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Abstract
Models like perturbation (Estes, 1997), primacy (Henson, Norris, Page, & Baddeley, 1996), and
partial matching (Anderson & Matessa, 1997) reproduce uncertainty gradients in memory for order
but fail to address how cognition might encode the underlying memory representation in the first
place. This paper introduces a model of uncertainty gradients that explains the encoding as well as
the reconstruction of order. The model is built on an integrated and computational cognitive theory
(ACT-R/PM) that provides the central mechanisms: a dual-code representation of attended items,
associative learning, and noise in activation levels. The model addresses the main structural
objection to chaining models (over-predicting relative or “shift” error), fits experimental data better
than the perturbation and partial-matching models, and makes strong serial-position predictions.

Introduction
An important test of theories of memory is whether they can explain “near-miss” errors, for
example the uncertainty gradient in memory for order. The uncertainty gradient is the robust
finding that an item recalled out of order is more likely recalled close to its original position
than far away (e.g., Nairne, 1992). The finding is illustrated by the hypothetical gradient in
Figure 1, for an item presented third a list of five. The modal response during reconstruction is
to place that item correctly (third). A gradient arises because errors that place the item in
positions two and four are more common than errors placing the item in positions one and five.

Existing models of positional uncertainty are only descriptive, in that they reproduce
uncertainty gradients once the analyst has encoded the appropriate underlying memory
representation. For example, the perturbation model takes as input an array of items indexed by
time. Every so often, two cells in this array have some chance of swapping with one another.
Over time, elements drift away from their original position and produce the uncertainty
gradient. However, the assumption that memory is organized as an array is problematic. The
perturbation model has been offered as an explanation of memory distortion along any
dimension, with time as just one example (Estes, 1997). However, for this explanation to be
accurate, memory would have to be an immense array with one dimension for each way in
which memory can distort. A representation this complex would place a heavy burden on the
encoding process that creates it, and yet the perturbation model fails to address encoding at all.
Two other models of memory for order, the primacy model (Henson et al., 1996), and the partial
matching model (Anderson & Matessa, 1997), also fail to address the encoding question.

This paper presents a model of memory for order that not only explains the encoding
processes, but fits existing data better than the other models cited above.1

                                                  
1 The dual-code associative model is available http://hfac.gmu.edu/people/altmann/nairne-rpm.txt.



Encoding Memory for Order
The model presented here is built on the ACT-R/PM cognitive theory, which combines
constraints imposed by perceptual-motor systems (Byrne, 1998) with a rational-analysis of
memory (Anderson, 1990). The three theoretical mechanisms underlying the model are a dual-
code representation of objects, associative learning, and noisy memory retrieval.

Dual-Code Representation

The main representational constraint on the model is that as an item is attended it is represented
in memory by two codes. One code is locational (or positional) and the other object-based (or
post-categorical). This dual-code representation is incorporated directly into the ACT-R/PM
theory, rather than being an assumption I had to make independently. In general, dual-code
representations like this have broad empirical and theoretical support (e.g., Anderson, Bothell,
Lebiere, & Matessa, 1998; Logan, 1996; Paivio, 1971; Whiteman, Nairne, & Serra, 1994).

A complementary processing constraint is that the perceptual and attention systems use
these two codes to communicate with cognition. Again, this constraint is imposed by ACT-
R/PM directly. Below I illustrate how this constraint directs the model’s performance in a
generic serial-processing protocol. Each step is carried out by an ACT-R/PM production (or if-
then rule). To summarize, the model processes the item’s location (steps 1 and 2) and then its
identity (steps 3 and 4), then uses these codes to carry out other processing is required by the
task (step 5). The model repeats the procedure on the next item, when that is presented.

1. Find-Location
2. Retrieve-Location
3. Move-Attention
4. Retrieve-Content
5. Other-Processing

In detail, step 1 is for cognition to issue a command to the perceptual system to find the
item’s location. The perceptual system responds by pre-attentively finding the location (using
features supplied top-down in the find-location command). When perception has found the
location, it places a location code in memory. Step 2 is for cognition to retrieve the location
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Figure 1: Hypothetical uncertainty gradient for the item presented third in a
list of five. The modal response during reconstruction is to place the item in
its correct position (3). If the item is placed incorrectly, it is more likely to
be placed near its original position (2 or 4) than farther away (1 or 5).



code that perception just added to memory. Step 3 is for cognition to formulate a command to
move attention to the retrieved location. This command instructs the attention system to create
an object code for the attended item and place this code in memory. Step 4 is for cognition to
retrieve this object code from memory. Step 5 is to carry out higher-level processing with the
object code as input, for example categorizing the item and selecting a response. When this
higher-level processing is complete, the cycle starts over again with the next item.

The procedure described above is a theory-based communication protocol for perceptual
and attention mechanisms to exchange information with cognition. The next question is what
kind of traces this protocol leaves behind in memory as it executes, and how such traces might
allow reconstruction of the order in which items were processed.

Associative Learning

There is strong evidence from a variety of sources that associative information is acquired
incidentally by the cognitive system. The incidental acquisition of episodic codes has been
argued on grounds both empirical (Hasher & Zacks, 1979; Naveh-Benjamin, 1987; Naveh-
Benjamin, 1990) and theoretical (Altmann & John, 1999; Logan, 1988). Moreover, there is
evidence that such codes that neighbor each other in time are incidentally joined by associative
links (Nairne, 1983; Nairne, 1992). This formal evidence may explain the phenomenal
experience of being able to simulate past experiences in the mind’s eye. For example, to answer
a question like “Did I lock the door on the way out?”, one might replay a sequence like putting
on a coat, walking outside, then closing the door, to try to cue the event of locking the door.

ACT-R specifies an associative learning mechanism (Anderson & Lebiere, 1998) that
explains the findings cited above. This mechanism creates a link between two codes if one code
(the target) is retrieved from memory while the other code (the cue) is already in the focus of
attention. As in Soar (Newell, 1990), this association is a new, permanent element of long-term
memory. In future, if the cue again enters the focus of attention it will prime (spread activation
to) the target, increasing the chance that the target will be the next item retrieved to the focus of
attention. This representation allows chained retrieval, in which each retrieval cues the next.

Applied to the five-step procedure described above, the associative learning mechanism
produces a linked structure in which location codes are interleaved with object codes. Figure 2A
illustrates such a structure after a hypothetical scenario in which the model has studied and
encoded three items (X, Y, and Z). An important assumption in the model is that each code
remains in the focus of attention long enough to still be there when the next code is retrieved.
The consequence is that the first code becomes the cue for the second code, and the associative-
learning mechanism links the two codes permanently in memory.

Noise in Memory

In the absence of noise, the dual-code representation of attended items, combined with
associative learning, produces a linked structure that allows perfect sequential retrieval of items
in the future. However, a memory system without noise would be unrealistic (and, indeed,
suboptimal; Anderson & Lebiere, 1998). In ACT-R, as in many memory theories, memory
elements have activation levels that determine their availability – items high in activation are
less vulnerable to interference by other items. Noise in the memory system is expressed as
transient fluctuations in item activation, introducing the possibility of memory-retrieval error.



Noise can critically affect the encoding process described above and result in incorrect
links between codes. For each item processed, the procedure carries out two memory retrievals,
one of a location code and one of an object code. Both retrievals are subject to activation noise.
Specifically, when cognition attempts to retrieve the location code most recently placed in
memory, it may retrieve an old location code instead. Similarly, when cognition attempts to
retrieve the object code most recently placed in memory, it may retrieve an old object code
instead.2 In terms of an everyday example, suppose that a newcomer is being introduced to a
number of people, serially and perhaps too rapidly. While looking at the current person, the
newcomer might “fall behind” and retrieve a previous, incorrect name. The result of such an
error (to foreshadow) is that the newcomer will associate the wrong name with the wrong face.

The associative learning mechanism implies that a retrieval error during encoding
produces an incorrect link in memory. This is illustrated in Figure 2B. In the scenario shown
there, a retrieval error occurred as cognition was trying to retrieve the object code for item Y.
This code (YO) was just placed in memory by the attention system. However, due to noise in
activation levels, the previous object code (XO) was transiently more active and hence was
retrieved instead. An association was therefore encoded between the location code YL and the
object code XO. This link is shown as a dashed arrow to indicate that it represents an encoding
error. Because of this encoding error, Y could be mistakenly placed in the first position at test
time, producing a near-miss error. I explore this possibility below as I discuss the model’s
order-reconstruction process.

When the model began processing Z (in Figure 2B), it correctly retrieved location code
ZL. However, object code XO was still in the focus of attention, because of the retrieval error
that just occurred. Therefore, a link was created from XO to ZL, bypassing object code YO

completely. The consequence is that during reconstruction the model could follow the link from
XO to ZL and produce the correct order, a possibility also explored below.
                                                  
2 I assume that errors occur within a code type only, and that a retrieval attempt always produces an item. These
assumptions imply, for example, that an attempt to retrieve a location code will always produce a location code,
though it may produce the wrong location code.
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Figure 2:  Memory representations encoded by the dual-code associative model
at study time for items X, Y, and Z. Each item has a location code (subscript L)
and an object code (subscript 0). Panel A: Error-free representation. Panel B:
Representation with an incorrect link pointing from YL to XO, created by a
retrieval error on the object code in processing Y.



A final but critical constraint on retrieval error is that interference by newer codes is more
likely than interference by older codes. This constraint follows directly from the dynamics of
activation in ACT-R. An item’s activation depends on the lag since it was last retrieved – the
longer the lag, the lower the activation. Therefore, each item will be more active than its
predecessor (more precisely, each item’s codes will be more active than its predecessor’s
codes), because the lag since presentation is smaller. The implication for encoding error is that
most erroneous links will be like those in Figure 2B – near-misses, rather than far misses. This
directly predicts the uncertainty gradient, as I describe next.

Reconstruction of Memory for Order
In order-memory experiments, items themselves are usually present at test as well as at study –
participants are asked simply to reconstruct their original order. Because items and positions are
available at test, I assume that people choose an initial item or position randomly to start the
reconstruction process. This assumption means that the model can take many paths through the
representation in Figure 2B. In particular, one of these paths produces a positional swap of the
kind that underlies the uncertainty gradient, and a second path produces a correct reconstruction.

The model will make an order error if the first cue it uses is location code YL. This code
was linked incorrectly to object code XO at encoding time, because of a retrieval error then. The
result now is that the model will infer that XO was the object that originally appeared in location
YL, producing an order error. Next, the model might use XO as a cue for which location to focus
on next, in which case it would focus on location ZL. Using ZL as a cue, the model would most
likely retrieve ZO, which is correct. Thus, of two items placed, one was placed incorrectly and
one correctly. The environment now indicates one remaining position and one remaining item.
(Participants are typically instructed in the one-to-one nature of the reconstruction task, namely
that every item maps to one position, with no items or positions left over.) The model will
therefore infer that object YO occurred at location XL. That is, the model will have swapped the
order of the neighboring items X and Y. This is precisely the swap assumed (but not explained)
by the perturbation model (Estes, 1997; Nairne, 1992).

Despite the encoding error, the structure in Figure 2B can also produce a correct
reconstruction. If the model begins with location code XL, for example, then it will most likely
retrieve object code XO, which is correct. Used as a cue, XO will then prime two location codes,
YL and ZL. Suppose, first, that ZL is retrieved. Used as a cue, ZL will likely retrieve ZO, which is
correct. At this point, because only one item and one position remain, the model can place YO at
YL, and the reconstruction will be correct. Suppose, instead, that when XO is the cue, YL is
retrieved. Used as a cue, YL will likely retrieve XO, but this is now a dead end – XO has been
placed. The model might now decide to place XO elsewhere, but it might also decide simply to
abandon YL as the cue and use ZL instead. This would also produce a correct reconstruction.

It is critical to note how the model produces the hypothetical gradient illustrated in Figure
1. There are two features of this gradient to explain. First, there is the slope away from the
modal response – that is, near misses are more likely than far misses. This effect is caused by
the interaction of activation and error at encoding time. That is, items presented closer in time to
the current item are more active and hence more likely to intrude on perception-cognition
communication, producing an incorrect link. Thus, the closer together in time two items are
presented, the closer their activation levels, and the more likely they are to be confused during
reconstruction as a function of encoding error.



The second feature of the gradient is its symmetry – in both directions of the list, near
misses are more likely than far misses. This effect follows directly from the model’s dual-code
representation. Figure 2B illustrates an error in which a location code (YL) incorrectly pointed
backward (to XO). However, a location code could incorrectly point forward as well.3  Thus, the
dual-code representation overcomes the main flaw attributed to chaining models of memory,
which is that they predict “relative errors” (Henson et al., 1996) in which one bad link shifts all
subsequent items off by one. The typical straw-man chaining model is required to infer order
essentially by counting the links have been traversed so far.4 The dual-code representation
overcomes this difficulty by representing position information explicitly in memory.

Comparing Model and Data
To test the model, I simulated data from Nairne (1992). In that study, memory for order was
tested implicitly; at study time, participants were asked simply to give speeded pleasantness
ratings of five words presented in sequence. Participants (in the condition reported here) were
distracted for 30 seconds after study, and then were given a surprise order-reconstruction test.

Empirical data from that study are shown in Figure 3. The model accurately reproduces
positional uncertainty at all five list positions, accounting for 97% of the variance over 25 data
points (RMSD = 4.1%). This is a better fit than both the perturbation (Nairne, 1992) and partial
matching (Anderson & Matessa, 1997) models of the same data. The dual-code associative
model also shows the shallow primacy and recency effects typical of memory for order, and
goes beyond the perturbation and partial matching models to predict that primacy should be
systematically greater than recency. (The logic of these predictions will be reported in future
reports.) This close fit to complex data is strong support for the model’s assumptions.

                                                  
3 Assume, again, a single retrieval error at study, but now place this error on the retrieval of the location code when
YO is in the focus of attention. The correct location code is ZL, but suppose YL intrudes and is now in the focus of
attention. The next step is to retrieve an object code, and ZO is retrieved correctly. This will encode a link from YL

to ZO, a forward-pointing encoding error. If the model happens to use YL as an initial cue during reconstruction, it
will most likely retrieve ZO, and thus move the third object backwards.
4 A variety of other hypothetical chaining models have been proposed and had their putative shortcomings laid bare
(Brown, 1997; Henson et al., 1996). Unfortunately, in the absence of a precise computational representation, such
shortcomings are essentially impenetrable to anyone but the analyst who cites them.

Figure 3: Accuracy data for order memory. Empirical data are from Nairne (1992),
and simulation data are from the dual-code associative model.

 Empirical 
 Simulated 

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5
Position of item at study

Pe
rc

en
t c

or
re

ct
 a

t t
es

t 



Discussion
This paper presented a model of positional uncertainty that goes beyond existing models to
explain encoding as well as reconstruction of order information. Of existing models, the
perturbation model is the most discussed and has been advanced as a generalized model of
memory loss and distortion (Estes, 1997). Although elegantly simple, the perturbation model
says nothing about how the underlying memory representation is initially encoded, and thereby
fails to address a critical aspect of memory distortions. The model presented here begins to fill
this explanatory gap. Its dual-code representation of attended items and its incidental associative
learning are low-level and generic enough that one might expect them to be part of any kind of
processing of sequential stimuli, whether spatial, temporal, or semantic. Moreover, because the
model is embedded in a larger cognitive theory, its mechanisms should transfer to models of
higher-order cognitive behavior.

Another contribution of this work is a simplification of ACT-R theory. Much has been
made of the partial matching mechanism layered on top of ACT-R’s memory theory (Anderson
& Lebiere, 1998). However, partial matching fails one of the critical constraints adopted by
ACT-R’s developers. The item similarities that the analyst must input to partial matching, like
the array that must be input to the perturbation model, cannot be learned by ACT-R itself.
Partial matching thus violates the constraint that all representations used by the system must be
learnable by the system (Anderson & Lebiere, 1998). Because of this fundamental flaw, partial
matching arguably falls outside ACT-R theory, despite being cited as an ACT-R explanation of
positional uncertainty (Anderson & Matessa, 1997). The model presented here uses mechanisms
clearly within theory to explain the target phenomena, producing better fits in the process.

The problems with ACT-R’s partial matching mechanism extend beyond its application to
memory for order. The mechanism has been invoked to explain near-miss errors in cognitive
arithmetic (Lebiere & Anderson, 1998), but the link between mechanism and data is tenuous.
To test whether partial matching accounted for any variance in the data, I removed it from one
cognitive arithmetic model (Anderson & Lebiere, 1998, Chapter 4). The result was a slightly
improved fit to data5. Thus, beyond being ad hoc, partial matching appears to be unnecessary for
fitting the data it was developed to fit. Indeed, partial matching appears to be a programming
convenience for the analyst interested in engineering particular kinds of memory errors. The
problem with such programming conveniences is that they can mask deeper questions about
representation and process (Altmann & Trafton, 1999).

In conclusion, the model presented here offers theory-based encoding and retrieval
processes that explain near-miss error in memory for order. Because the processes themselves
are domain independent, I hope that they provide a basis and an incentive to examine near-miss
error in other domains, within a unified theory of cognition rather than with ad hoc mechanisms.
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5 Modified model and fits to data are available at http://hfac.gmu.edu/people/altmann/siegler-ema.{txt, xl}
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