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Introduction 
Good team members seem to have the ability to simulate 
what others on the team will do in different situations.  
Team researchers have long studied what makes an effective 
team.  Their methodology has been to examine how high 
and low performing teams accomplish team-related tasks. 
They have suggested that a good team-member has three 
knowledge components (Cannon-Bowers, Salas, & 
Converse, 1993):   
    (1) Knowledge of own capabilities [meta-knowledge], 
    (2) Knowledge of the task, and  
    (3) Knowledge about the capabilities of their teammates. 
 
Most researchers have suggested that these three 
components are deeply inter-related; without any one of 
these, a person is not a good team member.  However, 
without a computational theory, these claims can be difficult 
to examine empirically.  

The focus of this paper is the third component, the 
cognitive modeling done of a teammate’s cognitive 
processes. This shared understanding of teammates is 
frequently called a shared mental model (Mathieu, Heffner, 
Goodwin, Salas, & Cannon-Bowers, 2000).  We start with 
the premise that humans use themselves as an initial model 
of their teammate, and then refine it as the team (and 
individuals within the team) gains experience. Our primary 
research goal is to create a computational theory of 
teamwork by modeling the individuals within the team so 
that we can eventually build plausible robots for teamwork 
and human-robot interaction.   

Method 
To explore teamwork at the individual level, we 
implemented a simple cognitive model of shared mental 
models in a desk-top simulation of a robotic member of a 
team.  The scenario used to test the value of the robot 
cognitively modeling a teammate was a two-agent security 
guard force made up of one human and one robotic agent, 
patrolling a warehouse with two separated guard stations.  
They begin in positions approximately across the warehouse 
from each other and move around the perimeter.  When an 
alarm sounds, they must “man” the two security stations as 
soon as possible.  The performance measure was simply the 
time (in steps) it takes for the team to fill both stations after 
the alarm sounds.   

We used ACT-R (Anderson et al., 2004; Anderson & 
Lebiere, 1998) to model the robot’s reasoning, including its 
modeling of the human.  ACT family of theories ("ACT-R 
Research Group") has a long history of integrating and 
organizing psychological data. It has also been broadly 
tested in psychological and computational terms.  

This project builds on our embodied robotic systems 
(Kennedy et al., in press; Trafton, Schultz, Bugajska, & 
Mintz, 2005; Trafton et al., 2006).  To make the project 
tractable, we modeled both the human and robot as having 
the same movement capabilities such that both would take 
the same number of steps to cover the same distance.  This 
assumption will clearly need to be revisited when we add 
the models to physical robots.  The necessary spatial 
representations and reasoning capabilities were already 
included in the system: the cognitive model had the use of a 
10-by-10, 2-D cognitive map from which the security 
stations closest to each agent could be determined.  
However, to simulate human’s general weakness in 
accurately estimating distances outside the grasping range 
(Previc, 1998), the system could not always determine 
which station was closer and the model had to deal with that 
ambiguity.  Finally, the robot’s cognitive model of the 
human presumed the human would reason and behave the 
same as the robot would.  

For this project, we have initially modeled two simple 
cases.  The first case represents neither agent having any 
model of the other agent and simply doing what is best for 
each agent independently, i.e., going to their nearest station.  
If both agents arrive at the same station, one must go to the 
other station and this is inefficient in both time and safety.  
The second case represents a leader-follower shared mental 
model where the leader, typically the human, goes to her 
closest station, and the follower, typically the robot, must go 
to the other station.  This avoids the conflict of both going 
to the same station. 

Simulating others in ACT-R 
The robot could “see” the environment and used rule-based 
behavior to patrol the perimeter of the warehouse prior to an 
alarm and, with no shared mental model, what to do after 
the alarm.  To decide what to do when the alarm sounded 
when using a shared mental model, the robot needed to 
model the behavior of the human.  The robot modeled the 
human by explicitly taking information about how the robot 
would deal with the alarm and spawning that knowledge off 
as a simulation of the human teammate’s decision making.  
The simulation decided what action the human would take 
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in the current situation.  Hence, the robot simulated what the 
human would do by explicitly modeling what it would do 
itself in a similar situation. 

To run a spawned ACT-R model, a new model needs to 
be initialized with its own declarative memory, productions, 
and initial goal.  This capability is part of the current version 
of ACT-R (R1.2-370]). To model how the human would 
react to the current situation, the robot’s cognitive model 
spawned a cognitive model of the human using declarative 
memory of the current situation appropriately modified to 
place the robot in the human’s situation, and provided the 
productions the robot itself used to decide what to do for the 
first, i.e., self-centered case.  The simulation’s initial goal 
was to determine which station the robot would go to if it 
was in the human’s situation.   

With the results of the simulation of what the human 
would do, the robot then decided to go to the other station, 
in accordance with the shared mental model that the human 
will lead and the robot follow.  Figure 1 shows traces of a 
run in which both agents arrive at the same station and one 
then goes to the other station and a run in which, through 
having a shared mental model, they avoid the collision.  The 
human began in the top line at position “a” and the robot 
began at “a” in the bottom.  The sequential letters mark their  
steps counterclockwise prior to the alarm.  The alarm 
sounded at “p” and the run ends when both guard stations 
“1” and “2” are filled. 

 

     
 

Figure 1.  Traces of agents colliding (left) and avoiding 
collision (right) based on a shared mental model. 

Results and Discussion 
We found that for even this simple scenario, the useful, 
shared mental model significantly improved the team’s 
performance:  with 25 simulated runs each, the system that 
used a shared mental model and cognitive modeling of its 
teammate took 3.28 fewer steps than the system that did not, 
t(27.7) = 8.1492, p < .001 with the Welch correction for 
unequal variances. 

By basing the robot’s cognitive model of the human on 
what it would do in the human’s place, the task required 
creating only the declarative memory to simulate the robot 
taking the human’s place and one additional production to 
terminate the simulation. 

This work demonstrates that the impact of one agent’s 
cognitive modeling of another agent can be effective even in 

a simple scenario.  We expect that there are many aspects of 
teamwork and cognitive modeling of shared mental models 
that can be explored using similar techniques.   As an 
example, the flexibility of specifying the declarative 
memory and productions that will be used by the spawned 
cognitive model, allows cognitive models to consider the 
effects of hypothetical declarative knowledge and 
productions.  
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