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Abstract

To resolve several problems of ACT-R’s declarative memory
(DM), Schultheis, Barkowsky, and Bertel (2006) developed a
new long-term memory (LTM) component, called LTMC . In
this paper we present two ACT-R interfaces which integrate
LTMC into ACT-R. Such integrating LTMC makes it easily ac-
cessible to ACT-R modelers and allows more thoroughly eval-
uating it in its interplay with other components of a cognitive
architecture. By considering four different memory phenom-
ena we show that ACT-R with LTMC is superior to ACT-R
employing only DM and, thus, (a) LTMC ’s benefits are not
impaired when integrating it into a cognitive architecture and
(b) using the newly developed interfaces improves ACT-R. In
particular, integrating LTMC into ACT-R allows computation-
ally exploring memory conceptions which cannot be modeled
with ACT-R utilizing only DM.

Introduction
As a cognitive architecture ACT-R (Anderson et al., 2004)
aims at constituting a computational model of all human cog-
nition. And indeed a wide variety of psychological phenom-
ena have successfully been modeled using ACT-R. Despite
this success, concerns have recently been raised by Rutledge-
Taylor (2005) and by Schultheis et al. (2006) regarding the
suitability of ACT-R’s declarative memory (DM) component
as a model of human long-term memory (LTM). In response
to these concerns Schultheis et al. (2006) have developed a
new LTM component called LTMC .

As shown in Schultheis et al. (2006) this new LTM com-
ponent is able to solve the problems currently associated with
ACT-R’s DM. However, so far LTMC was only available as a
stand-alone component which is disadvantageous for at least
two reasons. First, one might argue that it is not possible to
thoroughly judge the suitability of an LTM component with-
out considering it in its interplay with other components of
a cognitive architecture. Put differently, it would be possi-
ble that shortcomings associated with LTMC would only be-
come obvious when utilized in the framework of generally
accepted assumptions about human cognition. Second, as
a stand-alone component, LTMC would be inaccessible for
most cognitive modelers, because considerable programming
expertise would be necessary to employ LTMC for modeling.
To eliminate these problems we developed two interfaces,
LTM-DM and LTM-Buffer, to integrate LTMC into ACT-R.
This integration not only allows further evaluating LTMC in
the scope of generally accepted assumptions about the func-
tioning of the human information processing apparatus, but

also makes LTMC and its advantages easily accessible for
ACT-R modelers.

In this contribution we present the two interfaces and how
they can be employed and illustrate their suitability to model
several memory phenomena. Before describing the interfaces
and their application we will give a short recap of ACT-R’s
existing memory structure and its problems as well as the
structure and processes of LTMC and how it is able to solve
these problems. Subsequently, the ways LTM-Buffer and
LTM-DM integrate LTMC into ACT-R are explicated and
evaluated. In concluding, issues for future work are high-
lighted.

ACT-R and its Limitations
In ACT-R’s DM knowledge is represented by chunks. Chunks
are data structures that contain one or more slots, which may
contain values or other chunks. The slots a chunk contains
are determined by its chunk type. Chunk types are declared
separately for each model and are assumed to be fixed, that
is, cannot and will not change during model runs. Thus, the
chunk type specifications impose an unalterable structure on
declarative knowledge. In particular, the imposed structure is
assumed to be identical for knowledge currently being pro-
cessed and knowledge stored in LTM (see Anderson et al.,
2004, for a more detailed description of DM).

This means of representing knowledge is inappropriate to
model human LTM, since the way chunks and chunk types
structure knowledge renders knowledge situation-specific.
Whereas this is unproblematic for knowledge currently being
processed, a situation-specific representation of knowledge in
LTM—which supposedly is the source of human knowledge
in all situations—seems implausible.

Concretizing this general concern, Schultheis et al. (2006)
identified the following three problems with ACT-R’s knowl-
edge representation: first, chunk types are too specific to their
models. Every model defines its own chunk type(s). Conse-
quently, at the moment it is uncertain (a) whether chunk types
working well when considered in isolation still do so when
considered together or (b) whether one could create a unified
chunk structure which both represents all knowledge used in
ACT-R models so far and still gives adequate modeling re-
sults. Second, the fact that chunk types cannot be altered dur-
ing model runs makes the knowledge representation rather in-
flexible: Information retrieved together (i.e., in a chunk) from
LTM in one context will be retrieved together in all contexts,
an idea that is contrary to the common finding of context de-
pendence of memory access (cf. Godden & Baddeley, 1975).



Finally, several studies (e.g., Erickson & Mattson, 1981; Park
& Reder, 2004) have shown that humans in certain situations
retrieve information from LTM which only partially matches
the information originally requested. Yet, in ACT-R this ef-
fect does not arise from the basic architectural mechanisms.
Instead, it is necessary to specify the degree to which partial
matching is to occur between two chunks by hand.

An Outline1 of LTMC

Structure
In LTMC knowledge is represented as a network of nodes.
Every node comprises a name and a unique identifier. The
name of a node is a string signifying which entity in the world
this node stands for. The unique identifier is an alphanu-
meric sequence allowing to unambiguously identify and ad-
dress each node2. In addition to its name and identifier, every
node contains links to other nodes in LTM. These links rep-
resent associations between different entities—if two entities
are associated with each other their corresponding nodes are
mutually linked.

One noteworthy property of LTMC is that the links be-
tween the nodes generally bear no meaning apart from indi-
cating that the connected nodes are associated. In particular,
links do not stand for relations, but relations are also repre-
sented as nodes. Thus, the fact that London is north of Paris
would be represented by three nodes (London, north-of, and
Paris) associatively linked to each other.

Besides knowledge about concrete entities such as “north-
of”, LTMC also contains knowledge about categories of en-
tities such as “direction relation” and knowledge about re-
spective subsumption relations such as “north-of” “is a” “di-
rection relation”. Different from all other relations, however,
subsumption relations are represented as links, since repre-
senting them as nodes would lead to infinite regress. By or-
ganizing the knowledge in a hierarchy (i.e., an ontology) the
knowledge representation in LTMC roughly takes the form
of a tree with the most general entity as the root and concrete
instances as the leaves.

This structure bears some resemblance to the knowledge
representation proposed by Kokinov (2003) and Kokinov and
Petrov (2001). However, due to the dissimilar processes at
work in LTMC , the overall functioning of LTMC differs from
the system proposed by Kokinov and colleagues. These pro-
cesses will be described in the next section.

Processes
The processes employed to realize retrieval of knowledge
from LTMC are activation-based. Each node has an activation
value that determines which nodes are retrieved on a certain
request. This activation value is calculated on every new re-
trieval request as the sum of the node’s base-level activation,

1A more detailed description of the structure and processes of
LTMC can be found in Schultheis et al. (2006)

2Using strings and alpha-numeric sequences for identifying
nodes are arbitrary representational conventions. The strings are
meant to help the modeler to quickly see what is represented by a
node. The alphanumerical sequences are just one way of assigning
a unique key to each node which is necessary to realize a working
implementation. Thus, using strings and alphanumeric sequences is
not meant to suggest that conceptual knowledge is language based.

the activation spread to that node, and some randomly varying
activation (i.e., noise). Base-level activation, like in ACT-R,
reflects the recency and frequency of a node’s retrieval: the
more frequently and recently a node has been retrieved previ-
ously the higher is its base-level activation.

The activation spread to a node, on the contrary, does not
depend on events of the past, but on the current context (i.e.,
entities in working memory or the environment) in which
the retrieval takes place. If, for example, a person is asked
which direction relation holds between London and Paris the
activation of the corresponding nodes “direction relation”,
“London”, and “Paris” will be increased. Importantly, the
nodes receiving some activation directly from the context will
spread activation to nodes with which they are associated.
Nodes receiving activation from other nodes will again spread
activation to the nodes they are associated with and so on.
This activation spreading is subject to four constraints: first,
only a fraction of the activation just received is spread to other
nodes. Second, activation is not spread back to that node from
which the to be spread activation has been received. Third,
the amount of activation which will be spread to associated
nodes will be equally distributed to these nodes. Fourth, the
received activation will only be spread if it is high enough
(i.e., above a certain threshold).

Once spreading has stopped, the amount of activation ac-
cumulated in a node during spreading is added to its base-
level activation. By furthermore adding noise—computed as
in DM (see Anderson et al., 2004)—the final activation of
each node is computed. On the basis of these final activation
values the nodes to be retrieved are determined: only those
nodes having an activation which is higher than the average
activation of nodes in LTM will be retrieved.

This spreading process requires setting four parameters
when using LTMC : The amount of activation a node re-
ceives from the context at the beginning of the spreading
(cA), the fraction of activation to be distributed to associated
nodes (f ), the threshold to terminate spreading (t), and the
strength of the noise (n). The latter three were set to f = 0.6,
t = 0.01667, and n = 0.1 for all simulations reported below,
whereas cA was allowed to vary across the different models.

Given its structure and processes, LTMC can easily ac-
count for basic human memory phenomena such as context
and time dependence of knowledge availability or the fan ef-
fect (cf. Anderson, 1974). More importantly, as Schultheis
et al. (2006) have shown LTMC solves the problems which
have been identified with ACT-R’s LTM (see above): due to
its more flexible structure LTMC is better able to model the
context-dependent grouping of knowledge in the scope of a
retrieval. In addition, LTMC allows modeling the effect of
partial matching (cf. Park & Reder, 2004) more plausibly and
parsimoniously. Accordingly, LTMC keeps the advantages of
ACT-R’s LTM (i.e., being able to account for basic human
memory effects) while at the same time avoiding some of its
weaknesses.

Interfacing LTMC and ACT-R
One main aim in developing the two interfaces LTM-DM and
LTM-Buffer—besides making LTMC available in ACT-R—
was to check whether these advantages persist for LTMC as
a part of a general cognitive architecture. Both ways of inter-



facing and their evaluation will be explicated in the following
sections. The first module, called LTM-DM, is an extension
to ACT-R’s existing DM module. The second is called LTM-
Buffer and is intended to be an ACT-R module to be used
independently of DM. The two modules are intended to be
used exclusively of one another and represent two different
approaches to accessing knowledge from LTMC and using it
in ACT-R. In describing the interfaces we will first explicate
those aspects of using LTMC in ACT-R which both interfaces
have in common and then go into more detail on the particu-
lars of LTM-DM and LTM-Buffer, respectively.

Retrieving Knowledge from LTMC

As argued above, the advantages of LTMC compared to
DM mainly arise from LTMC’s more flexible representa-
tion structure. Instead of imposing a fixed grouping of in-
formation onto the contents of LTM, the node network em-
ployed in LTMC allows for a context-dependent and context-
appropriate grouping of information. Put differently, the im-
provements realized by LTMC are achieved mainly by avoid-
ing the use of chunks and chunk types for representing long-
term knowledge. Nothing, however, speaks against using
chunks as a representation for the knowledge currently being
processed (see above). Accordingly, the use of chunks for
representing declarative knowledge in ACT-R is only prob-
lematic regarding LTM and thus the best way to integrate
LTMC into ACT-R seems to be to keep chunks as representa-
tions for processing while using LTMC instead of DM as the
LTM component.

Taking this approach the result of a retrieval request to
LTMC cannot directly be processed by the other ACT-R com-
ponents, since a retrieval result is given in the form of a sub-
net of the overall net representing long-term knowledge and
not in the form of chunks. Consequently, to interface LTMC

with ACT-R, retrieved subnets have to be recast as chunks.
To achieve this we introduced a new construct called map-
ping which accompanies chunk type definitions. A mapping
specifies how the slots of a chunk type relate to the nodes in
LTMC . If the newly developed LTM modules are employed
in ACT-R, support for mapping definitions is automatically
enabled. On a retrieval request the resulting subnet will be
recast as chunks according to the defined mappings. This ap-
proach has the following advantages: first, ACT-R modelers
can still use any types of chunks they like, that is, using LTM-
DM or LTM-Buffer does not restrict the freedom of modelers
to define and use particular chunk types. Second, by means
of the mapping definitions chunk types are anchored in the
general ontological structure of LTMC . This potentially al-
lows to compare and relate the knowledge used in different
ACT-R models and thus alleviates one of the above identified
problems of ACT-R’s DM, namely the model specificity of
chunks and chunk types.

By using the mapping mechanism retrieving knowledge
from LTMC is very similar to the process of obtaining chunks
from DM. Figure 1 outlines the retrieval process. The first
step of a retrieval is to issue a normal ACT-R request to the
buffer of the corresponding module. The ACT-R LTM mod-
ules are able to use—employing the mapping—such an ACT-
R request to activate nodes in LTMC and spread that activa-
tion to those nodes’ neighbors. Once this is complete, the

+ACT-R buffer>

  isa xyz
  arg1 =foo
  arg2 =bar

=ACT-R buffer>

  isa xyz
  arg1 =foo
  arg2 =bar
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Figure 1: Retrieval process for LTMC in ACT-R

nodes with an activation smaller than the average activation
of the entire semantic net are discarded to create one or more
disjoint subnets. The modules find the best subnet (i.e., the
subnet with the highest total activation) and—again relying
on the mapping—use it to create chunks of the requested type
for ACT-R to use. The chunk with the highest activation is
selected and placed in the buffer that requested the knowl-
edge. The retrieval time is computed from the activation of
the chunk finally put into the buffer using the same formula
as in ACT-R.

Apart from this common procedure employed to retrieve
information from LTMC , the two interfaces differ with re-
spect to certain aspects. Most notably, the overall memory
conception realized in ACT-R changes depending on whether
LTM-DM or LTM-Buffer is employed. The next two sections
illustrate the differences between the two interfaces.

LTM-DM
LTM-DM is an extension to the existing DM in ACT-R. It of-
fers the capabilities of LTMC as an additional source of infor-
mation, but if information is already present in DM then this
may be used instead. Chunks retrieved from LTMC are given
a base-activation equal to their activation in LTMC and then
placed directly in DM to allow it to determine which chunk to
place in its buffer. This might include any subsymbolic pro-
cesses (e.g., spreading activation, noise, etc.) of DM. Thus,
using LTM-DM establishes a two-component memory struc-
ture with a strict separation between the two components.

At first sight, using both DM and LTMC might seem un-
reasonable, since—in light of the usual interpretation of DM
as LTM—this might look like creating a system with two dis-
tinct LTM stores. Yet, as stated above, there are strong ar-
guments for the stance that DM with its chunk structure is
insufficient as a model of human LTM and is better viewed
as holding the knowledge in a representation format used for
the information currently processed. Thus, the memory struc-
ture resulting in ACT-R when using LTM-DM can be taken
to implement not two types of LTM, but one long-term store



(LTMC) and one store transiently holding the knowledge
which is currently (or has recently been) processed (DM).

Seen this way LTM-DM is nicely in accord with a num-
ber of recent suggestions regarding the nature of the human
memory system. For example, Baddeley (2000) proposed the
episodic buffer as that part of working memory which (a) is
a multi-dimensional store, that is, a store combining infor-
mation from different modalities and sources, (b) can hold
information for a longer duration than other parts of work-
ing memory, and (c) mediates between working memory and
LTM. Since DM as used in LTM-DM also has these three
features, it can be viewed as instantiating the episodic buffer
instead of a second LTM.

Other areas of research that parallel LTM-DM are the
sensory-perceptual episodic memory proposed by Conway
(2001). In the case of Conway’s research, LTMC takes the
place of autobiographical memory, ”a type of memory that
persists over weeks, months, years, decades, and lifetimes,”
and ”retains knowledge at different levels of abstraction.” Ac-
cessing the memories in LTMC follows Conway’s description
of access to autobiographical memory. Conway describes
these memories as ”patterns of activation over the indices of
autobiographical memory knowledge structures.” His expla-
nations of autobiographical memory describe a system not
unlike LTMC’s semantic net, in which specific cues stimulate
specific memories and spread activation throughout memory
in order to retrieve larger collections of memories. DM is
Conway’s episodic memory. These structures ”keep track of
progress on active goals as plans are executed.” Importantly,
Conway (2001) describes episodic memory as having its own
retrieval process, which is consistent with the strict separation
of LTMC and DM kept by LTM-DM.

Thus, LTM-DM allows modeling these and similar work-
ing memory conceptions; an advantage which will be ex-
plored in more detail below.

LTM-Buffer
The second module for interfacing LTMC with ACT-R, LTM-
Buffer, was implemented as a complete alternative to using
DM. As such, LTM-Buffer is a complete stand-alone ACT-
R module and has its own buffer, pretrieval, which needs to
be used to access LTMC . Instead of passing chunks to DM
after traversing the knowledge in LTMC , LTM-Buffer han-
dles selecting which chunk to place in its buffer. This entails
that the activation of the chunk put into the pretrieval-buffer
stems directly from the processes working in LTMC and is
not influenced by subsymbolic computations in ACT-R.

Where LTM-DM suggests separate stores for long-term
and working memory, LTM-Buffer’s approach follows the
view that working memory is not a separate memory store,
but rather that it is highly-activated portions of LTM (see, e.g.,
Cowan, 1999). Thus, the memory structure realized in ACT-
R when using LTM-Buffer is the same as in ACT-R proper.
The only differences is that LTM is implemented by LTMC

instead of DM.

Evaluation
To evaluate the suitability of LTMC in the scope of gener-
ally accepted assumptions about the functioning of the hu-
man information processing apparatus, we modeled several

memory phenomena with ACT-R using only DM, ACT-R us-
ing LTM-DM, and ACT-R using LTM-Buffer. In doing so we
had three aims: The first was to check the cognitive plausibil-
ity of LTMC as part of a cognitive architecture. Second, we
compared the performance of LTM-DM and LTM-Buffer to
that of ACT-R using only DM to investigate possible advan-
tages or disadvantages of using LTMC in ACT-R. In partic-
ular, comparing the modeling abilities of ACT-R employing
only DM and ACT-R using LTM-Buffer allowed attributing
any differences between model performances directly to the
respective LTM component employed. Put differently, any
differences in model performance cannot be due to other parts
of the architecture, since ACT-R using DM and ACT-R using
LTM-Buffer differed only in the LTM component utilized. Fi-
nally, since the theoretical conceptions of memory underlying
the two interfaces are quite different, it seemed interesting to
compare LTM-DM and LTM-Buffer to determine which of
the two might be more suitable as a model of human LTM.

In order to achieve these aims we considered four mem-
ory phenomena which seemed to be most informative regard-
ing the above evaluation questions. The first two, namely
the fan effect (Anderson, 1974) and a phenomenon related to
the hierarchical structure of the knowledge representation in
LTM (Sharifian & Samani, 1997), illustrate properties of hu-
man LTM for which established ACT-R models already exist.
If our interfaces can perform at least as good as the ACT-R
models this constitutes a proof of their cognitive plausibil-
ity, since the ACT-R models we used are generally thought to
realize fine models of the two phenomena. The second two
phenomena we considered were the Moses Illusion (Erick-
son & Mattson, 1981) and a case study reported in Badde-
ley (2000). These effects were chosen because they were as-
sumed to illustrate more clearly possible difference between
the two interfaces and ACT-R proper as well as between the
two interfaces as such.

Model Setup

As just mentioned, established models were used for simula-
tion of ACT-R proper whenever they were available. More
precisely, for the fan effect and the hierarchical memory ef-
fect we employed the models presented in tutorial 5 and tuto-
rial 1, respectively, of the ACT-R 6 distribution (see http://act-
r.psy.cmu.edu/actr6/). For the Moses Illusion we wrote a
new model which basically retrieves chunks using the partial
matching mechanism of ACT-R, where the similarity values
were set by hand to obtain optimal results. Importantly, for all
of the standard ACT-R models DM consists of precisely those
chunks needed for the task. In the models for ACT-R ex-
tended by LTMC , on the contrary, DM was not equipped with
any prior chunks. Any knowledge used during the task had
to be retrieved from LTMC . The information for the fan ef-
fect was represented by, for example, the nodes “hippie” and
“park” which are associated with a node “in”. For the hier-
archy experiment the relevant knowledge was represented by
pairs of subsumptions relations connecting three nodes as, for
instance, “rose” isa “flower” isa “plant”. For the Moses
Illusion the represented knowledge consisted of facts about
the involved objects as, e.g., “Moses” isa “Person”, “Noah”
isa “Person”, “Noah” and “Ark” are both linked to “sailed”,
etc. In particular, LTMC also contained the knowledge neces-



Table 1: Results for modeling Anderson’s fan experiment
(“Fan”), the Sharifian experiment (“Hierarchy”) and the
Moses Illusion experiment of Erickson and Mattson (1981).
The values shown are correlations of model and experimental
data.

Module Fan Hierarchy Illusion
DM 0.864 0.948 0.988
LTM-Buffer 0.869 0.999 0.992
LTM-DM 0.817 0.999 0.980

sary for the fan effect and the hierarchy effect when modeling
the Moses Illusion and vice versa, that is, was not taylored
specifically for each modeled phenomenon.

All models together with the newly developed interfaces
are available online3. The memory phenomena together with
modeling results are reported in more detail below.

In the Realm of ACT-R . . .
The Fan Experiment. The fan experiment of Anderson
(1974) explored the hypothesis that the more knowledge a
person has regarding a target concept, the longer it will
take them to retrieve specific corresponding knowledge from
LTM. In the experiment, participants had to memorize sev-
eral facts such as “a hippie is in the park” and “a captain is
in the cave.” Knowing more facts about a specific person or
place (e.g., the hippie is in the park and cave, versus the cap-
tain who is only in the cave) increased the time it took to
recognize whether or not a target sentence was a known fact.
Participants were also given foil sentences, in which a known
person and place were paired up in a way the participant had
not seen previously (e.g., the hippie is in the church; partic-
ipants knew facts about the hippie and the church, but were
never told ”the hippie is in the church”), and were expected to
respond that they did not recognize the target sentence. In ac-
cord with the hypothesis the main dependent measure in the
experiment was the time the participants needed to verify the
target sentences and, thus, in modeling this experiment we
also concentrated on reaction times.

The column “Fan” in Table 1 shows how the response times
of the ACT-R models using the different modules correlate
to participants’ response times in the actual experiment. As
can be seen from the table, the data from the model runs
employing LTM-Buffer and the model run employing LTM-
DM strongly correlate to the experimental results, and are
very close to the results obtained when using ACT-R’s DM
to model the effect.

The Hierarchical Spreading Experiment. The second
memory effect we considered is related to the hierarchical or-
ganization of knowledge in LTM, illustrated by, for example,
the results of Sharifian and Samani (1997). In their experi-
ment the authors presented subjects with pairs of words, such
as “flower” and “plant”, asking them to identify whether or
not the pairs were related. These pairs of words were based
off of triads of words where the first and second words were
directly related and the second and third words were directly

3http://www.sfbtr8.uni-bremen.de/project/r1/models/

related, thus making the first and third words indirectly re-
lated via the second word. For example, one such triad used
in the experiment of Sharifian and Samani (1997) was plant-
flower-rose. Sharifian and colleagues measured the time it
took for subjects to correctly identify whether or not two
words presented in a pair were related. Since, again, response
times are the major focus of the original experiment, we used
those as the dependent measure to evaluate our models.

As can be seen from column “Hierarchy” in Table 1, all
three ACT-R modules show a very high correlation to the ex-
perimental results found by Sharifian and Samani (1997). In
particular, the two newly defined interfaces are again as good
as the available ACT-R model.

. . . and Beyond
Moses Illusion. If people are asked “How many animals of
each kind did Moses take on the ark?” most of them will an-
swer “two”, although the correct answer would be “none”:
it was not Moses who sailed the ark, but Noah. This effect
is called Moses Illusion and appears in a number of situ-
ations similar to the Moses Question. As Park and Reder
(2004) show, this effect is most likely the result of partial
matching processes working on LTM. Erickson and Matt-
son (1981) were the first to investigate this effect. They pre-
sented their participants with the Moses question and three
additional questions of the same kind. The dependent mea-
sure was the relative frequency with which the participants
answered the questions as if they were correct.

In ACT-R proper the only way of modeling partial match-
ing and, thus, the Moses Illusion is by (a) enabling a spe-
cial feature and (b) specifying similarity values between
those concepts which are supposed to partially match (e.g.,
“Moses” and “Noah” in the above example)4. Consequently,
our model for ACT-R proper realizes the Moses Illusion by
using partial matching.

On the contrary, when using LTM-Buffer or LTM-DM, it is
not necessary to specify any special retrieval mode or hand-
picked similarity values. By relying on LTMC the two in-
terfaces can account for partial matching in human LTM em-
ploying the same memory structure and processes as in mod-
eling the other memory effects (see Schultheis et al., 2006).

Column three of Table 1 shows the modeling results for the
three modules. Like with the above memory phenomena the
model accuracies are quite similar across the different mod-
ules. However, their more parsimonious approach to model-
ing this effect makes LTM-Buffer and LTM-DM superior to
the model using only DM.

Episodic Buffer and Related Conceptions. As already ex-
plained when describing LTM-DM, this interface establishes
a new overall memory conception in the ACT-R architec-
ture. In particular, by creating such a memory LTM-DM
allows modeling memory phenomena completely out of the

4The ACT-R model presented in Budiu and Anderson (2004) re-
alizes the Moses Illusion without using the partial matching mech-
anism of ACT-R. However, this is achieved by (a) using retrieval
processes not available in the standard ACT-R distribution and (b)
also relying on similarity values defined between different concepts.
Thus, the Moses Illusion effect is essentially reduced to similarity
values without explaining from which structures or processes these
similarities might arise.



scope of ACT-R using only DM. Consider, for example, the
memory performance of patient PV as reported by Badde-
ley (2000): PV showed normal LTM performance while at
the same time having a reduced word (one item) and sen-
tence span (5 items). Using standard ACT-R it is not possi-
ble to model such a pattern of memory performances since
it is not possible to change short-term memory capabilities
without affecting LTM capabilities, since both are instanti-
ated by DM. Employing LTM-DM, on the contrary, easily
allows modeling also such memory performance patterns as
PV exhibits: LTMC would serve as the (intact) LTM and DM
could be modified, such that it implements the reduced short-
term capabilities of PV.

Evaluation Summary
By considering the discussions and model results from the
above sections it is possible to answer the three evaluation
questions posed at the beginning. First, the suitability of
LTMC as a model of human LTM has been corroborated.
LTMC yields accurate modeling results of human LTM ef-
fects not only as a stand-alone component, but also when inte-
grated into a general cognitive architecture: The correlations
of model data and empirical data are very high for each mod-
eled phenomenon (the lowest correlation was 0.817), and, in
particular, the two LTMC modules are at least as good as the
standard ACT-R model in every of the modeled tasks. Sec-
ond, LTM-Buffer and LTM-DM are superior to ACT-R using
only DM, because they allow modeling memory phenomena
with the same accuracy, but more parsimoniously than stan-
dard ACT-R. LTM-DM furthermore enables modeling mem-
ory conceptions and related phenomena previously not avail-
able in ACT-R. Third, LTM-DM seems to be slightly supe-
rior to LTM-Buffer. Besides modeling several memory phe-
nomena as accurately as LTM-Buffer it additionally allows to
model memory phenomena out of the scope of LTM-Buffer.

Conclusions
This paper presents two new interfaces for the ACT-R archi-
tecture, called LTM-DM and LTM-Buffer which integrate the
LTM component LTMC developed by Schultheis et al. (2006)
into ACT-R. One major aim of integrating LTMC into ACT-R
was to more thoroughly validate its advantages by employ-
ing LTMC as one part of a general cognitive architecture.
Through modeling several memory phenomena we evaluated
LTMC as part of ACT-R and compared ACT-R using LTM-
DM and LTM-Buffer with ACT-R using only DM. The results
of this evaluation clearly show that LTM-Buffer and LTM-
DM are at least as good as DM and in some cases consid-
erably better in modeling human LTM. Particularly powerful
seems the LTM-DM module, since it opens up a completely
new field of memory phenomena to model with ACT-R.

Thus, our future work will concentrate on further exploring
the possibilities and the power of LTM-DM as an extension
to ACT-R. In addition, to complete the integration of LTMC

we will devise mechanisms for storing knowledge in LTMC

based on the mappings described above. If a mapping exists
for every chunk type used in ACT-R, correspondence between
any chunk and the knowledge stored in LTMC can be estab-
lished. Roughly speaking this allows transforming any chunk
to a node and integrating it into the ontology given by LTMC .
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