The Expert Module

John R. Anderson
Carnegie-Mellon University

Intelligent tutoring systems, by their name, are supposed to bring
intelligence in some way to the task of computer-based instruction.
There are two key places for intelligence in an ITS. One is in the
knowledge the system has of its subject domain. The second is in
the principles by which it tutors and in the methods by which it
applies these principles. Clearly, human tutors are effective only when
they possess both kinds of intelligence; lack of either component leads
1o instructional ineffectiveness. Humans cannot tutor effectively in
a domain in which they are not expert, and there are also inarticulate
experts who make terrible instructors.

The focus of this chapter is the expert module of a tutor that
provides the domain intelligence. In my view, this is the backbone
of any ITS. A powerful instructional system cannot exist without a
powerful body of domain knowledge. Frequently and perhaps
typically, the expert modules in ITSs are incomplete, and as a
consequence, they can provide only part of the instruction required
in the domain. All existing ITSs need to be supplemented by human
teachers. So, for instance, Steamer (Hollan, Hutchins, & Weitzman,
1984), which is used to train engineers about steam propulsion plants,
knows a great deal about the mathematical properties of steam but
rather little about how to operate a steam plant. As a consequence,
Steamer provides only part of the instruction necessary to operate such
plants. Nonetheless, it is judged to provide an important component
of the instruction.

A powerful expert module must have an abundance of knowledge.

21

22 ANDERSON

This is certainly the lesson from the expert systems work in artificial
intelligence. It is also the lesson from the study of human expertise,
where experts are invariably people with many years of experience.
Hayes (1985) investigated what it takes to achieve levels of performance
commonly ascribed to geniuses in areas ranging from mathematics
to music. He determined that no genius produced a truly exceptional
work without at least 10 years of experience. Presumably, these 10
years of experience were required for enough knowledge to accumulate
to permit the exceptional performance.

It should be emphasized that a great deal of effort needs to be
expended to discover and codify the domain knowledge. The sheer
amount of knowledge required in most complex domains ensures that
developing the expert module will always be labor-intensive. As
techniques of intelligent tutoring evolve, authoring systems might
be expected to assume much of the work involved in tutoring. However,
authoring systems will never do the work of discovering and codifying
the domain knowledge. Already, we estimate in our applications to
programming and mathematics that over 50% of our effort goes into
encoding the domain knowledge. This proportion will only increase
as other components become more automated.

Having decided that we need to encode into the system a large
body of knowledge, we must confront the problem of how to encode
that knowledge. There are basically three options. The first is to try

to find some means of computing that knowledge that does not require
our actually codifying the knowledge that underlies human
intelligence. For instance, a system can use mathematical equation-
solving, which produces through numerical processes what humans
achieve through symbolic processes. SOPHIE (Brown, Burton, &
deKleer, 1982), for example, used the SPICE simulator for electronic
circuits. This system performs its calculations by mathematical
relaxation techniques. It does not have human knowledge of electronic
currents, but it can still reason about them by simulating them with
its mathematical model.

The second possibility is basically to go through the standard
stages of developing an expert system.. This involves extracting
knowledge from a human expert and devising a way of codifying
and applying that knowledge. Although the knowledge comes from
a human, the way it is applied does not have to correspond to the
way the human expert applies it.

The third possibility is 1o go one step further and make the expert
module a simulation, at some level of abstraction, of the way the
human uses the knowledge. This is clearly the most demanding
approach to developing an expert module, but I will argue that

2. THE EXPERT MODULE 23

MORE
/
Y
\ QUALITATIVE (

COGNITIVE | \
MODELS | '

|
| DECLARATIVE

-

«

& s

Ind

b PROCEDURAL /

z \

z \

= EXPERT

> SYSTEMS

Pl

z

w

z

w

]

a

X | BLACK BOX

= | mooEeLS

MORE
PEDAGOGICAL EFFECTIVENESS

Figure 2.1 The tradeoff between the pedagogical effectiveness of an expert module
and the effort of constructing it.

experience shows this approach to be essential to producing high-
performance tutoring systems.

In general, expert modules cannot be reviewed in the abstract.
It is necessary to understand how they will fit into an overall tutoring
system. It certainly is the case that what is easy for the expert module
considered in isolation is not easy for tutoring system in total. Thus
using a set of mathematical equations, although expedient, would
make it extremely difficult to generate articulate instruction. Figure
2.1 illustrates the relationship I perceive between ease of development
and pedagogical effectiveness.

In what follows, the three approaches to the expert module will
be reviewed, giving the greatest emphasis to the cognitive modeling
approach, which lends itself most easily to powerful tutoring methods.

RELATIONSHIP OF EXPERT MODULES TO EXPERT SYSTEMS

Before analyzing the different types of expert modules, it is worthwhile
to consider their relationship to the expert systems of artificial
intelligence (see Hayes-Roth, Waterman, & Lenat, 1983). The first issue

24 ANDERSON

is to define an expert system. There are two notions of expert systems,
one that is tied to a certain methodology and a second that is criterion-
based. A ‘‘knowledge-engineering” methodology has arisen for
developing expert systems, and it involves deploying humanlike
knowledge in nonhuman ways. When 1 refer to expert systems, I refer
to products of this methodology. These are sometimes referred to as
first-generation expert systems because they tend to be narrow and
brittle. Another definition would be criterion-based: Any system that
achieves high-quality performance could be classified as an expert
system. Thus, because any kind of expert module in an ITS must
be capable of doing a complex task proficiently, it would be considered
an expert system by this criterion-based definition. In particular,
cognitive models would be expert systems if they model complex,
demanding problem solving. The reason I am not using the criterion-
based definition is that it does not enable me to distinguish between
the expert module and expert systems.

Itis particularly important here to consider what have been referred
to as second-generation expert systems. These systems have a more
fundamental understanding of the domain and are not so narrow or
brittle. One does not yet get the same practical performance from
these systems, but they are often viewed as the hope of the future.
Systems of this kind are discussed under the category of qualitative
process models, a special kind of cognitive model. Qualitative process
models are concerned with reasoning about the causal structure of
- the world. In actual fact, research in qualitative process models is
only sometimes concerned with cognitive fidelity; however, the
emphasis here is on research that does strive for cognitive fidelity.

Figure 2.2 illustrates some of the set relationships among the
concepts we have defined so far: cognitive models, black box models,
expert systems defined by methodology, expert systems defined by
criterion, qualitative process models, and the expert module of an
ITS. As can be seen, the criterion-based definition of an expert system
is sufficiently encompassing to include everything except these
cognitive models that concentrate on getting the details of some
behavior correct. Black box models, methodologically defined expert
systems, and cognitive models all intersect with the expert module
of an ITS.

Work on expert modules could potentially increase the range of
tasks that can be solved by computers. Given the criterion-based
definition, fundamentally expanding the boundaries of what can be
done by expert systems may be the long-range consequence of the
cognitive modeling approach that I will be advocating. That is, it
seems that a reasonable methodology for acquiring a working expert
system is to make a running simulation of a human expert.

2. THE EXPERT MODULE 25

IXPERT SYSTEMS
iCRITERION DEFINED!
T T T

s BLACK ~
- 80X MODELS \

: s

7 /

COGNITIVE /

MODELS

EXPERT
MODULE
OF ITS

QUALITATIVE

WODELS \ /
\ L
\ -

. EXPERT SYSTEMS
\ (METHODOLOGY DEFINE!V

AN /

_/

FIGURE 2.2 The set relationships among cognitive models, black box models, expert
systems methodologically defined, expert systems criterion-defined, qualitative models,
and the expert module of an ITS.

It must be pointed out, however, that no cognitive models to
date have outperformed expert systems developed with the knowledge-
engineering methodology. So far, the constraint of being true to human
behavior has been more a burden than a stimulus.

By definition, intelligent tutoring systems can be built only for
domains for which expert systems (criterion-defined) exist. This then
poses an interesting question: Why build tutors to teach topics for
which we already have expert systems to perform the task? Even if
we are faced with a new domain requiring that a new expert module
for our ITS be built, why not just quit at the expert module? There
are three standard answers:

1. To satisfy the need for robustness. It is generally considered desirable
that humans be able to perform functions that machines perform just in case
these machines break down or are temporarily inaccessible. Thus, even though
calculators are common, we teach our children basic arithmetic skills; and
even though spelling correctors exist, it is considered valuable to know how

to spell accurately. Presumably, this need for robustness is especially strong
in military domains.

26 ANDERSON

2. To establish prerequisite knowledge. Tutors can teach students
knowledge that is often a prerequisite to learning skills that an expert system
cannot acquire. Thus, we need to teach calculus problem-solving skills
(Kimball, 1982) as a prerequisite to creating Ph.D. physicists. We need to
teach basic LISP programming skills (Reiser, Anderson, & Farrell, 1985) as
a prerequisite to using LISP for artificial intelligence programming. In effect,
tutors can facilitate students’ mastery of basic skills before they learn advanced
skills. Because the tutor cannot teach the advanced skill, a premium is placed
on having a tutor that smooths the transition from the tutoring environment
to learning on one’s own.

3. To teach part of a skill. A corollary of the previous answer is that tutors
can sometimes teach part of a skill if not all of it. So, for instance, the Geometry
Tutor (Anderson, Boyke, & Yost, 1985) can tutor the generation of proofs
but only if the proofs do not require constructions, because generating proofs
is much more tractable than creating arbitrary constructionis. We can therefore
provide tutors for part of a high school geometry course. A variation on this
is that we can use the partial expertise of a system to provide partial feedback.
So for proof systems that are too complicated to build into a viable expert
system, we can still tell a student whether a step in a proof is logically correct
although we cannot suggest the proof itself. Thus because we have the necessary
expert module, logical validity can be tutored, but the same is not true for
proof generation.

BLACK BOX MODELS

A black box expert is one that generates the correct input-output
behavior over a range of tasks in the domain and so can be used
as a judge of correctness. However, the internal computations by which
it provides this behavior are either not available or are of no use in
delivering instruction. The classical example of a black box model
is the original work on SOPHIE (Brown & Burton, 1975). It used
a general-purpose electronic simulator called SPICE II (Nagel &
Pederson, 1973) and was intended to teach students how to troubleshoot
faulty electronic circuits. The tutor used its simulator to determine
the reasonableness of various measurements that the student would
make in troubleshooting the circuit. Because the SPICE simulator
worked by solving a set of equations rather than by humanlike, causal
reasoning, it was not possible for SOPHIE to explain its decisions
in detail. Later versions of SOPHIE (Brown, Burton, & deKleer, 1982)
utilized a causal model of circuits to deal with this deficiency. I discuss
this causal model under the category of qualitative process models.
One could imagine a black box expert for the game of chess that
found good moves by searching over millions of sequences of chess

2. THE EXPERT MODULE 27

moves—something that human chess experts clearly do not do. Such
a system could provide good advice about what move to make, but
it could not explain why. A similar idea is used in the WEST program
(Burton & Brown, 1982), in which a black box expert does an exhaustive
search of the possible moves and determines the optimal move given
a particular stragegy.

Clearly, such an expert can be used in a simple reactive tutor
that tells students whether they are right or wrong and possibly what
the right move would be. Quite possibly such a reactive tutor is more
pedagogically effective than no tutor. The notion of a black box plus
reactive tutor is interesting because it suggests a cheap way of
converting off-the-shelf expert systems into tutors. Note that it is not
limited to black box experts but could be used with any type of expert
system (criterion definition).

However, the intelligent tutoring paradigm is based on the belief
that what a tutor says is critical and that it is helpful to say more
than just “right,” “wrong,” and ‘““do this.” The question is how to
build a more articulate tutor around an expert system when knowledge
of that system is not accessible. One way to build such a tutor is
with a methodology dubbed issue-based tutoring by Burton and Brown
(1982). The basic idea is to make patterns defined on the students’
behavior and the experts’ behavior and to attach instruction to those
patterns. For instance, one issue recognizer in WEST is evoked when
the expert chooses to bump and the student does not. It interrupts
with an explanation of the usefulness of bumping. In WEST, the
response of the issue-based recognizers not to single events but to
patterns of events enables the system to respond in some fairly
sophisticated ways.

Figure 2.4 illustrates the basic idea of issue-oriented tutoring based
on observing the surface behavior of the expert and the student. Issue-
oriented recignizers look for some configuration of the two surface
behaviors that indicates that a tutorial issue is ripe for discussion.
This idea of issue-based tutoring is very powerful and need not be
restricted to black box modules. It is appropriate for other kinds of
expert modules as well. So, for instance, in the Geometry Tutor
(Anderson, Boyle, & Yost, 1985) an issue recognizer is invoked whenever
the student uses an equality statement for a premise when a congruence
statement is required. Attached to the issue recognizer is a dialogue
that reinforces the difference between equality and congruence.
Although this tutorial intervention could have been attached to the
internal structure of our expert module (and some of the publications
are written as if they were), it proves to be more economical and efficient
to code this intervention as an issue recognizer defined on surface
behavior.

oy

12 <= = L.(2+ 1) :3AOW HNOA
L 2 | :dJe sjaqunu ay]

vy S 2 €
L 14
4 L
8 0 L

E:_ s

2322t xx«xx%wm» m,ér&,r,;

sogssssorossy
22557574 255352

Zeesissetertites
R

co«oooma_w

aadnn wang anol a0y ayi | nof prnoy

By oen vy oy de _.:_...) Yiinduy) 3y
WM PG 10 uaag aany prnom noh uayg

) :..,_1 v pun

atans 0 g0 doy ue s pglina noh bugpung
s.?.;“.:._ adxa

My apou aany pgnea nof fajdenxa g0y

“sfinm

bun u sang puanoddo anoh puas _::. tuydwng
gy haoa bugdung aw o) waas 31 uop nop

::::xi:.x::.: ::.::: ,gd%?:
““nanaz :,mma“? m:e :,:xx:::w,&x:,
:::‘ c,, :m\w \2\“ . ,sx,se:s.ft):,:»,:t«nnﬁu
mmmmmmq 1.:«‘ .m“ . ,::z:s;:.z,s.nz
o a«mw 2oioeceiess A el
B n?n.“un“am:wmw\wnam A RN

3 Tutoring of bumping in WEST.

FIGURE 2

2. THE EXPERT MODULE 29

| —
| BLACK QUTPUT

BOX f—’ (eg, Bump)
| IR

d

INPUT
(eg.. Gome
Boord)

——
1
\ STUDENT *_* ouTPUT

(eg, Count)

TUTORIAL INTERVENTION

FIGURE 2.4 The pattern recognition that underlies issue-oriented tutoring.

However, as Brown and Burton recognized in their later versions
of SOPHIE, there are things that cannot be tutored by such surface-
level issue recognizers. Access to the internal structure of the expert
is necessary for creating appropriate explanations. For instance, a
standard mistake in geometry is to fail to use the reflexive rule of
congruence when appropriate. (Because the reflexive rule can apply
to every object in the diagram, there is a great potential for overusing
it, and students appear to guard against overuse by never using the
rule at all.) A tutoring system cannot explain to the student why the
rule is appropriate in a particular context without access to the chain
of reasoning that led the expert to conclude that the rule was
appropriate.

Figure 2.5 illustrates the contrast between surface-level tutoring,
which can be implemented with issue-oriented recognizers, and the
kind of deep-level tutoring that can be implemented if there is access
to the internal reasoning of the expert module. At the surface level
we can note the legal problems with the student’s response (a) and
point to the correct behavior (b). However, if we model the student’s
error, we can explain the misconception to the student (c) and motivate
the system’s choice (d). Again, on the belief that explanation is helpful,
deep-level tutoring should be more effective than surface-level tutoring.

GLASS BOX EXPERT SYSTEMS

A second category of expert modules is that of the expert systems
that are prototypically generated in the knowledge-engineering

30 ANDERSON

Surface Level versus
Deep Tutoring

Surface Level (a) "The side-angle-side rule
requires two congruent? sides and
a congruent angle; you have only
given one congruent side and a
congruent angle”

(b) “Try to prove AB = AB"

Deep Level (c) "To opply the side-angle-side
postulate you nave to establish AB
is congruent to itself. You cannot
simply assume it"

(d) "Whenever you are trying to
prove triangles congruent it is @
good idea 1o prove that shared

A sides are congruent to themselves.
This will give you o pair of
corresponding parts”

C H + D
FIGURE 2.5 The contrast between surface-level tutoring and deep-level tutoring.

tradition. The basic methodology of building these expert systems
involves a knowledge engineer and a domain expert who can identify
a problem area and its scope, enumerate and formalize the key concepts
in the domain, formulate a system to implement the knowledge, and
then iteratively test and refine that system. These systems are
characterized by the great quantity and humanlike nature of knowledge
that is articulated. The knowledge acquisition process is recognized
as the time-consuming component of building expert systems, and
the one that great effort is being expended in an attempt to automate.

By the very nature of the enterprise, the expert system that emerges
from this exercise is going to be more amenable to tutoring than
a black box model because a major component of this expert system
is an articulate, humanline representation of the knowledge underlying
expertise in the comain. The expert system methodology in its
variations has been very successfully used to tackle a wide range of
intellectual behaviors. There are expert systems for interpretation,

2. THE EXPERT MODULE 31

IF

The infection which requires therapy is meningitis
Organisms were not seen in the stain of the culture
The type of infection is bacterial

The patient does not have a head injury defect

The age of the patient is between 15 and 55 years
THEN

The organisms that might have been causing the
infection are diplococus-pneumoniae(.75) and
neisseria-meningitidis(.74)

FIGURE 2.6 A typical MYCIN rule.

IF

The number of factors appearing In the domain

which need to be asked by the student is zero

The number of subgoals remaining to be determined
before the domain rule can be applied is equal to 1
THEN

Say: subgoal suggestion

Discuss the (sub)goal with the student in a
goal-directed mode

Wrap up the discussion of the domain being considered

FIGURE 2.7 An example of GUIDON'S TUTORIAL RULES. Note. From “Tutoring Rules
for Guiding a Case Method Dialogue’ by W. J. Clancy, 1982. Intelligent Tutoring Systems
(p. 218). Copyright 1982 by Academic Press. Reprinted by permission.

prediction, diagnosis, design, planning, monitoring, debugging,
repair, and control. Indeed, the expert system methodology is one
way of incorporating tutoring expertise when the domain expert is
also an expert teacher. This seems to be Stevens, Collins, and Goldin’s
(1982) approach, for instance, to the development of tutors.

Curiously, there have been relatively few examples of the classic expert
systems’ being used as the expert modules of tutors. One example
might be the use of MACSYMA by Genesereth (1982), although it
is questionable whether MACSYMA is really an expert system,
methodologically defined. The classic and well-analyzed case is

32 ANDERSON

GUIDON by Clancy (1972), which is based on MYCIN. MYCIN
(Shortliffe, 1976), whose domain of expertise is the diagnosis of
bacterial infections, is one of the best known of the expert systems.
It consists of 450 if-then rules, such as the one in Fig. 2.6, which
encode bits and pieces of the probabilistic reasoning that underlies
medical diagnosis.

The basic instruction in GUIDON is driven by t-rules, which
are an extension of Burton and Brown's issue-oriented recognizers.
T-rules (like the issue-oriented recognizers) are defined on a differential
between the expert’'s behavior and the student’s behavior, but they
are also defined on the expert’s reasoning processes. An example of
a t-rule is given in Fig. 2.7. Note that this rule refers to entities in
the internal structure of the expert, such as rules and goals. The black
box has been opened up.

The basic instruction in GUIDON is driven by t-rules, which
are an extension of Burton and Brown'’s issue-oriented recognizers.
T-rules (like the issue-oriented recognizers) are defined on a differential
between the expert’s behavior and the student’'s behavior, but they
are also defined on the expert’s reasoning processes. An example of
a t-rule is given in Fig. 2-7. Note that this rule refers o entities in
the internal structure of the expert, such as rules and goals. The black
box has been opened up.

Unfortunately, the actual reasoning process used by MYCIN to
deploy its knowlege, an exhaustive backward search, is not the way
the knowledge is deployed by humans. Figure 2.8 illustrates a fraction
of that structure. This mismatch between the control structure of
MYCIN and that of humans made an explanation of what to do next
difficult. In addition, MYCIN’s highly compiled rules of reasoning
were difficult for GUIDON to justify. Also, many of the MYCIN rules,
although appropriate for experts, were too complex to be directly
taught to novices.

All of these difficulties led to the design of NEOMYCIN, in which
an attempt was made to impose a different control structure on the
domain knowledge. The control structure is now a domain-
independent set of rules about how to use the domain rules. The
currently active set of hypotheses is contained in a new data structure
that is called a differential and that is designed to reflect some of
the characteristics of human short-term memory. Also, a different data
structure was used for the t-rules to facilitate explanation.

The fundamental lesson of GUIDON is that for tutoring systems
to be truly effective, it is necessary to pay attention not only to the
knowledge in the expert module but also to the way it is deployed.
Many expert systems, although using humanlike knowledge, deploy
that knowledge in the exhaustive manner so typical of computers.

. PGP L D @D e @D @D 6D G

idAlans INIGI 3uS SLEL]] LIS TVINHONSY 3LIS LS TVWHONEY 3LIS s

e~Jz—1 AN e~z 3 2

2003904 900314 L3Ny worny ISV
1 1 L
s

® @ @ W® D@D | D @

SOJWNN STNIWNN 3LIS LNVNIWVLINOD SOdWNN SINJWNN 3LIS WON9IS 103IM03 3uS

s
I3y 80137NY 031Ny Zvo3Iny 8€031nY
L 1 | 1 J
. . . . JINVIIHINDIS

3434 J011934N1 INIONI

%—

6¥131nY 060 3InY
. { J
4044300 HO041v3yL
260310y
N
NIWI93Y

‘uojssiuwied yum pejuidey -5 einbi4 "y ‘Buipeey “ou; ‘Ausdwon Buys)ignd Aejsem
-uosippy ‘v861 WBUAdoD ‘swejsAg uedx3 peseg-siny ‘eyyoys ‘3 % ueueyang ‘g woi4
| "9ION 'NIDAW Aq pejeseusb einjoniis yosees premyoeq ey Jo Uojelsn|)| Uy @2 IHNOI4

33

34 ANDERSON

To be truly appropriate for tutoring, the expert module must deploy
its knowledge according to the same restrictions as a human does.
This practice leads us to the cognitive modeling approach.

Clancey’s work was a watershed in the development of intelligent
tutors because it illustrated that tutors were going to be seriously limited
if they simply ported expert systems from artificial intelligence.
Consequently, subsequent research has focused on the use of cognitive
models. In many ways this research decision was a good one, but
it has led to a neglect of practical issues, such as how off-the-shelf
expert systems might be used. It would be comforting if there had
been other projects besides Clancey’s that explored extensively the use
of expert systems for tutoring.

COGNITIVE MODELS

The goal of the cognitive modeling approach is to effectively develop
a simulation of human problem solving in a domain in which the
knowledge is decomposed into meaningful, humanlike components
and deployed in a humanlike manner. The merit of this approach
is that it gives us the expert module in the form that can be most
easily and deeply communicated to the student. However, there are
real costs in this approach. First of all, developing cognitive models
is a more constrained and time-consuming task than simply developing
expert systems. Fortunately, there have been dramatic improvements
over the past 10 years in the ability of cognitive science to develop
such models. These improvements have resulted at least in part from
borrowing concepts from the expert systems work. A second difficulty
is that running the computations of cognitive models can be quite
computationally expensive. Fortunately, increasing computational
power is diminishing this concern. Additional techniques for dealing
with computational costs are addressed later in the chapter.

Another complexity is the issue of the amount of detail to be
incorporated into a cognitive model. Many of the factors that are
incorporated into some psychological simulations, such as the exact
mechanisms of short-term memory search, seem irrelevant for tutoring.
Faithfully modeling phenomena in an expert module adds an
unnecessary computational burden. The question arises of which
psychological components are essential for purposes of tutoring and
which are not. I have argued (Anderson, in press) that tutoring systems
depend on cognitive assumptions at the algorithm level and not at
the implementation level. The algorithm level refers to high-level
specification of mental computation that ignores issues of neural

2. THE EXPERT MODULE 38

implementation. The obvious analogy is to a program specified in
a high-level programming language that does not address issues of
machine implementation. The best exemplars of algorithm-level
systems are the problem-solving models (e.g., Newell & Simon, 1972).

In discussing cognitive systems it is useful to distinguish between
three types of knowledge that need to be tutored. There are domains
like calculus problem solving where the main knowledge to be
communicated is procedural, that is, knowledge about how to perform
a task. There are domains like geography where the tutorial goal is
o convey declarative knowledge in the form of a set of facts
appropriately organized so that one can reason with them. Declarative
knowledge contrasts with procedural knowledge in that it is more
general and not specialized for a particular use. Third, there is causal
knowledge, in the form of qualitative models, about a device that
allows one to reason (in a task like troubleshooting) about the behavior
of that device. I have listed these types of knowledge in the order
that they are discussed. Coincidentally, the current success of our
cognitive theories in dealing with these types has followed the same
order. These classifications also have implications for the types of
curriculum and instruction used to impart them, which is discussed
by Halff (Chapter 4).

PROCEDURAL KNOWLEDGE

Our relatively advanced ability to model the procedural knowledge
underlying human problem solving probably owes a lot to the
importation of ideas from expert systems. Almost uniformly, the
standard representational formalism has been some kind of rule-based
system just as in expert systems. This rule-based approach is taken
in the LISP Tutor (Reiser, Anderson, & Farrell, 1985), the Geometry
Tutor (Anderson, Boyle, & Yost, 1985). Algebra (Brown, 1983), BUGGY
(Brown & VanLehn, 1980; Burton, 1982), and the LEEDS modeling
system (Sleeman, 1982) among others. The cominant type of rule-
based system takes the form of production systems, which arguably
provide good models of human problem solving (Anderson, 1983;
Newell & Simon, 1972). Although there are many variations on
production system models, they all involve a set of if-then rules
matched to a working memory of facts. The working memory embodies
some of the basic short-term memory limitations of the human. The
production rules with their recogniz-act cycle capture the basic data-
driven character of human cognition. One of the recent advances in
production system models has been a set of ideas for modeling human

36 ANDERSON

Constrained by both cognmve task analysis and
general theory

Sub 0 SatisfactionCondition: TRUE
1 {}— (ColSequence RightmostTOPCell
RightmostBottomCell RightmostAnswerCell)
con.seousucs (TC BC AC) Satisfaction Condition: (Blank? (Next TC))
{}---> (SubCol TC BC AC)
u: {}—> (ColSequence (Next TC) (Next BC) Next AC))
SubCol (TC BC AC) Satisfaction Condition: (NOT (Blank? AC))

L4: {(Blank? BC)} --- > (WriteAns TC AC)
L5: {(Less? TCBC) —> (Borrow TC)

e: {}-—> (Ditf TC BC AC)
Bor[t;v.v (‘I’C))S:fl:tactlonCondmon FALSE

F- i
BorrowFrom (TC) Satisfaction Condition: TRU!

Le: ((Zero? TC)} -—> " (B::wFroEmZem TC)

Lo: {}-—-> (Decr TC)
BorrowFromZero (TC) Satisfaction Condition: FALSE

L {}— . (Write9 TC)

L2 {} - > : (BorrowFrom (Next TC))

FIGURE 2.9 Production rule representation of the subtraction skill (Brown & VanLehn,
1980). Note. From "“Repalr Theory: A Generative Theory of Bugs in Procedural Skills,”
by J. S. Brown and K. VanLehn. Cognitive Science, 4, pp. 379-426. Reprinted with
permission of Ablex Publishing Corporation.

learning within these models (Anderson, 1983; Holland, Holyoak,
Nisbett, & Thagard, 1986; Laird, Rosenbloom, & Newell, 1986; Langley,
1985; VanLehn, 1983). This is an exciting potential for intelligent
tutoring systems because of the prospect that the tutoring component
can make its decisions by reference to the simulation of the student
learning. Although this is an exciting possibility, no current tutoring
systems actually use a learning simulation in this way. This is largely
because these learning components are recent and tend to be very
expensive computationally.

An exemplary set of procedural rules, shown in Fig. 2.9, represents
the skill underlying multiple-column subtraction in the Brown and
VanLehn model of subtraction skills. They make the point that the
underlying knowledge is very use-specific. Although this knowledge
is derived from the basic properties of addition, the actual rules are
quite specific to subtraction and would not generalize to addition.
Thus, for instance, we have rules about borrowing rather than rules
about carrying, even though borrowing and carrying are based on
the same abstract rules of arithmetic. The choice of using a procedural
knowledge representation involves deciding whether such a use-specific
representation of the knowledge is appropriate. It certainly is the
appropriate model in the case of human subtraction skills because
they have very little to do with addition skills.

The Brown and VanLehn work illustrates one use to which we

2. THE EXPERT MODULE 37

can put procedural representations. Brown and VanLehn propose that
students make errors when they try to repair their procedures at the
impasses created by missing production rules. By assumming that
specific instances of these rules are missing, we can predict such
students’ errors. Extending a rule-based model to predicting errors
puts an additional demand on its psychological reality. The rules
in such a system now must capture the units of human knowledge
because loss of the rules must correspond to human errors. If the
rules were not the units of knowledge, then their loss would produce
errors that are not seen in human behavior.

Their modularity is one of the major advantages of production
rules for purposes of instruction: Each production rule is an
independent piece of knowledge. This means that a rule can be
communicated to the student independently of communicating the
total problem structure in which it appears. This is not to say that
production rules are context-free. Rather, they specify explicitly that
part of the context that is relevant. So, for instance, if a production
rule for using vertical angles in geometry makes reference to a goal
of proving angles congruent, reference can be made to that feature
of the problem and only that feature in explaining the rule:

When you are trying to prove triangles congruent and they form vertical
angles at one of their vertices, it is a good idea to prove these angles
congruent by vertical angles. This will yield a pair of congruent
corresponding angles which will help you prove the triangles congruent.

A frequent problem with earlier production rule models
(Anderson, 1976; Newell, 1973) was that contextual constraints on the
rules were not transparent. Rules had special tests built into their
left-hand sides that constrained when they would apply; but it was
difficult in looking at such rules to imagine when those tests would
be satisfied. The current generation of goal-factored production systems
(Anderson, 1983; Laird, Rosenbloom, & Newell, 1986) offer a
substantial solution to this problem by making explicit reference in
their conditions to goals that the production rules are relevant to.
These goals, being structures with a well-defined semantics, facilitate
the process of communicating to the student the relevant information
about contextual constraints.

Another advantage of the modularity of production rules is that
we can use the rules to represent the student’s knowledge state. That
is, the student’s knowledge state can be diagnosed as a set of production
rules. We can then use curriculum selection techniques, such as were
pioneered with BIP (Barr, Beard, & Atkinson, 1975; Westcourt, Beard,
& Gould, 1977) in which problems are selected to exercise instructional

38 ANDERSON

units that the student has not mastered. In contrast to BIP, however,
the problem selection can be defined in psychologically real units
rather than by somewhat arbitrary topics. In recent work with the
LISP Tutor (Anderson, in press), we have found that the underlying
production rules seem to be learned systematically and independently
of one another. Selecting problems to exercise those productions
diagnosed to be weak leads to improved learning.

Model Tracing

One of the major advantages of the rule-based approach is that it
makes possible the implementation of a tutoring methodology called
model tracing. This is a technique used in WUSOR (Goldstein, 1982).
In Kimball’s integration tutor (Kimball, 1982), in Spade (Miller, 1982),
as well as in our own Geometry and LISP Tutors (Anderson, Boyle,
& Yost, 1985; Reiser, Anderson, & Farrell, 1985). In model tracing
we try to place the student’s surface behavior in solving a problem
in correspondence with a sequence of productions that are firing in
the internal student model. This correspondence then can be used
to place an interpretation over the student’s surface behavior. Clearly,
the richness with which the student’s behavior can be interpreted will
map onto the richness of subsequent instruction. In our own research,
which has a strong commitment to immediate feedback, the major
~function of such a model trace is to provide feedback on errors as
close in time to the student’s commission of these errors as possible.
However, this is by no means the only function of model tracing,
nor is it the only function for which model tracing has been used.
Indeed, I would say our use of it for immediate feedback has been
relatively unique.

Although it is nice to be able to interpret a student’s thinking
at every step through the problem solution, model tracing creates a
number of demands that are quite stressful computationally. The major
stress derives from the nondeterminism of the underlying student
model. Typically, at each point there are a number of correct or
incorrect productions that can fire. The combination of a few layers
of production firings creates a space of thousands or millions of possible
interpretations is naturally easier in the presence of a rich behavioral
trace from a student. Ideally, if each production rule has an observable
consequence, then the nondeterminism can be pared down at each
cycle of the production system. Providing such a rich behavior trace
creates an interesting demand on the interface design. Sometimes,
however, efforts to obtain a rich behavior trace can lead to awkward

2. THE EXPERT MODULE 39
[o] \
> \\<
* \

N A A
NN

.02
/
/

2 o]

oo

o
o
N
o

wn
o
o

FIGURE 2.10 Some of the correct and BUGGY code sequences that a student might
enter to determine whether a was less than 2% of ¢.

and artificial interactions. For instance, in some of our endeavours
we have tried to create a trace by interrogating students about their
intentions at points of ambiguity. Students report this to be an
annoying and distracting feature of our tutors.

Even in the best of all possible worlds, where each production
has a behavioral consequence, there are problems of ambiguity in
- which multiple sequences of production actions will generate the same
observed sequence of student behaviors. This is a problem particularly
when some of these interpretations are correct and some are in error.
The tutor must either delay feedback until the ambiguity is resolved
or interrupt with distracting questions. For instance, suppose we have
a student who is trying to cope whether a is less than 2% of ¢ and
the student writes

> (/ac).02)

At what point can we tell the student that the choice “>" is
inappropriate? Clearly, not when it is typed, because the student could
be intending to reverse the arguments. As it turns out, the ambiguity
is not resolved when the division sign is encountered either, because
the student could have been intending

(> (/ ¢ 50.0) a).

The ambiguity is resolved only when the a is entered. Fig. 2.10
is an attempt to illustrate a small part of the problem space associated
with this problem and the ambiguity in that problem space.

There are also serious problems with the efficiency of running

40 ANDERSON

production systems. Despite the recent advances in the OPS family
of production systems, they are still not the world’s most efficient
computational formalism (Forgy, 1982). A critical feature of any expert
module is that it run sufficiently rapidly so that the student is not
left waiting too long during its computations. One solution is to build
more efficient domain-specific production systems. In our own work
we have had to build such domain-specific production systems that
were optimized to take advantage of special domain features.

Complling the Expert Out

Many formalisms for expert modules, including production systems,
can be very expensive in terms of time and space. This makes it difficult
1o deliver tutorial instruction on economically feasible machines. One
way of dealing with this problem is to perform in advance all the
possible computations of the expert for a particular problem and to
store them in some efficiently indexed scheme on disk. This method,
which we call “‘compiling the expert out,”’ has been used with success
in some of our applications. The cost is that they can tutor only
a specific set of problems on which the expert has been run. The
dynamic ability to tutor any problem the student might enter is lost.
However, in some applications this trade-off may be well worthwhile.

DECLARATIVE KNOWLEDGE

Both the weaknesses and strengths of procedural knowledge
representations are derived from the fact that they are use-specific.
In some instances more generalized declarative knowledge may be
desired. In many cases we want the students to understand the basic
pprinciples and facts of a domain and how to reason with these
generally, but are not concerned that the student become particularly
facile at any one application of the knowledge. These are the situations
that call for declarative knowledge representations.

It is not the case that the goals of procedural tutoring and
declarative tutoring are mutually incompatible. We might well want
a student to be both facile with the rules of a problem domain and
articulate about the justifications for the rules. This seems to be the
case in the domain of medical diagnosis, for instance (Clancey, 1982).
Another need for declarative tutoring is illustrated in our LISP Tutor,
for which we have created a special textbook (Anderson, Corbett, &
Reiser, 1986) for teaching the declarative underpinnings of the

2. THE EXPERT MODULE 41

i)
STATE

COUNTRY \ /
(SUPERC\(«STATE INDEPENDENT))

(SUPERP & CONTINENT)

LATITUDE

(EXAMPLES ARGENTINA
BOLIVIA BRAZIL --------e-on-
«URUGUAY U.S. VENEZUELA)

@UGUAY
(SUPERC
ERICA

E-22-55)
TRIE ——
IL URUGUAY)

— e e — —— —

(EASTE

soumlmsn}
(SUPERC ¢ CONTINENT)

(COUNTRIES * ARGENTINA
URUGUAY VENEZUELA) /

FIGURE 2.11 A portion of the semantic net in SCHOLAR. Note. From “Al in CAl: An
AArtificial Intelligence Approach to Computer-Aided Instruction” by J. R. Carbonell, 1970,
IEEE Transactions on Man-Machine Systems, 11, 190-202. Copyright 1970 IEEE.
Reprinted by permission.

procedural knowledge the LISP Tutor teaches. It clearly would have
been better to have extended the LISP Tutor to cover what is in the
textbook. In fact, it is part of our general theory of knowledge
acquisition (Anderson, 1983) that knowledge must start in a declarative
form before becoming proceduralized.

The SCHOLAR project (Carbonell, 1970) was an early example
of a project whose goal was to communicate information, in this case
about South American geography. It was Carbonell’s belief that the
semantic net representation of the knowledge base used in this project
was close to the internal knowledge structure of humans. This belief
was reinforced by a fair amount of contemporary experimental work
(e.g., Collins & Quillian, 1972). Figure 2.11 shows a fraction of the
semantic network Carbonell was working with. It consists of nodes
representing various concepts, such as countries and products, linked
by various relationships, such as part-whole or generalization
hierarchy. These links were used to define certain fundamental
inference processes on the network. For instance, the system can

42 ANDERSON

conclude that Santiago is in South America because Santiago is in
Chile and Chile is in South America.

Subsequent to Carbonell’s work, knowledge representations with
semantic nets have become considerably more sophisticated and have
evolved into frame and schema systems (Bobrow & Winograd, 1977;
Brackman, 1978; Goldstein & Roberts, 1977; Minsky, 1975; Schank
& Abelson, 1977; Stefik, 1980). However, the central idea has remained
the same. We want hierarchical representations of knowledge structured
such that flexible inference procedures on the knowledge base can
be defined. Note that, in contrast to procedural representations, the
knowledge base is separate from the inference procedures that are built
on them. This clean distinction has been somewhat blurred by the
use of “‘procedural attachments,” in which various slots in the schema
representations have procedures attached to them to define how they
should be filled. But we still have a fundamental separation in a schema
system between knowledge and control. This separation does not exist
in procedural systems.

Carbonell’s work has been continued by Collins (Collins,
Warnock, & Passafulme, 1975; Stevens, Collins, & Goldin, 1982). Figure
2.12 illustrates one of the schema representations developed for
evaporation, which is part of the knowledge base in the curriculum
on rainfall. It is basically a schema representation consisting of various
slots and fillers. In this case, there are slots for the actors in the
evaporation schema, for the factors that influence the amount of
evaporation, for the functional relationships among these factors, and
for the result of evaporation. Bugs are created by various fallacious
entries in these slots. So, for instance, many people believe that the
sun is directly responsible for evaporation rather than that evaporation
is a function of the temperature of the air mass and the water mass.
This belief shows up as an erroneous filling in of the actor slot. Another
bug involving the actor slot of this schema is what Collins calls the
“small-moisture-source”’ —the idea that any body of water, including
a small pond, is sufficient to produce rainfall.

The implicit presupposition in tutoring such knowledge bases
is that the student already has the general inference procedures to
be able to reason about the knowledge and that the real task is therefore
to represent the knowledge in such a form that these inference
procedures can be invoked. At some level this makes for a simple
tutorial agenda, namely, to determine what a student has filled in
at each slot and to fill in the missing information and debug the
misconceptions. The major difficulty posed for tutoring systems is
that declarative knowledge cannot be run the way procedural
knowledge is, and so the criteria ““if the student can use it he knows
it” does not apply. For declarative knowledge tutors it is typical to

2. THE EXPERT MODULE 43

Evaporation

Actors
Source: Large-body-of-water
Destination: Air-mass

Factors
Temperature(Source)
Temperature(Destination)
Proximity(Source, Destination)

Functional-relationship
Positive(Temperature(Source))
Positive(Temperature(Destination))
Positive(Proximity(Source, Destination))

Result
Increase(Humidity(Destination))

FIGURE 2.12 A schema representation of some of the knowledge underlying our
understanding of evaporation. Note. From “Misconceptions in Student Understanding”
by A. Stevens, A. Collins, & S. E. Goldin, 1982, Intelligent Tutoring Systems (p. 16).
Copyright 1982 by The Academic Press. Reprinted by permission.

fashion and interpret complex natural language dialogues. To
understand these dialogues it is necessary to understand how students
make inferences from their declarative data base, and a good deal of
Collins’s work has been devoted to just this (e.g., Collins, Warnock,
Aiello, & Miller, 1975).

In contrast with tutoring procedural knowledge, tutoring
declarative knowledge necessitates facing up to the full complexity
of mixed initiative dialogues. The student says something that has
1o be clarified, which leads the tutor to ask a question, to which the
student reacts with a question of his or her own, etc. One of the
functions of the Socratic dialogues is to tame this process. Socratic
dialogues really give the control to the tutor, who asks a series of
questions to which the student is supposed to respond. In a true Socratic
dialogue both instruction and knowledge assessment is supposed to
be handled by asking questions. It might seem a bit unnatural to
instruct by askins questions, but there are proven psychological benefits
to knowledge that is generated rather than received (Bobrow & Bower,
1969). Moreover, asking questions enables the tutor to assess how well
the instruction is being received. Figure 2.13 presents a piece of the
Socratic dialogue with Collins’'s WHY system. Note that the discussion
takes place with respect to specific cases. So, for instance, in Fig. 2.13
WHY does not directly ask the student whether there is a positive

44 ANDERSON

WHY: Do you think the AMAZON jungle has heavy
rainfall or light rainfall?
(Ask for a prediction about a particular case)
STUDENT: Heavy rainfall

WHY: Why does the Amazon have heavy raintall?
(Ask for prior cause)
STUDENT: Because it's near the Atlantic

WHY: Yes, the Amazon jungle is near the equatorial
Atlantic. How does that affect rainfall in the
Amazon jungle?

(Ask for intermediate cause)

STUDENT: The water in the current is warm.

WHY: Do you think that any place with mountains
has heavy rainfall?
(Form a general rule for insufficient cause)
STUDENT: Yes

WHY: Southern California has mountains. Why doesn't
Southern California have heavy rainfall?
(Pick a counter-example for an insuffient cause)

FIGURE 2.13 An example of a Socratic dialogue. Note. From “The Goal Structure
of a Socratic Tutor” by A. Stevens & A. Collins, 1977, Proceedings of ACM 1977. Copyright
1977 by the Association for Computing Machinery, inc. Reprinted by permission.

IF

The student gives an explanation of one or more
factors that are not sufficient

THEN

Formulate a general rule for asserting that the factors
given are sufficient

Ask the student if the rule is true

FIGURE 2.14 An example of a rule for Socratic tutoring. Note. From “Processing in
Acquiring Knowledge"” by A. M. Collins, 1976, Schooling and the Acquisition of Knowledge,
p. 343-344. Reprinted by permission.

2. THE EXPERT MODULE 48

functional relationship between the temperature of the source and
evaporation. Instead, it probes the student’s ability to apply this
knowledge to the Amazon.

Collins formulated a set of tutoring rules for implementing the
Socratic method. Figure 2.14 illustrates one that was involved in the
question at the end of the sample dialogue. There are a couple of
noteworthy features about such rules for Socratic tutoring. First, they
have a family resemblance to the issue-based recognition rules we saw
with the black box and expert models. Note, however, that the
conditions of such rules refer to the underlying knowledge rather than
to the surface behavior of the expert. Second, these rules involve a
curious mix of knowledge assessment and instruction. The rule in
Fig. 2.14 could be used to determine that the student is aware of all
the factors underlying rainfall but has just not mentioned them, or
it could be used to make the student aware of a new factor. Evoking
this rule does not entail a commitment to the intended pedagogical
outcome.

It should be clear that understanding natural language is the
Achilles’ heel of any effort 1o do such declarative tutoring. There have
not been a great many of these tutors. Collins’s and Carbonell’s work
is the only notable instance, and I think the difficulty of the natural
language problem is the principle reason why. This area of intelligent
tutoring is certainly waiting for fundamental progress in natural
language processing.

QUALITATIVE PROCESS MODELS

A third category of expert module is concerned with the knowlege
that underlies our ability to mentally simulate and reason about
dynamic processes. As noted earlier, this is an important component
of the ability to engage in troubleshooting behavior, which involves
reasoning through the causal structure of a device to find potential
trouble spots.

Models of qualitative reasoning are in a relatively immature state
compared to the schema and rule-based formalisms of artificial
intelligence. A number of notable research efforts are developing such
models (deKleer & Brown, 1984; Forbus, 1984; Kuipers, 1984), but there
is hardly an established methodology for using them. DeKleer's work
on envisionment is an interesting case in point because it evolved
within the context of the SOPHIE project and the need to communicate
1o students the causal structure of an electronic circuit.

DeKleer and Brown divide the process of envisionment into

46 ANDERSON

[physical device | [predic.tions“]
]

description of structure
1

device topology o . ;
component models running: mental simulation

envisioning: inferring causality
\ 4

envisionments: projection:
set of causal models| sglection »_ causal model |

FIGURE 2.15 The development of a qualitative simulation according to deKleer & Brown.
Note. Adapted from Artificial Intelligence and Tutoring Systems: Computational and
Cognitive Approaches to the Communication of Knowledge by Etienne Wenger, 1987,
Los Alto, CA: Morgan Kaufman, Publishers, Inc. Adapted by permission.

~~

2y |

D Z
787 7

I

—-——

-— Xep

on - Qo —= e o Q) + Qrp
T r’ﬂ
Pin smp Pout smp

L

FIGURE 2.16 DeKleer & Brown's (1984) representation of a pressure regulator. Note.
From “A Physics Based on Confluences” by J. deKleer & J. S. Brown, 1984, Al Journal,
24(1-3), pp. 7-83. Copyright 1984 by North Holland Publishing Co. Reprinted by
permission.

constructing a causal model and then simulating the process in this
causal model. Figure 2.15 illustrates their conception of this process.
The causal structure of the device is inferred from its topology by
examination of the local interactions among components. The
assumption is that this causality can be understood locally, and it
is called the ‘‘no function in structure’’ principle. When this principle
is violated and description of a component makes reference to the
functioning of the whole device, there is a danger that that component
will assume the functioning of the device rather than explain it. Having

2. THE EXPERT MODULE 47

this causal model, deKleer and Brown then use a calculus to propagate
the behavior of the device through these components. Much of the
current work on qualitative models is concerned with various calculi
for such propagations.

Figure 2.16 illustrates one of the devices, a pressure regulator,
which has been a focus of deKleer and Brown’s work. It consists of
a set of components, such as a valve, which operate on certain local
inputs. So, for instance, the valve operates so that the amount of water
flowing through it varies with the pressure and the position of the
valve control. This relationship is expressed by what deKleer and
Brown call a confluence, which is a constraint among variables. The
confluence for the valve is

OPin, out + 6Quiw) + 6Xrp =0

where Piy, ou is the change in pressure,
0Q.1(w) is the change in flow,

and 6Xrp is the position of the valve control.

The entire devise is modeled by a set of such confluences.
Reasoning about it involves tracing the constraints among the
equations.

The psychological status of this work is quite ambiguous. As
deKleer and Brown note, the no-function-in-structure principle is
~constantly violated in human reasoning. What they are trying to
develop is more on the order of a prescriptive model of thinking.
A constraint in this prescriptive model is apparently that it should
be easy for humans to follow these prescriptions even if they normally
do not. Such a prescriptive model is certainly appropriate as an expert
module for an intelligent tutoring system.

It is not clear to me whether qualitative models really involve
a category of knowledge fundamentally different from procedural and
declarative knowledge. It might be argued that people have a set of
declarative knowledge structures for representing the form and function
of various devices and a set of procedures for reasoning about the
causal interactions among these devices.

The real difference may not be in the knowledge type but in
the indirectness of the knowledge so represented. The end goal in
applications such as electronic troubleshooting is not to have the
student correctly simulate the causal interactions in a circuit but to
use that ability in service of the problem solving involved in
troubleshooting. Thus, one of the issues that arises in a tutoring context
is how to use the qualitative knowledge in a larger problem-solving

48 ANDERSON

context. This issue has largely not been addressed in the work on
qualitative reasoning.

As a consequence, how to include qualitative simulations in a
tutoring paradigm has yet to be worked out. Qualitative simulations
can obviously be used in all the ways a black box model like SPICE
can, but this hardly justifies their development. There is the obvious
potential for using them in explanations in which the tutor would
tell the student how it reasoned to a particular conclusion about circuit
behavior. White and Fredericksen (1986) use such models to actually
define the curriculum sequence. There is also a need for more
psychological study on how such process models are actually used
in troubleshooting. Although I think it is clear that such models are
used and that systems as deKleer and Brown'’s have at least a family
resemblance to human qualitative reasoning, I think we know virtually
nothing about how humans deploy these simulations to achieve their
goals. Interestingly, there is a considerable body of negative results
in getting students to bring mental models to tasks such as
troubleshooting (Rouse & Morris, 1985).

The other possibility for qualitative models is to generate articulate
simulations of a particular system, such as in the Steamer project
or in SOPHIE. The simulation can illustrate the qualitative
transformations assumed in the qualitative simulation. The
assumption is that there is a pedagogical benefit to illustrating a process
in the same terms as a student should use in reasoning about it.

BASIC RESEARCH ISSUES

Although there has certainly been dramatic progress in our
understanding of how to build the expert module for a tutoring system,
we need a great deal more basic research before construction of expert
modules can progress as an engineering enterprise. As we saw in the
work on expert systems, there are real limitations in using work from
artificial intelligence, which has progressed without concern for
cognitive fidelity. We still need 1o deepen our understanding of human
cognitive processes and how they can be modeled. For instance, theories
of learning, in contrast to theories of performance, have yet to be
integrated into tutoring systems. The range of tasks for which accurate
student models can be reasonably produced is relatively narrow and
consists of tasks that are algorithmically tractable and that do not
involve a great deal of general world knowledge. A prime example
is calculus. To understand human expertise more generally will involve
a great deal more empirical and simulation research.

2. THE EXPERT MODULE 49

Also, our understanding of the learning processes by which
knowledge is acquired is still quite primitive. Evidence of this is the
fact that no tutoring system actively uses a learning model in its
computations. Any pedagogy needs to be rigorously founded in a theory
of learning. Obviously, the cognitive science efforts in learning
(Anderson, 1983; Holland, et al., 1986; Laird, Rosenbloom, & Newell,
1986; Langley, 1985; VanLehn, 1983) are prime candidates for support.
Related to issues of learning are the issues of the origins of bugs.
As is illustrated in the work on BUGGY, the representation of
knowledge can be closely connected to possible bugs. Currently, most
tutor builders have to invest large amounts of time building up bug
catalogs. It would accelerate the development of tutors if we had a
theory or theories of the origin of bugs.

There seems to be little point in supporting work in artificial
intelligence, which is not cognitively motivated, if we want to further
the goal of developing intelligent tutoring systems. There are two
domains in artificial intelligence that are exceptions, however:
qualitative process models and natural language processing for tutorial
dialogues. Our need for mechanisms in these fields is so great that
insisting on cognitive fidelity in the artificial intelligence system would
be premature.

Development of the expert module is not independent of the rest
of the tutoring system in which it resides. Much of my discussion
of the expert module has been concerned with its implications for
other components of a tutoring system. Although there is need for
research on models of human expertise in the abstract, there is also
need for research on how such modules will fit into an overall tutoring
architecture. We have seen that various types of modules tend to be
linked to various styles of tutoring—black box models with issue-
based tutoring, cognitive rule systems with model tracing, and
declarative systems with Socratic tutoring. There is room for expanding
our catalog of architectures and their relationships to expert modules.
We also need to explore how the design of an interface can change
the nature of the expert module. To take a simple example, the advent
of structure-based editors has eliminated the need for programming
tutors to be concerned about teaching syntax.

Finally, we need a meta-theory of the expert formalisms we are
using and of how they can be taught. Right now the development
of expert modules is the domain of a few cognitive scientists even
more select than the builders of expert systems. We need to develop
methods for teaching the use of cognitive science formalisms to
curriculum developers. Not only is this an important practical goal,
but in pursuing it I think we will come to a deeper understanding
of the nature of a cognitive theory.

50 ANDERSON

I think we are in a position to develop an authoring environment
around expert system formalisms such as production systems or schema
systems. We could develop a set of tools and instructional materials
that would make it esy for curriculum developers to use these systems.
The first steps toward tutoring systems that teach students how to
program with production systems already exist (Zhang, 1986). The
facilities for actually delivering the tutoring could be made a
prepackaged part of the authoring environment. All the curriculum
designers would have to do is develop the expert module, which, of
course, is currently half the job of developing an intelligent tutoring
system. However, delivery of the tutoring could at least be automated,
and the expertise for developing the expert module could be more
widely distributed.

NEAR-TERM GOALS

Relatively little activity is currently occurring in intelligent tutoring
that does not have the status of a basic research project whose goal
is to get more basic knowledge rather than to actually build useful
intelligent tutoring systems. However, the point has been reached
where a few applications are feasible, and it might be worthwhile
" to pursue some of them both for the relatively immediate benefit and
for some sense of how the engineering of these projects will progress.

In my view the one area in which we might develop reasonably
good cognitive models that could be made part of intelligent tutors
is that of rule-based systems for algorithmically tractable domains.
These domains include mathematics at the high school or junior
college level, basic sciences like physics, basic electricity and electronics,
some engineering and statistics, introductory programming, and use
of various packages like LOTUS 1-2-3. This is not to say that
development in these domains will be cheap. It will probably take
hundreds of hours just to analyze and codify the expert module for
each hour of instruction, let alone build a full tutor. However, such
time frames are at least within the same order of magnitude as those
that go into building conventional educational software.

Another area that may yield some short-term payoff is use of off-
the-shelf expert modules either developed as black boxes or developed
out of the knowledge-engineeringg tradition of artificial intelligence.
This tactic circumvents the hundreds of hours that go into building
the expert module. As we have seen, issue-oriented methodology shows
some potential for utilizing these tutors. Basic researchers have been
somewhat reluctant to follow up these issue-oriented methods because

2. THE EXPERT MODULE 51

of their perceived limitations. Researchers have been moving to expert
modules with greater cognitive fidelity, and even if they continue to
use an issue-oriented methodology, they use a methodology
appropriate for such modules. There may be a great practical payoff
to seeing how to develop methods for use with the available expert
systems. It would also be in the interest of the Air Force to identify
and sponsor some project of particular interest to the military. Besides
possibly delivering an actual system, this effort would uncover the
issues specific to military applications. I can only guess where the
needs of the military are, but I would think electronics and electricity
instructors in service of maintenance would be a prime candidate.
A fair amount of work has already been done in this field, although
of a rather theoretical variety. It would be profitable to see what would
happen if we made the practical compromises necessary to see an
intelligent tutorial system in an actual classroom.

REFERENCES

Anderson, J. R. (1976). Language, memory, and thought. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard
University Press.

Anderson, J. R. Analysis of student performance with the LISP tutor. In N. Fredericksen,
R. Glaser, A. Lesgold, & M. Shafto (Eds.), Diagnostic monitoring of skill and
knowledge acquisition. Hillsdale, NJ: Lawrence Erlbaum Associates, in press.

Anderson, J. R. (in press). Methodologies for studying human knowledge. Behavioral
and Brain Sciences.

Anderson, J. R., Boyle, C. F., & Yost, G. (1985). The geometry tutor. In A. Joshif
(Ed.), Proceedings of the Ninth International Joint Conference on Artificial
Intelligence (pp. 1-7). Los Altos, CA: Morgan Kaufman.

Anderson, J. R., Corbett, A. T., & Reiser, B. J. (1986). Essential LISP. Reading, MA:
Addison-Wesley.

Barr, A., Beard, M., & Atkinson, R. C. (1975). Information networks for CAI curriculum.
In O. Lecareme & R. Lewis (Eds.), Computers in education (pp. 477-482). Amsterdam:
North Holland.

Bobrow, D. G., & Winograd, T. (1977). An overview of KRL: A knowledge representation
language. Cognitive Science, 1, 3-46.

Bobrow, S., & Bower, G. H. (1969). Comprehension and recall of sentences. Journal
of Experimental Psychology, 80, 455-461.

Brackman, R. J. (1978). 4 structural paradigm for representing knowledge (Tech. Rep.
3605). Cambridge, MA: Bolt, Beranek, & Newman, Inc.

Brown, J. S. (1983). Process versus product: A perspective on tools for communal and
informal electronic learning (Tech. Rep.), In Report from the learning lab: Education
in the electronic age. Educational Broadcasting Corporation.

52 ANDERSON

Brown, J. S., & Burton, R. R. (1975). Multiple representation of knowledge for tutorial
reasoning. In D. Bobrow & A. Collins (Eds.), Representation and understanding:
Studies in cognitive science (pp. 311-349). New York: Academic Press.

Brown, J. S., Burton, R. R., & deKleer, J. (1982). Pedagogical, natural language and
knowledge engineering techniques in SOPHIE I, II and III. In D. Sleeman &]J.
S. Brown (Eds.), Intelligent tutoring systems (pp. 227-282). New York: Academic
Press.

Brown, J. S., & VanLehn, K. (1980). Repair theory: A generative theory of bugs in
procedural skills. Cognitive Science, 4, 379-426.

Buchanan, B., & Shortliffe, E. (1984). Rule-Based Expert Systems. Reading, MA: Addison-
Wesley.

Burton, R. R. (1982). Diagnosing bugs in a simple procedural skill. In D. Sleeman
& J. S. Brown (Eds.), Intelligent tutoring systems (pp. 157-183). New York: Academic
Press.

Burton, R. R., & Brown, J. S. (1982). An investigation of computer coaching for informal
learning activities. In D. Sleeman & J. S. Brown (Eds.), Intelligent tutoring systems
(pp- 79-98). New York: Academic Press.

Carbonell, J. R. (1970). AI in CAI: An artificial intelligence approach to computer-
aided instruction. IEEE Transactions on Man-Machine Systems, 11, 190-202.

Clancey, W. J. (1982). Tutoring rules for guiding a case method dialogue. In D. Sleeman
& J. S. Brown (Eds.), Intelligent tutoring systems (pp. 201-225). New York: Academic
Press.

Collins, A. M. (1976). Processes in acquiring knowledge. In R. C. Anderson, R. Spiro,
& W. E. Montague (Eds.), Schooling and the acquisition of hnowledge (pp. 339-
363). Hillsdale, NJ: Lawrence Erlbaum Associates.

Collins, A. M. & Quillian, M. R. (1972). Experiments on semantic memory and language
comprehension. In L. Gregg (Ed.), Cognition in learning and memory (pp. 117-
137). New York: Wiley.

Collins, A. M., Warnock, E. H., Aiello, N., & Miller, M. L. (1975). Reasoning from
incomplete knowledge. In D. G. bobrow & A. M. Collins (Eds.), Representation
and understanding (pp. 383-415). New York: Academic Press.

Collins, A., Warnock, E., & Passafulme, J. (1975). Analysis and synthesis of tutorial
dialogues. In G. Bower (Ed.), The psychology of learning and motivation (Vol.
9, pp. 49-87). New York: Academic Press.

deKleer, J., & Brown, J. S. (1983). Assumptions and ambiguities in mechanistic mental
models. In D. Gentner & A. Stevens (Eds.), Mental models (pp. 155-190). Hillsdale,
NJ: Lawrence Erlbaum Associates.

deKleer, J., & Brown, J. S. (1984). A physics based on confluences. AI Journal, 24,
7-83.

Forbus, K. D. (1984). Qualitative process theory. Artificial Intelligence, 24, 85-168.

Forgy, C. L. (1982). Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence, 19, 17-37.

Genesereth, M. R. (1982). Therole of plans in intelligent teaching systems. In D. Sleeman
& J. S. Brown (Eds.), Intelligent tutoring systems (pp. 137-155). New York: Academic
Press.

Goldstein, I. (1982). The genetic graph: A representation for the evolution of procedural
knowledge. In D. Sleeman & J. S. Brown (Eds.), Intelligent tutoring systems (pp.
51-77). New York: Academic Press.

Goldstein, 1. P., & Roberts, R. B. (1977). NUDGE, a knowledge-based scheduling
program. Proceedings of the Fifth International Joint Conference of Artificial
Intelligence (pp. 257-263).

2. THE EXPERT MODULE 53

Hayes, J. R. (1985). Three problems in teaching general skills. In S. Chipman, J. Segal,
& R. Glaser (Eds.), Thinking and learning shkills (pp. 391-406). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Hayes-Roth, F., Waterman, D. A., & Lenat, D. B. (1983). Building expert systems.
Reading, MA: Addison-Wesley.

Hollan, J. D., Hutchins, E. L., & Weitzman, L. (1984). Steamer: An interactive inspectable
simulation-based training system. AI Magazine, 5, 15-27.

Holland, J. H., Holyoak, K., Nisbett, R. E., & Thagard, P. R. (1986). Induction: Processes
of inference, learning, and discovery. Cambridge, MA: Massachusetts Institute of
Technology Press.

Kimball, R. (1982). A self-improving tutor for symbolic integration. In D. Sleeman
& J. S. Brown (Eds.), Intelligent tutoring systems (pp. 283-307). New York: Academic
Press.

Kuipers, B. (1984). Commonsense reasoning about causality: Deriving behavior from
structure.. Artificial Intelligence, 24, 169-203.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunking in SOAR: The anatomy
of a general learning mechanism. Machine Learning 1, 11-46.

Langley, P. (1985). Learning to search: From weak methods to domain-specific heuristics.
Cognitive Science, 9, 27-260.

Miller, M. L. (1982). A structured planning and debugging environment for elementary
programming. In D. Sleeman & J. S. Brown (Eds.), Intelligent tutoring systems
(pp. 119-135). New York: Academic Press.

Minsky, M. (1975). A framework for representing knowledge. In P. H. Winston (Ed.),
The psychology of computer vision (pp. 211-277). New York: McGraw-Hill.

Nagel, L. W., & Pederson, D. O. (1973). Simulation program with integrated circuit
emphasis. Proceedings of the Sixteenth Midwest Symposium on Circuit Theory
(vol ,pp. -). '

Newell, A. (1973). Production systems: Models of control structures. In W. G. Chase
(Ed.), Visual information processing (pp. 463-526). New York: Academic Press.

Newell, A., & Simon, H. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-
Hall.

Reiser, B. J., Anderson, J. R., & Farrell, R. B. (1985). Dynamic student modeling in
an intelligent tutor for LISP programming. Proceedings of the International Joint
Conference on Artificial Intelligence-85 (Vol. 1, pp. 8-14). Los Altos, CA: Morgan-
Kaufman.

Rouse, W. B., & Morris, N. M. (1985). On looking into the black box: Prospects and
limits in the search for mental models (Tech. Rep. No. 85-2). Atlanta: Georgia
Institute of Technology.

Schank, R. C., & Abelson, R. P. (1977). Scripts, plans, goals, and understanding.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Shortliffe, E. H. (1976). Computer-based medical consultations: MYCIN. New York:
American Elsevier.

Sleeman, D. (1982). Assessing aspects of competence in basic algebra. In D. Sleeman
& J. S. Brown (Eds.), Intelligent tutoring systems (pp. 185-199). New York: Academic
Press.

Stefik, M. (1980). Planning with constraints (Tech. Rep. No. 784). Palo Alto, CA: Stanford
University.

Stevens, A., & Collins, A. M. (1977). The goal structure of a Socratic tutor. (Tech.
Rep. No. 3518). Cambridge, MA: Bolt, Beranek, and Newman, Inc.

Stevens, A., Collins, A. M., & Goldin, S. E. (1982). Misconceptions in students’
understanding. In D. Sleeman & J. S. Brown (Eds.), Intelligent tutoring systems
(pp. 13-24). New York: Academic Press.

54 ANDERSON

VanLehn, K. (1983). Felicity conditions for human skill acquisition: Validating an
Al-based theory (Tech. Rep. CIS-21). Palo Alto, CA: Xerox Parc.

Wenger, E. (1987). Artificial intelligence and tutoring systems: Computational
approaches to the communication of knowledge. Los Altos, CA: Morgan Kaufman.

Westcourt, K., Beard, J., & Gould, L. (1977). Knowledge-based adaptive curriculum
sequencing for CAI: Application of a network representation. Proceedings of the
Association for Computing Machinery Annual Conference. Association for
Computing Machinery (ACM-777) (pp. 234-240).

White, B. Y., & Fredericksen, J. R. (1986). Progressions of qualitative models as
foundations for intelligent learning environments (BBN Report 6277). Cambridge,
MA: Bolt, Beranek, and Newman, Inc.

Zhang, G. (1986). Learning to program in OPS5. Unpublished doctoral dissertation.
Pittsburgh, PA: Carnegie Mellon University.

