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Using a Model to Compute the Optimal Schedule of Practice

Philip I. Pavlik, Jr. and John R. Anderson
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By balancing the spacing effect against the effects of recency and frequency, this paper explains how
practice may be scheduled to maximize learning and retention. In an experiment, an optimized condition
using an algorithm determined with this method was compared with other conditions. The optimized
condition showed significant benefits with large effect sizes for both improved recall and recall latency.
The optimization method achieved these benefits by using a modeling approach to develop a quantitative
algorithm, which dynamically maximizes learning by determining for each item when the balance
between increasing temporal spacing (that causes better long-term recall) and decreasing temporal
spacing (that reduces the failure related time cost of each practice) means that the item is at the spacing
interval where long-term gain per unit of practice time is maximal. As practice repetitions accumulate for
each item, items become stable in memory and this optimal interval increases.
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Since the end of the 19th century researchers have tried to
describe the best way to practice to enhance learning and retention.
This work began around the time of Ebbinghaus (1913/1885), who
focused on how the history of practice for items controls the future
strength or retrievability of memories formed. Ebbinghaus’ re-
search helped to establish methods for the scientific study of
memory and demonstrated memory effects that are still studied
today. Although many of his investigations demonstrated the ef-
fects of frequency and recency, first listed as principles of associ-
ation by Thomas Brown in the early 19th century (Murphy &
Kovach, 1972), he is also credited with uncovering the “spacing
effect” because he discovered that by interspersing sleep periods
between study sessions subsequent performance was improved
compared to a contiguous session.

Since Ebbinghaus’ (1913/1885) results, researchers have fo-
cused on the obvious educational implication of these findings,
with particular emphasis on the spacing effect because of its
apparent ability to produce more durable learning. Indeed, a cen-
tral theoretical question in this paper, whether long temporal
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intervals between practices are always optimal for learning or
whether initial practice requires shorter spacing, was first debated
by Steffens (1900) and Jost (1897) according to a review on the
literature by Ruch (1928). Although Steffens advocated wider
spacing overall, Jost advocated narrower initial spacing, and the
debate on this issue continues today. It is in the context of this
more than century long effort to understand a general solution to
the question of optimal practice scheduling that we will begin by
introducing an understanding of the “spacing effect” and its im-
plications.

The “spacing effect” is the often found and widely recognized
learning advantage of having intervals of time between repetitions
of a skilled performance, particularly when the skilled perfor-
mance involves factual recall (Dempster, 1996). Although some
authors such as Underwood, Kapelak, and Malmi (1976) have
distinguished the spacing effect from the lag effect (which speci-
fies that increasing the duration of the spaced lag between repeti-
tions increase the benefit of spacing), this paper assumes that
spacing effects are function of lag, particularly for fact learning.
Whereas the spacing effect in fact learning has been well known
since Ebbinghaus (1913/1885), more recent work has clarified how
it functions by demonstrating that there are two important inter-
actions to consider when applying spacing:

1. Several authors have shown that as retention interval
increases, the benefit of spacing is larger (implying that
spacing improves the durability of learning). This
retention-interval-by-spacing interaction has been shown
over short time scales ranging from seconds and minutes
(Glenberg, 1976; Peterson, Wampler, Kirkpatrick, &
Saltzman, 1963) and over days and months (Bahrick,
1979; Fishman, Keller, & Atkinson, 1969; Pashler,
Zarow, & Triplett, 2003; Pavlik, 2005). Because the
interaction of spacing and retention interval is often quite
large in the above studies (e.g., Pashler et al., 2003), it is
crucial to account for when scheduling practice.
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2. Researchers have shown that spaced practice has a cu-
mulative effect such that each additional spaced practice
provides an additional advantage (spacing by practice
quantity interaction) (Pavlik & Anderson, 2005; Under-
wood, 1970). This interaction with practice quantity
highlights the continuing importance of spaced practice
as practice accumulates.

The main effect of spacing and these interactions strongly
suggest that spacing is important to take advantage of when
scheduling practice, that spacing does continue to apply when
frequency increases, and that these benefits are a function of the
retention interval.

On the other hand, wide spacings can result in a significant
slowing of the rate at which material can be learned because of the
greater forgetting between repetitions. This is particularly true for
practice procedures that include a test of the material being learned
for each trial. For example, a typical practice procedure involves a
test followed by a review presentation if the item cannot be
recalled (referred to in this paper as a recall-or-restudy trial or a
drill trial). At short spacing, the participant is likely to quickly
recall the item and forgo the need for a review presentation
(benefits of recency). This drill task should be an effective way to
train items because testing has often been shown to be a particu-
larly effective means of practice (e.g., Carrier & Pashler, 1992).
Thus, it is necessary to have a method for finding the spacing that
produces the most learning gains with the least slowing of learning
rate.

Other researchers of optimal scheduling issues have tried to
move forward on the problem by comparing alternative schedules
in experiments to determine empirically what sorts of schedules
are optimal for learning (Balota, Duchek, Sergent-Marshall, &
Roediger, 2006; Cull, 2000; Cull, Shaughnessy, & Zechmeister,
1996; Landauer & Bjork, 1978; Rea & Modigliani, 1985). These
studies provide data that are useful in helping us understand the
optimal scheduling of practice, but they do not provide a system-
atic method of computing schedules such as is presented in this
paper. For example, Karpicke and Roediger (2007) tested the
theory that expanding spacing is optimal by comparing a condition
with expanding spacing of practice (where practice is initially
narrow but increases with each new repetition) to a condition with
equally spaced practice. In these comparisons, they showed that
the expanding spacing schedule only produced an advantage after
a short retention interval of about 10 minutes, while the equal
spacing condition produced superior recall after a long-term inter-
val of 2 days. Although interesting, unfortunately, the result is hard
to generalize because the authors compared only two contending
spaced schedules (5-5-5 intervening trials, the even spacing con-
dition and 1-5-9 intervening trials, the expanding spacing condi-
tion). Another limitation of prior experimental work is that it failed
to control time on task (cost per trial) as a component of the
learning rate (Balota et al., 2006; Cull, 2000; Cull et al., 1996;
Landauer & Bjork, 1978; Rea & Modigliani, 1985). In all of these
studies, the unit of analysis that defines the quantity of learning is
the trial rather than time. Because of this lack of control for time
on task, these studies cannot easily account for the speed advan-
tage of narrower spacing.

To address this limited generalizability of an experimental ap-
proach, some researchers have taken a modeling approach. A

modeling approach tries to create a general model to quantify the
effects of prior practice through predictions of performance. A
model such as this (if accurate) should allow one to search through
the space of alternative practice schedules for each item being
learned to choose the optimal schedule for each item. Of course,
because practice often involves testing each item, a modeling
approach can also use the information from these assessments to
tune the model predictions as practice accumulates. Although such
performance tracking adds considerable power to a modeling
approach, predictions for the optimal schedule become more com-
plex since the schedule will not be the same for each item but
rather depend on the individual history of correctness for each item
in addition to the recency, frequency, and spacing of prior suc-
cesses or failures. Further, as will become clear when the ACT-R
model is introduced, with a modeling approach we can predict the
time costs (latency) of actions and therefore consider the time on
task consequences of our scheduling decisions in a way that is
difficult to do from experimental results.

During the 1960s and early 1970s cognitive psychologists were
actively pursuing this model-based approach to optimal scheduling
(Atkinson, 1972b; Atkinson & Crothers, 1964; Atkinson, Fletcher,
Lindsay, Campbell, & Barr, 1973; Atkinson & Paulson, 1972;
Dear, Silberman, & Estavan, 1967; Fishman et al., 1969; Groen &
Atkinson, 1966; Karush & Dear, 1966; Laubsch, 1971; Lorton,
1973; Pimsleur, 1967; Smallwood, 1962, 1971). Although some of
this work has persisted (e.g., the Pimsleur Method is still sold
commercially), for the most part the potential of these systems was
not realized and research declined in the early 1970s. After 1973,
Wozniak and Gorzalanczyk (1994) is the next example of work
that uses a model-based practice scheduling algorithm to tutor fact
learning.

Indeed, this decline may be presaged by Smallwood (1962) in
which the importance of considering the unit of analysis was
explained. Despite the emphasis placed by Smallwood (and en-
dorsed by Atkinson, 1972a) on the need to use time as the unit of
analysis (rather than the trial), only Smallwood (1962, 1971)
attempted to use models that captured the time on task cost of
different scheduling decisions. Unfortunately, Smallwood used a
very simple model that failed to capture important factors like
spacing, so his results do not provide more than this surface insight
that time on task must be accounted for.

Atkinson’s Experiment

Of this prior research, Atkinson (1972b) is often cited as an
example of the large potential benefit of practice schedule optimi-
zation. Therefore, it is useful to review this result carefully. In the
paper, Atkinson compared the four procedures listed below to
optimize the learning of 84 German-English vocabulary pairs over
the course of 336 practice trials (percentage recall after 1 week in
parentheses):

1. Participant self-selection of pairs to study (58%).
2. Random selection of pairs (38%).

3. Selection of the weakest pair to study according to a
three-state Markov model with five parameters estimated
for all pairs (54%).
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4. Selection according to the same Markov model with the
five parameters estimated for each pair (79%).

Unfortunately, there were problems with Atkinson (1972b),
which may have inflated these results. The first problem was that
in all conditions each trial began with a 10-s presentation of a cue
list of 12 German words (Atkinson split the German words into 7
lists of 12 pairs each that cycled so repetitions were always spaced
by at least six intervening trials). From each list, a word was
selected depending on condition. In the self-selection condition,
the test pair was selected by participants, in the random condition,
the test pair was randomly selected, and in the optimized condi-
tions, the test pair was selected according to the Markov model.
After the 10 second viewing of the cue list in all conditions, the
selected word was prompted, and the participant was expected to
type the English translation. Each trial concluded with a presen-
tation of the correct answer (regardless of participant response),
which served as feedback when the answer supplied was incorrect.
According to Atkinson, this procedure took approximately 20
seconds per trial, which seems like a rather slow procedure.

One problem with this procedure is that it is unclear what
participants did during the 10-s viewing of the cue lists. Partici-
pants may have spent the 10 seconds covertly practicing the
responses for any of the 12 cues that they currently remembered.
Further, Atkinson’s (1972b) optimization conditions (particularly
the five parameters-per-pair condition) introduced the more diffi-
cult items earlier because they had different parameters and thus
the participants in these conditions could focus their covert prac-
tice on these items early. Because the possibility of extra covert
practice favored these most difficult items in the Atkinson (1972b)
optimization conditions, it may have biased the results in favor of
these conditions. The seven cue lists were each presented 48 times
for a total of 3360 seconds of covert practice per participant so the
bias may have been large.

Generally, the procedures Atkinson (1972b) used ignored con-
cerns for efficiency. For example, the inclusion of the self-
selection condition is problematic because its inclusion forced the
rather unnatural process of previewing the lists in all conditions. If
one wanted to maximize amount learned in a fixed time, one would
have allocated this time for more practices. Similarly, allowing
participants to proceed at their own speed by forgoing review after
a correct response would have meant more recall-or-restudy prac-
tice opportunities in conditions with fewer study errors if each
condition was allowed a fixed duration.

A final problem with Atkinson (1972b) is that the model used
has no plausible representation for long-term forgetting. According
to the Atkinson model, once a pair has been “permanently learned”
it cannot be forgotten. In contrast, the ACT-R model compared in
this paper can predict forgetting over intervals of months and
possibly years (Pavlik & Anderson, 2005). For the reasons above,
whereas the Atkinson (1972b) result is interesting, it is reasonable
to suspect that one can produce both better learning conditions and
a better test of the benefits of such conditions.

ACT-R Modeling System

We used the ACT-R (Adaptive Character of Thought—Rational;
Anderson & Lebiere, 1998) modeling system to predict the effect
of prior practice. Although the ACT-R model makes a fundamental

distinction between production rules (procedures with an if-then
structure) and declarative memory chunks (bits of learned infor-
mation), this paper focuses only on using the set of equations from
ACT-R that describe the strength of a memory chunk as a function
of practice. The ACT-R declarative memory equations are partic-
ularly appropriate for our method because they capture both cor-
rectness and latency of performance as a function of prior practice.
Both dependent measures are necessary for the modeling approach
we will take since they are fundamental to our method for com-
puting the expected efficiency of a proposed practice. In contrast,
Atkinson’s (1972b) Markov model (that controls a practice con-
dition that we will compare with the new optimization method
condition) only predicts correctness as a function of practice.
Because of this, the Atkinson model as it stands could not be used
with the method we explain here unless it was modified, perhaps
by predicting latency as a function of expected correctness, to be
adequate. This model substitutability (ability to substitute another
model with the necessary dependent measures) of the method
highlights that this paper is not about a particular model of prac-
tice; rather, this report is about how to apply any suitable quanti-
tative model to the problem of practice schedule optimization.

The Experiment

We performed an experiment to test our approach to optimizing
learning. In this experiment, 60 participants learned a set of 180
Japanese-English vocabulary words during learning sessions on a
Monday, Wednesday, and Friday. Each participant was in one of
three learning conditions for these three sessions. A final fourth
session on the following Friday was used to assess correctness and
latency effects of the three learning conditions.

This experiment accomplishes several goals. First, it provides a
test of three ideas about how to optimize the schedule of learning.
The first condition tests the schedule optimization method ex-
plained here using a version of the ACT-R memory model, the
second condition tests Atkinson’s (1972b) schedule optimization
algorithm, and the third condition tests a simple flashcard proce-
dure. This choice of conditions was based on prior results. In an
early experiment, we had shown conditions with maximal spacing
performed worse than the new method (Pavlik, 2007). Because this
result showed maximal spacing was not optimal, the flashcard
condition (Condition 3) was designed to provide a control condi-
tion that, whereas providing relatively wide spacing, did not max-
imize spacing in a way that we thought would almost certainly
result in inefficient learning.

Second, the experiment provides a larger scale test of the
ACT-R based practice-scheduling method than in Pavlik (2007).
For the current experiment, the learning set included 180 Japanese-
English word-pairs, which were learned over three training ses-
sions and evaluated after a 1-week retention interval. Compared to
Pavlik, this reflects nearly doubling the number of word pairs
learned, tripling the number of learning sessions and adding 6 days
to the retention interval. This scalability is particularly important
when one considers the long durations of retention and large
numbers of items that might need to be learned for some domains.

Third, the experiment allows the incorporation of additional
components in the ACT-R based practice-scheduling algorithm,
which were not included in (Pavlik, 2007). For instance, Pavlik
assumed that there was no difference between test trials and
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passive study trials of each pair despite the fact that test trials are
typically found to be more effective (e.g., Carrier & Pashler,
1992). The current experiment, reflecting the results of Pavlik
(2006), incorporated a model of this difference between study and
test practice into the decision as to whether to deliver a study-only
trial or recall-or-restudy trial.

Fourth, the experiment provides data to understand long-term
memory processes better, which will aid in both model and theory
development. In terms of model development, the experiment
should allow for a refinement of the model’s parameters to im-
prove future performance. In terms of theoretical progress, this
experiment tested an interesting hypothesis that the difficulty of
the learning context (measured by overall percent correct during
learning) may reduce the encoding or recallability of individual
items being learned. In this experiment, we operationalized diffi-
culty by equating it with the number of errors that a practice
procedure produced. By extension, the difficulty of an item can be
characterized by the quantity of errors with that item relative to
other items practiced with the same schedule. Using this opera-
tional definition it becomes clear that the sources of item difficulty
are manifold and include a lack of prior learning, presence of
interference, complexity of the material, time pressure, poor con-
textual cueing, forgetting, reduced motivation, and student ability
factors.

Whatever the cause, this effect of the context on learning de-
serves recognition because it has important implications for con-
clusions about within-subjects tests of different learning methods.
For example, if one is comparing an easy procedure and a hard
procedure using a within-subjects design, the easy procedure will
tend to suffer a disadvantage from higher difficulty of the learning
context compared to if it were tested alone, whereas the difficult
procedure will gain an advantage from lower difficulty of the
learning context compared to if it was tested alone. This confound
seems to occur in Pavlik and Anderson (2005) and Pashler et al.
(2003) for their within-subjects comparisons of wide and narrow
spacing conditions. A better test of the independent utility of either
procedure would compare effects between-subjects. To see
whether this issue is significant, a between-subjects subcondition
was included in the following experiment. An additional 28 word
pairs were used in this subcondition.

Experiment Design

In the main between-subjects comparison of this experiment,
three algorithms for optimizing learning were tested. The first
condition tested a new method of scheduling based on an extended
ACT-R model. This optimization condition used the model to
derive decision criteria for when to present each pair for practice.
An algorithm based on these criteria was then developed. This
algorithm used a model of each student to keep a running estimate
of the memory strengths of pairs during learning to determine
whether they met the decision criteria for scheduling.

The second condition was a replication of Atkinson (1972b) in
which he used a Markov model to schedule practice. Although this
was a replication of the Atkinson Markov model and applied his
same method to select items for practice, the testing of the algo-
rithm had many differences from the original paper. For instance,
in this replication there were a larger number of sessions, shorter
trial durations, and recall-or-restudy trials instead of test-and-study

trials (Atkinson’s procedure included feedback even when re-
sponses were correct). However, none of these differences should
affect the applicability of the Atkinson model and method. In this
condition, the first presentation of each word was a study-only
presentation of the pair; subsequent presentations were always
recall-or-restudy trials. It is useful to note that functionally the
test-and-study procedure used by Atkinson and others is equivalent
to the recall-or-restudy procedure used here because a test after
successful recall has been shown to have no meaningful effect
besides its time cost (Pashler, Cepeda, Wixted, & Rohrer, 2005;
Pavlik, 2006).

The third condition consisted of a flashcard procedure in which
the 180 word pairs of the learning set were split into six “decks”
of 30 pairs each. This flashcard control condition was designed to
match what a naive learner might do given the task of memorizing
these word pairs. It seems somewhat intuitive to suppose that this
learner would not cycle through the whole list of 180 word pairs,
but would rather split the pairs into some manageable deck size
and 30 pairs per deck seemed a manageable quantity. In this
condition, participants were presented with pairs from each deck
until each word pair in a deck was recalled correctly once. The six
decks cycled so every word in each deck needed to be responded
to correctly before the next deck began. After the last deck, the
procedure began again with the first deck, cycling the decks as
many times as possible during the three learning sessions. The first
presentation of each word (during the first pass through each deck)
was a study-only presentation of the pair; subsequent presentations
were always recall-or-restudy trials.

Each of these three conditions involved three learning sessions,
each of which was timed to last exactly 1 hour. These three
sessions occurred at the same time on a Monday, Wednesday, and
Friday. At the same time on the following Friday, the participants
returned for an assessment session that did not vary by condition.
This final session included the entire set of 208 words (180 words
in the three conditions plus the 28 words in the within-subjects
difficulty subcondition described below) delivered in random or-
der twice. For the second session, the first 104 of total 208 items
delivered in the first pass were rerandomized into the first 104
positions of the second pass, with an analogous procedure for the
second half of the items. This insured that spacings did not vary as
much as they would for randomizing each pass independently,
whereas still preventing sequential order effects from being an
issue. All of these trials were delivered as recall-or-restudy trials as
described in the procedure section.

The difficulty of context subcondition described earlier was
designed to look at how learning or recall might be affected by the
overall context of learning. Specifically, the hypothesis was that a
context with a high level of correctness would be more conducive
to learning. To test this, 28 pairs were randomized into a presen-
tation schedule that did not vary for the three training conditions.
To do this, the 28 pairs were tested according to 28 prespecified
patterns of study and recall-or-restudy practice that were indepen-
dent of the scheduling of the remaining items according to condi-
tion. These trials were scheduled by randomizing the first (or only)
practice for each pair for each session to occur between 10 and 40
minutes into the session with subsequent practices occurring ac-
cording to the prespecified pattern.

There were also comparisons of item differences nested within
each of the three training conditions. Within the ACT-R training
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algorithm condition, a comparison was performed to determine
how important it was to have prior estimates of item difficulty. To
do this comparison the 100 Japanese-English pairs for which there
existed prior data from Pavlik (2007) were randomly divided for
each participant into two halves, one half had their schedules
optimized with a prior parameter to estimate difficulty and the
other half did not use prior estimates. For the Atkinson training
condition, the nested item analysis compared the performance on
the 100 old word pairs for which five individual Atkinson param-
eters were available for each pair with the performance on the 108
new word pairs, which must use the overall parameter set since it
was impossible to compute prior parameters without data. For the
flashcard condition, a nested item analysis was completed to
compare learning for the 100 word pairs used in previous exper-
iments and the 108 new pairs used in this experiment.

In all conditions, before the first learning session, the experi-
menter read a short (5-min) one-page description of the keyword
mnemonic strategy (see Atkinson, 1975). Participants were en-
couraged to use this method if they wanted. One reason for this
simple training was to reduce the variability among subjects be-
cause a reduction in variability should both increase the effect size
of the results and improve the accuracy of the model (and therefore
improve the efficiency of the optimization method).

Materials

The stimuli were 208 Japanese-English word pairs. English
words were chosen from the MRC Psycholinguistic database such
that the words had familiarity ratings with M of 534 (SD 48), and
had imagability ratings with M of 481 (SD 59). These ratings were
composed according to procedures described in the MRC Psycho-
linguistic Database manual (Coltheart, 1981). The overall MRC
database means for familiarity and imagability are 488 (SD 120)
and 438 (SD 99), respectively, so the words chosen had higher
familiarity and imagability ratings than the database averages.
Japanese translations (from the possible Japanese synonyms) were
chosen to avoid similarity to common English words. English
words averaged 4.17 (SD 0.6) letters, and Japanese words average
5.61 (SD 1.3) letters. Japanese words were presented using English
characters. Word pair order of introduction and assignment to
conditions was randomized individually for each participant.

Procedures

Participants were scored for motivational purposes, receiving 1
point for each correct response and losing 1 point for each incor-
rect response. Failing to provide a response, either by time-out or
providing a blank response, resulted in a O score. Participants were
paid $55 to $70 depending on their score.

The experiments exclusively used two different trial types:
study-only trials and recall-or-restudy trials. The study-only trials
(used for initial practice before testing) were cued with the prompt
“Ready” for 0.5 seconds after which the pair was presented for 4
seconds for study by the participant. The recall-or-restudy trials
also began with a 0.5-s prompt of the word “Ready” that was
followed by presentation of the Japanese word on the left side of
the screen. Participants typed the English translation on the right.
If no response was made or if an in-process response was deleted
by backspacing, the program timed-out in 6 seconds (in-process

responses were given unlimited time for completion). If correct,
the response was followed by a 0.5-s presentation of the word
“Correct” and the next trial began. If incorrect, a study presenta-
tion for the word (which was introduced by the word “Study” for
0.5 seconds) was given for 3 seconds. These study-only and
recall-or-restudy trial parameters were fixed across conditions.

For the benefit of participants (to reduce fatigue and improve
motivation), the three 1-hr learning sessions were delivered in
blocks of 30 trials each. Similarly, the final testing session was
split into two blocks of 208 trials each. Between blocks, partici-
pants continued by pressing the space bar when they were ready.
Few participants paused at these opportunities for rest.

Participants

Participants were recruited from the Pittsburgh, Pennsylvania
community with flyers and online postings. The participant pop-
ulation was primarily college students and participants were
screened for English fluency and required to be less than 49 years
old (average age 24 years). Sixty participants completed the ex-
periment, 20 for each of the main conditions. There were 35 males
and 25 females. Participants were assigned randomly to condition.
Attrition affected all conditions with five participants failing to
complete the optimization method condition, two participants fail-
ing to complete the flashcard condition, and five participants
failing to complete the Atkinson condition. Participants with any
prior knowledge of Japanese were excluded from participation.

Modeling Issues

The experimental design described above required the specifi-
cation of both an ACT-R model and an Atkinson (1972b) Markov
model.

ACT-R Declarative Memory Model

Because the ACT-R declarative memory model captures re-
cency and frequency effects (Anderson & Lebiere, 1998) and
produces predictions for both probability and speed of recall, it
served as a starting model. Anderson and Schooler (1991) origi-
nally developed these equations by showing that memory strength
for an item matches what would be optimal in the environment
given the frequency and recency of usage of an item. A recent
extension of the ACT-R memory model (Pavlik & Anderson,
2005) captures the spacing effect. Importantly, this extension also
captures the spacing-by-practice interaction (that more practice
leads to more effect of spacing) and the spacing-by-retention
interval interaction (that longer retention intervals result in larger
spacing effects), effects shown by Underwood (1970) and Bahrick
(1979).

Further, the model has been extended to capture the fact that
memory items are not equally difficult for each participant to learn
(Pavlik, 2007). This extension allows the model to capture three
kinds of item and individual differences. Item differences reflect
that some items are more or less difficult than other items across
participants. Participant differences reflect that some participants
have greater overall facility in the task. Finally, participant/item
differences reflect that there is consistent variation (given multiple
tests) in how difficult a particular item is for a particular partici-
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pant. These differences are captured by the 3, parameter (item
differences), B, parameter (participant differences), and ,; param-
eter (participant/item differences). For the full ACT-R model and
specifics about how the optimality conditions were computed, see
the Appendix.

Model-based optimal practice allocation policy. The model is
applied to practice allocation by using it to find items that are at the
point where a new recall-or-restudy trial will provide a maximal
increase in future expected memory strength. Although the model
is used to make these locally optimal decisions, the implications of
these decisions must be assessed to insure that they do not in any
obvious way result in less than optimal practice on a global level.
The best example of a negative effect of such a local policy is the
consequence of using probability correct as the measure to be
optimized. Probability correct does not work well because of its
sigmoid shape as a function of the number of practices (in which
several recall-or-restudy practices occur before a first success after
which many successes follow). This sort of shape is typical of what
one sees in learning when recall-or-restudy repetitions are equally
spaced. Because of this rapid shift from O to 1 recall probability
after an arbitrary number of initial practices, the probability correct
function fails to assign much value to the initial practices needed
to get to the transition point (because they result in very little
increase in probability correct), and ignores the value of overlearn-
ing when an pair is already being responded to correctly (again,
because the effect on probability correct is minimal).

Because of this problem with using probability, one needs to
consider other measures to optimize. Latency of recall (a more
continuous, less categorical measure than percent correct) might be
a useful measure to consider when trying to describe overlearning,
but because failure latencies do not correlate with learning (a result
replicated in the following experiment), this option will not help
determine a utility function for learning before the first correct
recall.

Therefore, the utility measure to be maximized in the following
experiment was the model’s estimate of the activation gain at final
recall (see Appendix). The activation value for an item is a
continuous real valued measure of the strength of the item in
memory. Unlike probability correct, this measure values equally
increases in activation that get one to the zone where probability of
correct grows rapidly, increases within that zone, and overlearning
that promotes long-term retention. The key is that activation gain
for each trial is dependent on recency and spacing, while not being
influenced significantly by the order in which the trials occur like
probability correct. In other words, activation captures the retained
learning from each trial whereas ignoring where the trial is in a
sequence of repetitions. (Although the Atkinson model does not
have an activation measure, we could transform the Atkinson
model’s probability correct estimates to create a continuous utility
measure to optimize. So again, the learning efficiency method is
not necessarily bound to the ACT-R model underlying it in this
paper.)

Using activation as the utility measure for practice scheduling
reveals interesting implications for the benefit of spaced practice.
On the one hand, activation gain at final recall per trial increases
monotonically as the spacing of each repetition increases (given an
appropriately long retention interval), because wider spacing leads
to less forgetting (Equation 3, Appendix). On the other hand, there
are also costs associated with widely spaced (less recent) practice.

First, the time on task to successfully retrieve a pair for a recall-
or-restudy trial (Equation 5, Appendix) increases monotonically
with wider spacing. Second, wider spacing causes a decrease in
recall probability (Equation 4, Appendix) during learning, which
will necessitate additional time spent on restudy trials.

Knowing our utility function (activation gain) and cost function
(time spent practicing including failure costs), we can use these
values to compute when the learning rate for each item is maximal.
As suggested by Smallwood (1962), the learning rate is the learn-
ing gain for the next trial/time cost for that next trial. The Appen-
dix derives this learning rate function from the ACT-R model,
which is equivalent to Equation 1. Maximizing this learning rate
for each practice of each item is more useful than maximizing gain
per trial (the numerator of Equation 1), because one is typically
interested in how much learning occurs for a given amount of time
rather than for just a given trial. For this reason, our model-based
policy will make selections based on this learning rate statistic.

activation gain at retention test for item,

learning rate, = ; —
time cost now to practice item,

(1

Finally, although it is true that one could just use this equation to
select the pair for the next trial that results in the absolute largest gain
in long-term activation per second, this policy would also be imper-
fect because it would sometimes select pairs because they resulted in
better learning than any other pair, despite the fact that waiting longer
might result in an even greater learning rate. This is another instance
of a negative effect of a local policy, because selecting the pair with
the maximum learning rate turns out to be not optimal when consid-
ered outside of the temporally isolated situation of the single decision.
To resolve this issue, after an initial presentation, the algorithm
“waits” for a pair to be spaced to the point where its own gain per unit
of time is optimal. Essentially, pairs are practiced when the change in
their learning rate (gain/time) is equal to 0. (Pairs are practiced when
the second derivative of long-term learning with respect to time spent
practicing equals 0.) The crux of this is that pairs are not being
compared with each other to select the optimal pair; rather each pair
is selected as close to its own optimal time for repetition as possible.
This means that selection is much closer to the global optimum policy
implied by the model (in which every pair is practiced at its exactly
optimal spacing given its history of practice).

Determining optimality conditions. Using versions of Equa-
tion 1 (see Equation 7 and Equation 8 in the Appendix), it was
possible to describe the practice efficiency functions for recall-or-
restudy trials and study-only trials as a function of expected
activation for the 9-day average retention interval in the experi-
ment. See Figure 1, which shows our predictions that an expected
activation of —0.33 was optimal for recall-or-restudy trials and
that when expected activation dropped to —0.63 it became more
advantageous to give a study-only trial. Figure 2 shows this se-
lection algorithm graphically.

1. If the pair is above the study advantage point (—0.63
activation) but below the optimality point (—0.33 activa-
tion), then the pair should be drilled (i.e., given a recall-
or-restudy trial) because waiting longer will result in less
efficient practice. If multiple pairs are in the range, the
weakest is chosen.
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Figure 1. Efficiency functions for recall-or-restudy trials and study-only
trials as a function of current activation for a retention interval of 9 days
(the mean expected retention interval in the current experiment).

2. If there are no pairs between the points then one can:

a. Present an old pair that dropped below —0.63 activa-
tion for a study-only trial.

b. Present an unpracticed pair for initial study-only trial.
(Unpracticed pairs are only introduced if no practiced
pairs are below —0.33 activation.)

3. If the pair is above the optimality point (—0.33 activa-
tion), then it is better to wait for it to be forgotten more

Start
Session
Are any pairs in test
practice range where
activation is > -0.63 ?

Compute activations
for practiced pairs,
Set unpracticed pairs
to -0.63 activation

f No

No

Deliver study of
lowest activation pair
(unpracticed fixed at -
0.63)

Has time limit
been reached

Use recall result
to update
estimate of B for
practiced pair

Figure 2.

before practicing it. If all pairs are above the optimality
point then the lowest activation pair is selected.

Atkinson Model

To instantiate the Atkinson (1972b) control condition, the data
from Pavlik (2007) were used to find parameters. In the Markov
model that Atkinson used for performance estimation there are five
parameters: x, y, z, g, and f. A pair starts out with probability g of
being in state P (Permanently learned) and 1-g of being in state U
(Unlearned) to represent prior knowledge participants bring into
the experiment. Besides states P and U, pairs may also be in state
T where they are considered to be temporarily learned for the
duration of the current learning session. Each time a pair i is
practiced the pair is transformed according to matrix A, (see Table
1). Further, whenever another pair in the learning set is practiced
matrix F; applies to represent forgetting. These matrices indicate
that when a pair is in the state listed on the left of the matrix it has
the listed probabilities of transitioning to the states listed along the
top of the matrix.

This Markov model needed to be used at the level of individual
practices rather than for aggregate data. To make this aggregate
model into a trial-by-trial model some things about the state of a
pair as a function of prior practice outcomes were incorporated.
With these additional considerations, the full model became:

1. If the pair is incorrectly recalled during a test then the
pair was in the state p(U) = 1 before the trial.

2. If the pair is correctly recalled then the pair probabilities
must have been as follows: p(U) = 0, p(P) = p(P)/

Are all pairs above -0.63
activation also above the
point of test trial optimality
where activation > -0.33?

Yes

Are there any pairs with
activation -0.63 or below

No

Deliver drill trial of
lowest activation pair
with an activation
above -0.63

Schedule optimization algorithm flowchart.
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Table 1
Atkinson (1972b) Markov Model

Initial state

Final state Permanent Temporary Unlearned
Learning matrix (4;)

Permanent 1 0 0

Temporary X; 1-x; 0

Unlearned Vi Z; 1-y;-z;
Forgetting matrix (F,)

Permanent 1 0 0

Temporary 0 1-f; fi

Unlearned 0 0 1

(p(P)+p(T)), and p(T) = p(T)/ (p(P)+p(T)) because
p(P)+p(T) must sum to 1 if the item was recalled.

3. After any trial of a pair, learning from the feedback study
or the correct retrieval lead to A, being applied for that
pair

4. the F,matrix is applied to all other pairs when any pair is
practiced.

5. When a pair survives a between-session retention interval
it has been permanently learned, p(P) = 1, p(T) = 0, and
p(U) = 0. (This model component also means a pair will
no longer receive practice if the first test following a
long-term retention interval succeeds.)

Table 2 shows the overall parameters determined for this model
from the (Pavlik, 2007) data. To decide which pair to practice,
Atkinson (1972b) used the Markov model to compute the pair that
would have the greatest chance to shift into the permanent state if
practiced next. This is also how the algorithm worked here for the
control condition in this experiment; however, rather than intro-
duce pairs with test-and-study trials as Atkinson did, the first trial
for each word pair in the Atkinson control condition was a study
presentation and subsequent presentations were recall-or-restudy
trials. Further, because the schedule optimization in the 1972 paper
used a minimum spacing of six intervening trials, the version here
was likewise constrained to a minimum spacing of six between
repetitions. However, pairs were not segregated into groups for
rotation like Atkinson, rather, pairs were simply prevented from
being selected if they had occurred in the last six trials and the next
best pair was selected. (A bug affected 1.2% of trials, resulting in
spacings shorter than six intervening trials.)

Results and Discussion

Figure 3 shows average performance for each session for each
of three dependent measures. The left panels show Sessions 1
through 3 and the right panels provide Session 4 results with 95%
confidence intervals. The main statistical question of interest was
whether the schedule optimization condition had an effect on the
dependent measures of correctness and latency. The graphs show
that these effects were significant for Session 4 recall and latency,
F(2,57) = 5.4, p = .0073 and, F(2, 57) = 10.3, p = .00015, with
all pairwise ¢ test comparisons favoring the schedule optimization,

(ps < 0.05). For correctness, these results show a Cohen’s-d effect
size of 0.796 SD compared to the Atkinson control and 0.978 SD
compared to the flashcard control. For latency, these results show
an effect size of 1.17 SD compared to the Atkinson control and
1.31 SD compared to the flashcard control. Failure latency was not
significantly affected by condition. Before running the experiment,
we simulated the predicted probabilities of recall according to the
ACT-R model for the first trial of the assessment session for the
three conditions and showed a similar result. The simulated values
were 56% for the optimization condition, 31% for the flashcard
condition, and 24% for the Atkinson condition. These are below
the actual observed values 66%, 35%, and 40%, respectively. This
suggests that, whereas the model was generally biased to under-
estimate performance, it seems to well capture the advantage of the
optimized condition relative to the controls.

Recall that the design included different nested subcondition
sets of pairs within each between-subjects condition. For the
learning rate optimization method condition, the utility of using
prior item (3 values was tested to see if they provided an enhance-
ment to the schedule optimization. To do this, before the experi-
ment began for each participant, half of the pairs with prior item 3
estimates were randomly designated to not use those estimates.
This allowed a comparison of performance of the schedule opti-
mization in conditions when the pairs had item (s and used them
and when the pairs had item s but did not use them. Although
Session 4 results showed no effect of whether item s were used,
there was a significant advantage for item (s during learning (F(1,
19) = 5.4, p = .032,d = 0.377). This suggests that the item (s did
have some benefit because they caused a significant reduction in
errors during learning. However, because no effect carried through
to Session 4, we probably should conclude that prior item s are
not very important to the overall goal of improving learning. Of
course, this result depends on the pairs we used as stimuli, since if
there were less homogeneity of difficulty among the pairs, item s
would have been larger and had a stronger effect on practice
selection.

The results for the nested analysis performed in the flashcard
control condition showed no serious differences for the new words
in the set. In this case, retention of pairs that were new to the
learning set (108 pairs) and the old learning set (100 pairs) was
compared. There was a 1.3% difference in Session 1 thru 4
performance, which was statistically significant (F(1, 19) = 9.3,
p = .0065, d = 0.0745). This difference reflected the fact that the
108 new word pairs were very slightly easier than the prior set of
100 word pairs. Although this difference was significant, there
were no interactions and the effect size was very small, so it is
implausible to suppose that the new words could have confounded
the results of this experiment.

Table 2
Overall Atkinson (1972b) Parameters for Pavlik (2007) Data
Parameter Value
X 0.18
y 0.21
z 0.59
8 0
f 0.011
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Figure 4 shows the results of the nested analysis performed in
the Atkinson (1972b) control condition. For this analysis, perfor-
mance on five overall parameter pairs was compared with those
pairs for which five individual parameters had been found. The
graph shows a somewhat different pattern than expected. Based on
Atkinson, one might have expected worse initial performance and
better final performance for the individual parameter words. How-
ever, this did not occur because of the way the Atkinson routine
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Figure 3. Main results for learning and performance.
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chose to introduce the overall parameter pairs as a cohort. This is
illustrated by examining what happens to a pair responded to
incorrectly in either the overall or the individual conditions. In the
overall condition all pairs come up for practice at the same time,
if they are responded to incorrectly, they must be in the U state and
then have practice matrix A; applied. This leaves the probabilities
equal again, and the pairs will therefore come up for practice again
at the same time (after the whole cohort of overall parameter failed
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o Overall items

® Individual items
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Figure 4. Five parameter overall compared to five parameter per pair
subcondition results for the Atkinson (1972b) model condition.

pairs has cycled). In contrast, when an individual parameter pair
has the highest transition probability to state P, and is then incor-
rectly responded to on the scheduled test, it will come up again at
about the minimum spacing.

The results of the between-subjects overall difficulty subcondi-
tion were analyzed to determine what influence the three condi-
tions might have had on pairs not being scheduled by the algo-
rithms. The mean recall levels for all tests on these pairs was
0.567, 0.435, and 0.489 for the schedule optimization, flashcard,
and Atkinson conditions, respectively. A first repeated measures
ANOVA looked for significant difference because of condition.
Although this overall ANOVA confirmed that differences exist,
F(2,57) = 4.3, p = .019, follow-up ¢ tests showed that only the
difference between the optimization and the flashcard conditions
was significant (p = .0052, d = 0.922). However, a trend was
observed for the optimization-Atkinson comparison (p = .094). A
second ANOVA looked only at first session tests where recall
probability during learning was maximally different, since the

Table 3
Parameter Values and Usage

greatest differences might be expected during this session. Indeed,
the comparison was significant, F(2, 57) = 5.3, p = .0075 with
pairwise ¢ test comparisons significant for the flashcard condition
comparison (p = .016, d = 0.794) and the Atkinson condition
comparison (p = .0032, d = 0.978).

Modeling Questions

It is also possible to use the data from the human participants to
ask questions about the models used to optimize performance.

Predictive validity of the ACT-R model during learning. One
interesting question is how well the ACT-R model can predict
recall given data about learning. To answer this question about
prediction, it was possible to use the model with the prior overall
parameters from Table 3 and the individual difference parameters
(Bs) determined during the three learning sessions from the Bayes-
ian procedure described at the end of the Appendix. For each
optimization condition participant, Session 4 Trial 1 probability of
recall prediction was compared to the actual value the participant
produced to determine the deviation of the model from the partic-
ipant. Predictions for the 20 participants had an r* value of 0.86
with a mean absolute deviation of 0.9% (SD 9.6%).

Testing the Atkinson model long-term memory assumption. As
was discussed earlier, one assumption of the Atkinson (1972b)
model was that pairs in the permanently learned state cannot be
forgotten. Because pairs are further assumed to lose all temporary
strength during a long-term interval, an initial correct recall after a
long-term interval necessarily implies a pair is in the permanent
state with a probability of 1. Thus, pairs that are successfully
recalled on the first opportunity after the long-term interval are no
longer selected for practice by the algorithm.

This assumption of permanent memory seemed implausible, but
it was possible to look at the data in the Atkinson condition to see
how often these abandoned pairs were recalled during the assess-
ment session. To do this the average assessment session recall was
computed for the first trial of the assessment session for any pairs
that were abandoned for further practice after being responded to

Used in Used to compute Used during

Parameter type Symbol Value simulation criteria optimization
Activation a 0.177 Yes Yes Yes
c 0.279 Yes Yes Yes
h 0.0172 Yes Yes Yes
Recall T -0.704 Yes Yes No
s 0.0786 Yes Yes No
Latency F 1.29 Yes Yes No
S5 0.75 Yes Yes No
Study u 1.205 No Yes No
v 0.000598 No Yes No
Fixed costs Failure cost 8.2s Yes Yes No
Success cost 2.4s Yes Yes No
Study cost 4.5s No Yes No
B participant B, SD=0.283 Yes No No
B item B; varied Yes No Yes
B participant/item B.: SD=0.50 Yes No Yes
Difficulty Slope 1.45 Yes Yes Yes
Intercept 0.961 Yes Yes Yes
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correctly for their first recall-or-restudy trial on either Session 2 or
3. The average probability of first trial assessment session recall
for these pairs was 0.57 (SD = 0.26). This clearly indicates that the
assumption of a “permanent” memory state fits the data poorly.

Again, though this reveals a weakness in the Atkinson model’s
fit, the model might be corrected to overcome this problem with its
accuracy by simple increasing the number of states the memory
could be in beyond just Unlearned, Temporary, and Permanent.
For example, by splitting the Permanent state into two states
(Long-term and Permanent) the model could be made to capture
forgetting between sessions in an analogous manner as it currently
captures forgetting between trials (by using a forgetting parameter
that allows for only some items to become unlearned when there is
another item tested). Of course, this revised model would have
more complexity and parameters, but the feasibility of such four
stage models has been shown in prior research (Atkinson &
Crothers, 1964).

General Discussion

Ever since Ebbinghaus’ (1913/1885) discovery of the spacing
effect, researchers have considered how to best make use of this
principle to improve how people learned. Although it is clear that
some spacing of practice is almost always good, despite more than
a century of research the jury appears to still be out on how much
spacing is best (e.g., contrast this paper with Pashler et al., 2003).
To resolve this longstanding theoretical debate, this paper em-
ployed an economic analysis instantiated by a computational
model to compute the optimal schedule of practice for each item.

Theoretical Implications

Our results are theoretically important because they strongly
qualify the proposition that wider spacing is typically the best
practice (Atkinson, 1972b; Bahrick, 1979; Karpicke & Roediger,
2007; Pashler et al., 2003; Schmidt & Bjork, 1992). Our experi-
ment and theoretical analysis shows that by sacrificing wide spac-
ing benefits we can take advantage of recency effects and save
time and thus provide significantly more practice. Figure 5 shows
the significant effect of condition on the number of trials for the
overall comparison (F(2, 57 = 12.5, p = .000032) with paired
comparisons with the optimization method condition significant
for both the flashcard (p = .0000062, d = 2.21) and Atkinson
(p = .0060, d = 0.807) control conditions.

Our results are different and in conflict with current theory
because our theory of spacing effect efficiency acknowledges that
time costs per trial for spaced practice can easily grow faster than
benefits per trial as spacing increases past a certain point. The
theory captures this by saying that wide spacing leads to less
forgetting, but also results in longer trial latencies. Given a specific
retention interval, the modeling method that implements the theory
allows one to compute the optimal spacing that maximizes this
reduction in forgetting relative to the longer trial durations. The
method suggests that initial spacing should be very short because
the model predicted 99.2% recall during learning as optimal for the
task here (in the minimum noise case). Although this prediction of
high level of recall during learning is in general agreement with
Skinner (1968) and his theory that errorless learning is optimal,
unlike Skinner, the current research provided a mechanistic expla-
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Figure 5. Total recall-or-restudy trials during learning by condition (95%
CI error bars).

nation for why this should be so by appealing to cognitive con-
structs (e.g., the strength of a declarative memory), something that
Skinner was unwilling to do. Further, this research provided a
well-controlled experimental test of the notion that error minimi-
zation results in better learning.

Figures 6 and 7 show one way to visualize the data collected
during learning. Because the vast majority of trials for each user
were recall-or-restudy practice, the graphs plot correctness and
spacing for recall-or-restudy trials only. The y-axes capture the
correctness (averaged across items) for each of the first five
recall-or-restudy trials, whereas the x-axes captures the spacing
following each of these trials. To read the graphs, note that for each
panel the first trial of each series is labeled with the count of
observations, as is the last trial. This gives a perspective on the
quantity of practice for each item in the various conditions. In
addition, note that the left sides of Figures 6 and 7 show the overall
average, whereas the right sides show performance conditional on
the results of the first recall-or-restudy. These condition graphs
show that there is a tendency in all conditions to schedule more
repetitions when the first repetition is responded to incorrectly. We
can see on the right side of Figure 6 that the optimization method
reacts to correctness by increasing the spacing of the schedule and
incorrectness by decreasing the spacing of the schedule and that
average correctness is maintained at a relatively high and constant
level in both cases. In contrast, the control conditions show a
different pattern that gives much wider spacing after a correct
answer, but which subsequently contracts to become narrower
because second trial failures are very high.

The smoothly expanding spacing of practice produced by the
method is in general agreement with the theory that expanding
spacing of practice may be optimal (Cull et al., 1996; Landauer &
Bjork, 1978; Rea & Modigliani, 1985). However, although these
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the subsequent repetition recall-or-restudy (x-axis) for the first 5 recall-or-restudy trials in the optimization
method condition. The graph on the left is the overall average and the graph on the right is conditional on the

results of the first recall-or-restudy.

studies only support expanding spacing for a test-only procedure
(no review following errors), by attending to the costs of wider
spacing our method has demonstrated that expanding spacing may
also be optimal for recall-or-restudy trials. The method produces
this expanding spacing because of the effect of frequency in the
ACT-R model. As frequency increases, an item becomes more
stable in memory because the model implements power function
forgetting which results in strength from older accumulated prac-
tices decaying increasingly slowly as time passes. This increased
stability with increased frequency allows more time between
spaced practices as repetitions accumulate. Thus, our modeling
approach has allowed us to derive that expanding spacing is the
optimal solution to the scheduling problem by quantifying the
theoretical relationships between recency, frequency, and spacing
and their effects on final performance.

Practical Implications

Although the method clearly has implications for the learning of
large sets of paired-associate items by young naive participants, it
is less obvious what this implies for different tasks, different
populations of learners, or different materials. Take for example a
different task like recognition. The interesting difference about
recognition tasks is that there is no need for review in the case of
an error because the presentation of the test probe itself can serve
as the learning necessary for later judgments of recognition. Be-
cause there is therefore no need for review study opportunities, the
cost of errors is much less. Therefore, because correctness would
no longer be so important, recency would no longer provide an
advantage and the peak learning rate spacing interval would be
much longer than in our experiment here. In fact, unless there were
other costs to consider, the method would probably suggest max-
imal even spacing of practice as optimal unless the set of items
were extremely large.

It is similarly straightforward to speculate about other learning
situations that may be amenable to the method we have described.
Because procedural tasks are typically represented as if-then rules
that might be collected into a set of items and trained using drill
practice, they also seem applicable to the method here assuming an

accurate model could be found. Prior work on procedural learning
(e.g., Carlson & Yaure, 1990; Mayfield & Chase, 2002) has
compared blocked practice (a form of massed practice) versus
mixed practice (which requires wider spacing of practice) and
found that mixed presentation schedules caused an advantage to
retention. These results are important because they provide evi-
dence that rule-based items may behave according to a sort of
spacing effect (any advantage to retention when using more dis-
tributed practice). Since the optimization method harnesses spac-
ing effects in deciding practice schedules, knowing that the spac-
ing effect applies to practice of rule application skills is important.
Further, we can note that procedural tasks often have high failure
costs. Together, these facts imply that procedural tasks may have
an optimal expanding schedule similar to the one produced in the
experiment here. However, because parameter values such as the
forgetting rate (which controls the effect of recency) and the
amount of learning per repetition might differ greatly, the magni-
tude of the spacing intervals might differ greatly.

The age of participants would also be likely to alter the optimal
schedule. For instance, research by Balota et al. (1989, 2006)
shows that although there tends to be no interaction of age and
spacing effect, older individuals have generally worse recall. This
recall deficit might be modeled as an increase in forgetting or a
reduction in learning. Changes in the model parameters controlling
these effects would tend to result in less wide practice schedules
because narrower schedules would produce higher levels of recall
during learning (and thus avoid costly review opportunities). How-
ever, the issue is complex because the schedule changes would
depend upon which parameter(s) was used to capture the age
related differences. For example, if deficient performance is
caused by a higher level of memory strength variability, captured
by the noise (s) parameter in the ACT-R model, the model’s
precision of recall probability prediction would decrease and the
benefit of spacing would dominate the learning rate equation. This
would imply wider spacing, or, in the case of very high noise, the
model would predict maximal spacing at all times. This possibility
is one reason why we tried to reduce overall variability during
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Figure 7. Graph of average recall-or-restudy recall probability (y-axis) and intervening trials of spacing before
the subsequent repetition recall-or-restudy (x-axis) for the first 5 recall-or-restudy trials in the Flashcard and
Atkinson (1972b) control conditions averaged by item. The graph on the left is the overall average and the graph
on the right is conditional on the results of the first recall-or-restudy.

stimuli design by choosing a relatively homogenous set of items
and avoiding a language with many English cognates.

These examples, while showing limitations, suggest that the
method we have developed should be useful in developing instruc-
tional programs where an accurate model of a task can be de-
scribed. However, creating a model is clearly not trivial even for
relatively simple domains such as the fact memorization we in-
vestigated. For more complex domains with multiple grain sizes
(some items contain more information than others), dependencies
(some items depend on other items) and transfer effects (learning
some items transfers to other items) the modeling must take on
additional complexity to produce an accurate model and enable the
method. At the current time, it is unclear how issues such as these
can be modeled, but it is clear that if they are not included in a
model when they are strong effects then the method cannot be
expected to work properly. Current work is exploring how issues
such as grainsize, dependency, and transfer might be modeled and
thus enable the method (Pavlik, Presson, & Koedinger, 2007).

Implementation

So long as one realizes the implications and limitations listed
above, implementing the algorithm to train a collection of items is
a straightforward process. Implementation involves the following
steps:

1. Select a model of the effect of the history of practice.
This model must characterize:

a. Expected probability correct
b. Expected latency of response
c. Expected latency of failure

d. Expected future learning utility measure (must be a
continuous measure that values practices independent
of frequency)
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2. Estimate the model’s parameters (using prior data)

3. Use the model before each drill trial to compute for every
item:

a. Expected learning rate = (expected future learning
utility gain for a practice/expected time cost for a
practice)

b. Choose each item for practice at its maximum ex-
pected learning rate

c. Repeat until stopping criterion for time practiced or
expected performance
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Appendix: ACT-R Model

Activation Equation (Memory Strength Function). Practice
effects and item/individual differences are captured by an ac-
tivation equation (Equation 2), which represents the strength of
an item in memory as the sum of the remaining learning from
a number of individual memory strengthenings and values
representing the item/individual differences. Each strengthen-
ing corresponds to a past practice event (either a memory
retrieval or study event). Specifically, Equation 2 proposes that
each time an item is practiced, the activation of the item, m,
(activation on the nth practice) receives a boost in strength that
decays away as a power function of time. Each t, in Equation
2 equals the age of trial k, whereas each d, equals the decay rate
for trial k. The  parameters are a new addition (Pavlik, 2007).
They capture any deviation of the overall model from the data
for any particular sequence of tests with an item for a partici-
pant. They represent differences at the level of the item (S;),
participant (), and participant/item (S,;).

my(t;.,) = BS + Bi + Bsi + In Etfdk (2)

k=1

To deal with the spacing effect Equation 3 was developed to estimate
decay for the kth trial, d,, as a function of the activation at the time it
occurred. The implication of this function is that higher activation at
the time of a practice will result in the benefit of that practice decaying
more quickly. On the other hand, if activation is low, decay will
proceed more slowly. It is important to note that every practice has its
own d, that controls the forgetting of that practice. In Equation 3 the
decay rate d, is calculated for the kth presentation of an item as a
function of the activation m,_,at the time the presentation occurred
(e.g., the decay rate for the 7™ trial (¢,) depends on the activation at the

time of the seventh trial, which is a function of the prior six trials’ ages
and decay rates. It is important to note that since 7,5 are ages,
activation and decay depend on the current time as well as the number
of practices).

dymy_ ;) = ce™ ! + a (3)

In Equation 3, c is the decay scale parameter, and a is the intercept
of the decay function. For the first practice of any sequence, d, =
a because m,, is equal to negative infinity. These equations are
recursive because to calculate any particular m,, at the time of trial
n, one must have previously calculated the d, needed for each of
the prior n-1 trials, which requires knowing the prior m,,s.

These equations result in a steady decrease in the long-run
retention for more presentations in a sequence where presentations
are closely spaced. As spacing gets wider in such a sequence,
activation has time to decrease between presentations, decay is
therefore lower for new presentations and long-run retention ef-
fects do not decrease as much.

Individual and Item Differences and 3

The use of 3 to represent constant noise has been implicit in the
system since at least Anderson and Lebiere (1998). In that docu-
mentation of the declarative memory system two sources of the
noise are proposed. These two types of noise are referred to as
permanent activation noise and temporary activation noise. Per-
manent activation noise is exactly equivalent to the sum of the
three 3 components. In contrast, random trial-to-trial noise is
captured in the s parameter in Equation 4 below, which represents
the probability of recall given a random logistic distribution of
activation (with s controlling the variance).

(Appendix continues)
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Recall Equation

In ACT-R, an item will be retrieved if its activation is above a
threshold. Because activation is noisy, an item with activation m as
given by Equation 4 has only a certain probability of recall.
ACT-R assumes a logistic distribution of activation noise, in which
case the probability of recall is:

1
pm) = ———— 4)
1 + e 5

In Equation 4, 7 is the threshold parameter. As discussed, the s
parameter controls the noise in activation and it describes the
sensitivity of recall to changes in activation.

Retrieval Time Equation

The time to retrieve in ACT-R is shown in Equation 5. In
Equation 5, F is the parameter that scales the effect of latency on
activation. Fixed time cost refers to the fixed time cost of percep-
tual motor encoding and response.

l(m) = Fe ™ + fixed time cost (35)

Intersession Forgetting in the Model

Anderson, Fincham, and Douglass (1997) found that although
Equation 2 could account for practice and forgetting during an
experiment, it could not fit retention data over long intervals.
Because of this, they supposed that between sessions, intervening
events erode memories more slowly than during an experimental
session. This slower forgetting was modeled by scaling time as if
it was slower outside the experiment. Forgetting is therefore de-
pendent on the “psychological time” between presentations rather
than the real time. This psychological time factor is implemented
by multiplying the portion of time that occurs between sessions by
the h parameter when calculating recall. This is done by subtract-
ing h*total intersession time from each age (t,) in Equation 1.
Because of this mechanism, time in the model is essentially a
measure of destructive interfering events. The decay rate, there-
fore, is a measure of fragility of memories to the corrosive effect
of these other events.

Study Duration Model

Because it was shown in Pavlik Jr. (2006) that ACT-Rs
assumptions about study practice and test practice having equal
memorial consequences did not fit the data, and that a new
model of study duration resulted in interesting predictions about
efficiency, this new, better fitting model was used for the
current study. In this model strength of a study practice, b = u

(1-6 (duration-study trial fixed cost) - (-v)/number of items in the stimu[us)
>

where u is the maximum benefit of study and v describes the
rate of approach to the maximum. This simple model captures
the fact that study practice has diminishing marginal returns and
appears to reach an asymptotic level of encoding given a long
enough encoding interval (Metcalfe & Kornell, 2003; Nelson &
Leonesio, 1988). The study value is used as a factor for the term
representing the respective study learning events in the activa-

tion equation (Equation 6). In the case of test practices b is
fixed at 1.

mt;,) = B, + B + By + In| X b " (6)

k=1

Further, this study effect model had an additional component that
was found to be useful in capturing the fact that study following a
failed retrieval appeared to be more effective than study practice
alone. To capture this effect of study after failure, the v parameter
was divided by the number of terms in the stimulus. This compo-
nent of the model says that during study trials participants deploy
an attentional resource (typically in a strategic fashion, but also
through rote processes) to encode the stimulus being studied.
Because this resource is limited, it must be divided among the
components of the stimulus (this is done in the model by dividing
the encoding rate by the stimulus size.) This limited-resource
mechanism implies that the advantage of a study after a failed test
comes from the opportunity to pre-encode the cue. Because of this
pre-encoding of the prompt during the failed test study opportu-
nity, the encoding of the single response term proceeds twice as
quickly compared to a study-only trial.

Parameter Determination

The details of how parameters for these models were deter-
mined, using data from Pavlik (2006) and Pavlik (2007), have
been omitted, but are available on request from the author.
Table 3 shows the final parameters used by the model in the
schedule optimization or simulation. The right hand side of
Table 3 details that parameters were used to simulate the
experiment (simulation was completed before running the ex-
periment), which parameters were used to determine the deci-
sion criteria the schedule optimization algorithm would use
(again, before the experiment), and which parameters were used
to predict memory strengths for the application of the decision
criteria (during the experiment).

Determining Optimality Conditions

Given the ACT-R model, it was possible to compute the average
activation gain after a 9-day retention interval (the average for the
experiment being optimized) for both recall-or-restudy trials and
study-only trials as a function of different levels of activation.
[One might have considered calculating this value for each day of
the experiment separately, using 11, 9, and 7 days for each of the
three learning sessions, but the predictions vary little for these
relative small differences in retention so the average was used.]
Given a set of parameter values, average activation gain for a
practice depends on the activation () at the time of practice and
the duration of the retention interval (r). Similarly, one can com-
pute the estimated time cost for both study-only trials and recall-
or-restudy trials, including fixed costs of intertrial times. Again,
the cost is a function of activation. These values were used to
compute the functions describing the activation gain per second for
selecting a recall-or-restudy trial or selecting a study-only trial.

Equation 7 describes the activation gain per second of practice
for recall-or-restudy trials.
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gain test,(r, m,)

B p (mn)r—(ce”' +a) + (1 _ p(mn)) . 95 . r—(ce”' +a)
“ p(m,) (F;™ + fixed success cost)
+ (1 = p(m,)) (fixed failure cost)

(N

In this equation, p is the probability of recall, r is the retention
interval, and the other parameters are defined in Equation 2 and
Equation 5. For simplicity, Equation 7 ignores the influence of the
natural logarithm in the activation equation (Equation 2). This was
found to have an insignificant effect on predictions. Equation 7
uses a 0.95 (b parameter) weight to capture the average effect of
the 3-s feedback study after failed tests (see Equation 6).

Equation 8 describes the activation gain per second of practice
for study-only trials.

79 . pleen +a

fixed study cost ®)

gain study,(r, m,) =
Equation 8 uses a 0.79 weight to capture the effect of a 4-s study
delivered alone (see Equation 6).

Correcting for Overall Difficulty

As the data showed here, there is also an effect of the context of
difficulty. Because this effect was not captured in the model, but
also appeared to be present in the data from Pavlik (2007) a
correction was made to the model to capture this variance. For this
correction, the model assumed an additional B8 correction compo-
nent that was a linear function of correctness during learning. This
was implemented by a linear model describing how overall diffi-
culty during learning mapped to 8 during learning. This line was
the equation B correction = average activation during learning *
1.45 + 0.916. This correction was meant merely to capture vari-
ance, and it seems that more data and theoretical work are needed
to explain the phenomenon as discussed in the introduction. The
correction was applied when determining the values —0.66 and
—0.33 from Equations 6 and 7 and was used when computing
Figure 1. Further, this correction was applied to computing acti-
vations during learning. During learning, the current correction
was estimated after each trial for each participant by using the

inverse of Equation 3 and the overall average prior probability of
recall for that participant to compute the average activation during
learning.

Like Pavlik (2007), the algorithm was implemented with a
requirement for a spacing of two trials between repetitions because
it seemed risky to assume the model would be effective at very
short intervals. It seemed possible that some sort of study-phase
retrieval spacing effect mechanism would severely block encoding
at very short lags (a mechanism discussed by Thios & D’ Agostino,
1976). The algorithm had an interesting adaptation to this stricture
because the average pair dropped below —0.63 activation after two
intervening trials. For this reason, the schedule optimization began
by introducing most new pairs with two study-only trials, spaced
depending on the activations of other pairs. After the second study
average pairs were within the testing range (greater than —0.63
activation) and received recall-or-restudy trials. Interestingly, be-
cause the program updated an estimate of the participant 3 value
every 300 trials, the number of introductory study-only trials
varied and could go as high as 4 or 5 for very slow learning
participants and as low as 1 for able participants. Another inter-
esting consequence of the algorithm was that if a pair was re-
sponded to incorrectly several times in a row then its estimated 3
would fall low enough that its activation would dip below —0.63.
At that point, the pair will be scheduled for several study-only
trials before being scheduled for further recall-or-restudy practice.

Each recall-or-restudy trial was also used to update the estimate
of participant/item [ for the practiced word pair. This estimation
began by assuming a prior distribution F(x) of s with a prior
participant/item mean 3 equal to 0. The participant/item 3 was
then updated based on the success and failure for each test given
this prior. This Bayesian procedure provided current participant/
item B estimates for each pair that reflected the history of success
or failure in recalling the pair. Practically this procedure involved
a successive shifting and narrowing of the participant/item esti-
mate of 3 as data were gathered.

Received March 21, 2007
Revision received January 4, 2008
Accepted January 14, 2008 =



