is 7 for this function, and s is 0.63 s,

and so the function peaks at a*s = 4.41 s.

The BOLD response accumulates whenever the region is engaged.

Thus, if D(t) is a demand function giving the probability that the

region is engaged at time t, the cumulative BOLD response can be

obtained by convolving this function with the hemodynamic function:

BðtÞ ¼
Zt

0

DðxÞHðt � xÞdx

This is the prediction for the BOLD response in the region

associated with that demand function. Figure Ic shows the predicted

BOLD response in this case. As can be seen, the predicted response

preserves some of the structure of the demand function in Figure Ia,

but the convolving with the BOLD response blurs some of the

temporal structure and delays the peaks.

A similar convolution methodology is frequently used in analysis

programs for fMRI data in which the condition structure of trials in an

experiment is convolved with a hemodynamic response to produce a

condition-sensitive pattern of activity. This pattern is regressed

against brain activity to find which regions are sensitive to these

conditions (e.g. see Ref. [64]). Our application is finer grained

conceptually (using model behavior within a single trial) and is used

for confirmatory rather than exploratory purposes.

Figure I. Illustration of the prediction of a BOLD response for the auditory cortex

for the experiment in Ref. [3]: (a) shows the proportion of time that the aural

module in ACT-R will be engaged during each 1.5 s scan in a trial; (b) illustrates

the hemodynamic function estimate for this region; (c) shows the predicted

response obtained by convolving the demand function in (a) with the

hemodynamic function in (b) and compares it with the observed BOLD response.
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indicates how the state transitions within a system are
shaped and is similar to some theories of the anterior
cingulated cortex (ACC) (e.g. see Refs [36–38]). Other
theories relate ACC activity to error detection. There is
the error-related negativity (ERN) in event-related poten-
tials that has been observed when errors are made in
speeded response tasks (e.g. see Refs [39,40]). However,
the ACC responds more strongly in many tasks that do not
involve errors. It has been argued [41–43] that the ACC
activity reflects response conflict and that error trials are
just a special case of this. For instance, the ACC responds
more strongly on a conflict trial in the Stroop task even
though the participant does not make an error.

As illustrated in Box 2, Figure II, in our experiments we
have consistently found that the ACC responds to task
difficulty when that difficulty is reflected in the number of
mental steps. Because these effects occur in advance of any
motor response and on error-free trials, they are not con-
sistent with a theory that relates ACC activation to
response competition or error detection. These effects
can be viewed as consistent with the recent error-likelihood
theory [44] that proposes that ACC activity reflects the
139
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learned probability of an error on a trial. However, in some
of our research we have found within-trial fluctuations in
ACC activation. For instance, in a logical reasoning task,
ACC activity is greater when a participant is preparing for
a more difficult logical judgment but does not yet know
what the response will be [45]. Other research (J.R. Ander-
son et al., unpublished) has found that ACC activation rises
when participants are selecting a strategy to solve an
equation, then falls off while the equation is being solved,
and finally rises again when the response is output. Such
within-trial variations indicate that ACC activation
reflects more than just the overall likelihood of an error
in a trial but rather the within-trial variation in the need
for control.

A frequent result in our laboratory is that the response
of the ACC is not distinguished from the response of the
other three regions. The one consistent difference, illus-
trated in Box 2, Figure II (see also Refs [46,47]), is that,
unlike other regions, its response does not seem to be
affected by practice. This is predicted because control
states depend on how the various steps are articulated
in a strategy, and they stay constant unless the strategy
itself is modified. There have been reports of decreased
ACC activation with practice, but these tend to be tasks in
which learning changes the nature of the task. For
instance, there is decreased activation in a task that
involved repeated verb generation to the same noun
Box 2. Learning to solve algebra equations

The model described by Anderson [65] illustrates how one can use a

cognitive architecture to understand the data from a complex task.

The task [66] involved children (aged 11–14) learning to solve simple

linear equations (e.g. 3x – 5 = 7). During the experiment, they

practiced solving such problems for 1 h per day for 6 days. The first

day (Day 0) they were given private tutoring on solving equations; on

the remaining 5 days, they practiced solving three classes of equation

on a computer:

0-step: e.g. 1x + 0 = 4

1-step: e.g. 3x + 0 = 12 or 1x + 8 = 12

2-step: e.g. 7x + 1 = 29

Figure I shows how the time required by the children to process

these equations diminished over the course of the experiment. It also

illustrates the predictions of a model implemented in the ACT-R

architecture. The model, like the participants, took longer with more

complex equations because it had to go through more cognitive

steps. More interestingly, it improved gradually in task performance

at the same rate as participants: the effect of the practice was to make

a 2-step equation on Day 1 like a 1-step equation on Day 5 in terms of

difficulty (as measured by solution time) and a 1-step equation like a

0-step equation. The learning in the ACT-R model involved both the

acquisition of new procedures for solving equations and the speed up

in the retrieval of arithmetic and algebraic facts from declarative

memory.

On days 1 and 5, the children whose behavioral data are reported in

Figure I were solving the equations in an fMRI scanner. The activities

of the modules in an ACT-R model for this task were used to make

predictions about the activation that would be observed in the four

regions of interest. Figure II (see next page) summarizes the

predictions and the actual data. It shows separately the effects of

problem complexity (averaging over days) and effects of practice

(averaging over complexity). The responses in the different regions

are similar in that they all show an effect of complexity and most

show an effect of practice. Yet there are important differences. First,

the prefrontal region shows almost no response in the 0-transforma-

tion condition. This is because virtually nothing has to be retrieved in

that condition. Second, the ACC shows almost no effect of practice.
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[48]. With enough practice, the generation step can be
bypassed, and the verb is just retrieved. In general, suffi-
cient practice of simple, consistent mappings will enable
some control states to be bypassed [49].

The caudate nucleus reflects procedural activities
The procedural module of the ACT-R has been mapped
onto the group of cortical structures comprising the basal
ganglia (caudate nucleus, putamen, pallidus and substan-
tia nigra) and the thalamus. Most of the cortex sends
projections to the caudate nucleus and putamen. The
thalamic portions of this circuit project back to the cortex,
mainly to prefrontal regions [50,51]. It has been proposed
that these cortico–striatal–thalamic loops form the basis of
a neural selection system (e.g. see Refs [52–54]) similar to
the procedural module of ACT-R. Production rules are
high-level specifications of how important patterns should
be detected within the cortex (i.e. through afferent path-
ways to the striatum) and eventually routed to different
locations. Althoughmost of the thalamic projections in this
loop are mainly to prefrontal regions, the posterior projec-
tions from the prefrontal cortex can influence regions such
as the parietal cortex.

Although the basal ganglia have been implicated in
many cognitive functions, they are most widely investi-
gated for their involvement in procedural learning,
skill acquisition and reinforcement learning (e.g. see Refs
This is because the underlying control structure of the problem-

solving strategy remained unchanged. Although these are the two

most distinguishing features there are other more subtle differences.

In fact, the activity of the four ACT-R modules (retrieval, imaginal,

goal and procedural) best fit their associated regions (prefrontal,

parietal, ACC and caudate nucleus, respectively). The conclusion that

this is the best-fitting mapping between modules and brain regions

does not depend on parameter estimation (see Table 3a in Ref. [65]).

Figure I. Mean solution times (and predictions of the ACT-R model) for the three

types of equations as a function of delay. Although the data were not collected,

the predicted times are presented for the practice session of the experiment (Day

0). Dashed lines connect the actual empirical points whereas the smooth lines

show the predictions of an ACT-R model.



Figure II (Box 2). Effect of number of operations (collapsing over practice) and practice (collapsing over number of operations) on four regions in the central circuit.

Dashed lines connect the actual empirical points whereas the solid lines show the predictions of an ACT-R mode.
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[55–57]). The ACT-R framework allows for a unification of
these functions. Production rules implement the basic
units of procedural knowledge, and their competition
and selection is regulated by a reinforcement-like algor-
ithm.

We have associated the procedural module with the
head of the caudate nucleus and have had good success
in using number of productions fired to predict its activity
in relatively simple experiments, such as the one described
Box 3. Outstanding questions

The picture sketched in this paper is very much a work in progress.

Among the outstanding questions are the following:

� Activity in the head of the caudate nucleus is more often related to

response-contingent reinforcement learning (e.g. see Ref. [67]) than

to amount of procedural activity as in ACT-R. Is there a way of

uniting the ACT-R account with this body of literature? Could such

unification offer an explanation for the early initial spike in the

caudate nucleus observed in tasks that extend over tens of seconds

(J.R. Anderson et al., unpublished)?

� Although, as reviewed, there is evidence for a major role of the

basal ganglia in coordinating cortical regions and action selection,

it is by no means the only path of communication among cortical

areas. In particular, how can the evidence for direct cortical-to-

cortical connections be integrated into ACT-R?

� The prefrontal cortex is the most expanded portion of human

cortex. Only two small prefrontal regions have been related to ACT-
in Box 2. However, in these experiments the caudate
nucleus tends to give a pattern of response that is very
similar to that of other regions. In more complex exper-
iments (e.g. see Ref. [58]), the caudate nucleus is distin-
guished from other regions in that it has a spurt of activity
at task boundaries. Unfortunately, we have not had success
in predicting this boundary pattern activity in terms of
number of productions. An alternative approach that seems
to have some success is to base the predictions on the exact
R modules: a region of the ACC (goal) and a region in the LIPFC

(retrieval). Many other regions have proven important in other fMRI

studies. How is their activity to be understood?

� Many of the tasks we study tend to involve mathematical

problem solving. The ACT-R parietal region is distinct from

other parietal regions that appear to serve a representational

role in the performance of simpler mathematical tasks [68]. How

are we to understand the relationship among these parietal

regions?

� Distinct periods of activity in a module can be distinguished in an

fMRI signal only when they are many seconds apart (Box 1). This

requires longer tasks than a task such as that described in Box 2.

However, such tasks have high temporal variability that makes it

hard to align the BOLD response from different trials. What would

constitute an optimal solution remains an open question, but see

Ref. [58].
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amount of information that these productions are relaying
[59].

Concluding remarks
Understanding the human mind can be substantially
guided by connections such as those reviewed between
modules of a cognitive architecture and activation pat-
terns in the brain. The activities of these brain regions
provide converging data about the structure of task per-
formance. The imaging data have had amajor influence on
the ACT-R theory at two levels. At the level of the archi-
tecture, they have helped us to articulate the current
modular structure of ACT-R. For instance, as discussed
in Ref. [2], imaging data helped indicate the need for a
distinction between the goal and imaginal modules, which
had been conflated into a single system in earlier versions
of ACT-R. At the level of specific models within the archi-
tecture, imaging data have helped guide modeling de-
cisions. As indicated in Box 3, many issues remain
unresolved but their resolution might help to further
guide the development of the ACT-R theory.

In the other direction, a computationally explicit theory
like ACT-R sheds light on the behavior of these four regions
that have attracted considerable recent attention. ACT-R
identifies the logical cycle of information processing that
underlies the correlations among these regions. An un-
derstanding of the distinct functions of these regions serves
to explain why the correlations vary across tasks and why
some factors will only affect some regions.
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