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Abstract 

This paper presents a production system within the ACT-R 
theory of cognition for the serial recall of object-locations in a 
graphical layout structure. Concepts of noise and the encoding 
of object-locations in local allocentric reference systems have 
been integrated into the visual module for this purpose. The 
intrinsic reference axis of the local reference systems 
automatically result from the previously attended objects. The 
production system describes the process of encoding and 
rehearsal of object-locations at the stage of the presentation as 
well at the answer-stage. The model encodes environmental 
features of the object-locations by object-to-object spatial 
relations. The production system reproduces the main effects 
in an experiment which was carried out with 30 subjects. 

Introduction 
Ehret (2002) and Anderson et al. (2004) describe production 
systems that reproduce learning curves for the location of 
information on a display. In these examples the underlying 
mechanism for learning locations is the same as for the 
learning of facts. After some practice the location of specific 
objects like menu buttons can be retrieved without a time 
consuming random visual search and encoding of labels. In 
ACT-R the location of a visual object is represented in 
absolute screen coordinates. Furthermore there is no noise 
integrated into the visual module. Therefore the location of 
an object is learned independent of its position on the screen 
and its position within an object-configuration. But there is 
evidence that the kind of how objects are displayed has 
implications on object-location memory. One experiment of 
Travanti & Lind (2001) investigated object location 
memory in hierarchical information structures across 
different instances of 2D and 3D perspective displays. The 
results of their tests show, that the 3D display improves 
performance in the spatial memory task they designed. But 
beside the perspective view also the structure of the object-
configuration was different in the 2D and the 3D display. 
Cockburn (2004) repeated the experiments where he 
displayed the object-configuration of the 3D display in 2D. 
He found, that if displayed in 2D the 3D object-
configuration improved performance on object-location 
memory. In both studies the memory task was to associate 
alphanumerical letters to the object-locations. Therefore 

Cockburn suspected that the vertical orientation of Travanti 
& Lind’s 2D display made the formation of effective letter 
mnemonics more difficult than the horizontal 3D layout, 
because words and word combinations normally run 
horizontally left to right. By analyzing these studies we 
came to the conclusion that one major factor had not been 
considered - the factor of the object-to-object spatial 
relations (the structure of the graphical layout respectively). 
Therefore we performed own experiments in which the 
structure of the object-configuration were varied. 
Furthermore, to avoid subjects to create letter mnemonics in 
our experiments the task was to memorize sequences of 
highlighted objects (Winkelholz et al. 2004). The object-
configurations investigated are shown in figure 4a. In each 
encoding retrieval trial, the subject was presented one 
structure. After an acoustical signal the computer started to 
highlight objects of one randomly created sequence. Only 
one object of the sequence was highlighted at once. The 
sequences were five (A structures) and six (B and C 
structures) items long. The end of a sequence was indicated 
by a second acoustical signal. Each object of a sequence was 
highlighted for 2 seconds. Subjects were instructed to repeat 
the highlighted objects in correct order, by clicking them 
with the mouse. As a measure of performance the number of 
correct repeated sequences was chosen. The displayed 
dependencies of the overall performance on the object-
configurations (figure 4b) show two things. First, that a 
horizontal orientation of a structure improves the 
performance in the memorizing task compared to a vertical 
orientation (A1 compared to A3). Second, performance 
increases the more distinct object-to-object relations are 
within a structure. E.g. in the matrix structures B1 and B2 the 
object-to-object relations covers the whole plane, whereas in 
the linear structure B3 object-to-object relations are only in 
one dimension. Since there is no difference in the 
performance between structure B1 and B2 this effect can not 
result from spatial vicinity. As well suggests the effect in 
the performance between C1 and C2 that noisy object-to-
object relations are needed to model this effect. While 
object-locations are represented in absolute screen-
coordinates this effect can not be modeled on the level of 
production rules within ACT-R and some extensions to the 
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visual module are needed. One promising approach in this 
direction was suggested by Johnson et al. (2003) who 
extended ACT-R to automatically encode object-to-object 
relations between the previously and currently attended 
objects. Based on this approach we extended the visual 
module not only to encode the spatial relation of previously 
and currently attended object, but also to use the two 
previously attended objects to form a local reference axis 
according to which the location of the current attended 
object is encoded. Furthermore, we integrated a noise model 
into the visual module, extended the mechanism of visual 
indexing and integrated some kind of competitive chunking 
mechanism in the equation for the activation.  

Visual Module Extensions/Restrictions 

Reference systems 
The location of an object can only be identified within a 
frame of reference. In experimental psychology it is well 
accepted to divide the frames of references into two 
categories: An egocentric reference system, which specifies 
the location of an object with respect to the observer and an 
environmental (allocentric) reference system, which 
specifies the location of an object with respect to elements 
and features of the environment. As mentioned above the 
visual module of ACT-R encodes object-locations in the 
reference-system of the screen, which is equivalent creating 
all spatial object relations to one edge of the screen. 
However, according to Mou & McNamara (2002) humans 
also use reference systems concerning the intrinsic axis of 
the object configuration. E.g. two salient objects create an 
axis that is used to specify the location of other objects. The 
most natural way to integrate this into the concept of 
attention of the visual module is to consider the last two 
attended objects as an axis of reference. This is an extension 
to the proposal of Johnson et al. (2003) considering only the 
previously attended object in creating object-to-object 
relations, which means that only the distance is represented 
in a pure environmental reference system and the angles in 
an egocentric reference system. However, creating object-
location memory chunks in this “semi-allocentric” reference 
system is less effort to the visual module because it only 
needs to keep track of two objects, whereas in the case of 
the pure allocentric reference system three objects are 
needed. Therefore in some situations the production system 
might be forced to use spatial memory chunks in the semi-
allocentric system. We considered in the visual module all 
three different reference systems, which are summarized in 
Figure 1.  
The introduction of object-relations based on three objects is 
important for three reasons: First, it fits well with the 
concept of intrinsic axis in the object configuration as 
reported by Mou & McNamara (2002). Second the concept 
of angles is essential to most cognitive operations in 
geometric tasks. Third, it is the simplest percept for spatial 
memory chunks that allows reconstructing object locations, 
also if the whole configuration is rotated.  
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Figure 1: Three different reference systems. The objects are 

attended in the order (p-2,p-1,p0) 
 

Noise 
The variances in recalled object-locations require the 
memory chunks to be noisy. To integrate noise into the 
memory chunks the first question is how object-locations in 
different reference systems are represented in memory. 
Huttenlocher et al. (1991) showed among other things, that 
the distribution of recalled locations supports the 
assumption that subjects imagine object-locations on a plane 
relative to a center in polar coordinates. We generalized this 
to use spherical coordinates in respect to an extension of the 
visual module in three dimensions. This assumption has also 
some interesting implications on the representation of 
locations on a screen. Spherical coordinates are a system of 
curvilinear coordinates that are natural for describing 
positions on a sphere or spheroid. Generally θ is defined to 
be the azimuthal angle in the xy-plane from the x-axis, φ to 
be the polar angle from the z-axis and r to be distance 
(radius) from a point to the origin. In the case of the 
allocentric reference system this means, that if the three 
points p-2, p-1, p0 were attended and p0 has to be represented 
in a local allocentric reference system, the point p-1 defines 
the origin, the polar axis is given by (p-1,p-2), and the local 
spherical y-axis points orthogonal into the screen. For the 
semi-allocentric reference system, again p-1 is the origin, but 
the polar axis is parallel to the vertical axis of the screen and 
the x-axis is parallel to its horizontal axis. In the case of the 
egocentric reference system the viewpoint of the subject is 
the origin. In the typical scenario of a user interacting with 
symbols on the screen the differences in the angles and 
distances between symbols represented in the egocentric 
system are very small compared to the differences if 
represented in an allocentric, or semi-allocentric reference 
system. Therefore, if the same magnitude of noise is 
assumed in all reference systems, memory chunks 
represented in the egocentric reference system would be 
extremely more inaccurate compared to object-locations 
represented in the other two reference systems and therefore 
can nearly be neglected. The next question is, if θ,φ, and r 
should be considered as single, independent memory 
chunks. Because it is impossible to imagine a distance 
without a direction and an angle without corresponding 
lines, it is reasonable to combine distance and angular as 
one percept in one memory chunk. Because of this 
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argument, also in the case of the actual allocentric reference 
system the egocentric orientation of the reference system 
should be stored into the memory chunk. This does not 
imply that the angular or the different dimensions of one 
chunk can not be separated later. In spatial reasoning often 
two angles have to be compared. But this can be handled as 
commands to the visual module. Then also timing issues can 
be considered for example for the mental rotation of an 
actual allocentric reference system. In principle the spatial 
information of the semi-allocentric reference system is now 
also present in the chunk of an actual allocentric reference 
system. This might suggest discarding memory chunks of 
the semi-allocentric reference system. But as mentioned 
above, creating object-location memory chunks in this semi-
allocentric reference system is less effort to the visual 
module and therefore in some situations needful. Finally a 
spatial location is represented by D(r,θ,φ, θ’,φ’,ers), where 
r,θ,φ are the spherical coordinates as described above, ers 
indicates in which reference system r,θ,φ  have to be 
interpreted, and φ’,θ’ are a additional attributes for the 
actual allocentric reference system and holds additionally 
the polar and azimuth angle in the semi-allocentric reference 
system. The values of the spherical coordinates in the 
memory chunk are interpreted as random numbers 
distributed according to a truncated logistic distribution 
f(x,x0,σx), with to each dimension corresponding standard 
deviations (σr(φ’,r),σθ,σφ). The scalar value in the slot of the 
memory chunk indicates the maximum x0 of the distribution. 
The noise in the r-dimension is biased by a factor according 
to if the distance to be estimated is vertically or horizontally 
oriented. Furthermore, the noise σr is relative to r. As the 
final noise in the r-dimension we use: 

2( , ) ( (1 ) cos ( ))
r rr r f fσ σ r rσ φ φ′ ′= + − σ    (1) 

Every time a location is to be encoded, it is decided if the 
perceived values for the location correspond to an already 
existing memory chunk. The posterior probability 
PDi=P(Di|Fx) that the location of a feature Fx belongs to a 
memory chunk Mi and the probability P0 that no appropriate 
memory chunk already exists, are given by  
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The parameter V-1 describes the weight of a noisy 
background and  
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On the other hand, if an object-location is requested based 
on a memory chunk D(r,θ,φ, θ’,φ’,ers), the values are set to 
random values according to (3). After the noise has been 
added to the location request, it is decided if the values are 
latched on possible features in the display. Therefore, the 
object-locations of all features Fi(ri, θi,φi,θ’i,φ’i) in question 
are calculated in the current local reference system 
corresponding to the reference system in the request. The 

probability PFi, that the location request is caught by feature 
Fi and the probability P0 that it is not, are given similarly to 
(2) by  
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These equations express the posterior probability 
PFi=P(Fi|x) that if a noisy location x from the memory is 
given the location results from the feature Fi. The likelihood 
probability functions P(x|Fi) are the truncated logistic 
distribution according to if the feature Fi would have been 
the stimulus and are similar to (3). The process of encoding 
and reconstruction of a location into a random number in 
memory is illustrated in figure 2. 
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Figure 2: Perception, representation and reconstruction of a 

location 
 

This noise model has two interesting properties. First, 
because the truncated logistic distribution is asymmetric, the 
expected report of an object-location is biased away from 
the reference axis. This is the same effect as reported at 
categorical boundaries. Second, for object-locations on a flat 
screen the values of θ,θ’ are discrete θ,θ’=(π/2,0,-π/2) and 
encode whether the object-location in question is on the left 
side, on the right side, or aligned, when facing into the 
direction of the reference axis. This is consistence with the 
assumption to interpret the reference axis as a categorical 
boundary, where θ encodes the category. 

Visual Indexing 
It is evident that subjects browsing a graphical layout 
structure encode environmental characteristics of object-
locations, e.g. if an object is located on the border of a 
matrix. To encode such environmental features the cognitive 
system needs to attend objects nearby. The crucial point is 
that after some objects in the environment have been 
attended, attention needs to return to the object in question. 
If this return would depend on noisy spatial memory 
chunks, the strategy to encode environmental features might 
be highly counterproductive. At this point the concept of 
visual indexing, or FINST - FINger INSTantiation, 
(Pylyshyn, 1989) is needed. According to this theory the 
cognitive system has “access to places in the visual field at 
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which some visual features are located, without assuming an 
explicit encoding of the location within some coordinate 
system, nor an encoding of the feature type”.  Experiments 
suggest that the number of FINSTs in the visual system is 
limited to the number 4 to 5. In the visual module of ACT-R 
the concept of FINST is used to decide if an object has 
already been attended. Whenever an object is attended, a 
FINST is created. Because the number of simultaneously 
existing FINST is limited, any time a new visual object is 
attended the oldest FINST is removed to create a new 
FINST for the currently attended object. To implement 
environmental scan patterns, FINST need to provide 
additionally to the information that an object has already 
been attended also information for accessing its location 
without, or at least minimal noise. In the visual module 
interface described in the next section this has been 
accomplished by determining a visual index through the 
sequential position in the chain of attended locations. This 
index can be used in visual module commands to return (or 
avoid to return) attention to a particular location in the chain 
of attended locations.  

The visual module interface 
Figure 3 shows the visual module interface, with the slots 
that have been added, and the slots whose meaning have 
been extended.  
 

Perception: 
 
=visual-location> 
  vsl-e     symbol ;egocentric 
  vsl-a     symbol ;allocentric 
  vsl-sa   symbol ;semi-allocentric  
  kind      [text,..,empty] 
  index1  [nil, t]      
  index2  [nil, t]     
  index3  [nil, t] 
  index4  [nil, t] 
  index5  [nil, t] 

Action: 
 
+visual-location> 
  vsl-r symbol 
  vsl-theta symbol 
  vsl-phi symbol 
  vsl-mtheta symbol 
  vsl-mphi symbol 
  ignore-sa [t nil] 
  vsl-ix [back1,..,back5] 
  attended [not1,..,not5,noti1,..noti5] 
 

 
Figure 3: Modified visual module interface. 

 
For each reference system one slot (vsl-e, vsl-a, vsl-sa) has 
been added containing a symbolic value of a memory chunk 
encoding the location in the respective reference system 
(egocentric, allocentric, semi-allocentric). These symbolic 
values can be used to request new locations in the visual 
field. For this purpose the command-slots vsl-r, vsl-phi, vsl-
mphi, vsl-theta, and vsl-mtheta have been added. For each 
dimension (r,θ,φ) there is a slot extracting this dimension 
from the spatial memory chunk given to this slot. Thus, the 
dimensions of different spatial memory chunks can be 
combined to one request. The ignore-sa slot ignores the 
semi-allocentric components of a pure allocentric memory 
chunk so that it can be applied to a rotated configuration. 
The angular dimensions can be inverted through the slots 
vsl-mphi and vsl-mtheta ( 0? :θ θ θ π θ→ > − +π , 

arccos(cos( ))φ φ π→ + ). This approach enables the visual 
module to compare the length of two distances or to scan an 
imagery path backwards. Only spatial memory chunks 

within the same reference system can be combined. Possible 
sub-symbolic parameters for timing and if any combination 
should be disabled or new operations have to be added, need 
to be investigated in future work. The request for a new 
location through these slots may prompt the visual module 
to attend an empty location. This case is indicated by the 
symbol EMPTY in the kind slot. First, we tried to 
implement the environmental scan patterns only by using 
these slots. But it turned out that as long as these requests 
are noisy operations, it was too risky to loose the actual 
object-location in question during an environmental scan. 
The possible gain of information for an object location was 
culled by this noise. Therefore we introduced the slots 
index1,..,index5, and vsl-ix to have precise access to indexed 
locations. The slots indexN indicate whether the currently 
attended location has already been attended at position N 
(counted backwards) in the chain of attended locations. By 
using the descriptive identifiers backN on the slot vsl-ix a 
particular location in the chain of already attended locations 
can be re-attended. The possible descriptive identifiers on 
the attended slot have been extended to notN and notiN. The 
notN identifier prevents the visual-module to attend a 
location that has already been attended within the last N 
attended locations. The notiN identifier prevents the visual 
module to attend a location that has been attended exact at 
position N in the chain of attended locations. Only with this 
access to indexed locations it is possible to “weave” a 
reliable network of object-to-object spatial relations.   

Competitive Chunking 
A subject learning object-locations in a graphical structure 
becomes familiar with the structure after some time. This 
means he recognizes environmental features faster and is 
therefore able to link environmental features more efficient 
to object-locations. The concept of familiarity within a 
symbolic architecture of cognition has already been 
discussed by Schreiber-Evert & Anderson (1990). They 
developed the theory of competitive chunking (CC), which 
assumes that memory chunks are supported by subchunks.  
For example subjects are able to learn sequences of letters 
more efficient, if the sequence contains well known words 
or syllables. This is because the memory chunk for the 
sequence can be compressed by replacing elements of the 
sequence by references to subchunks having a high 
activation and can therefore be retrieved reliably and fast 
from memory. The concept of CC as described by Schreiber 
& Anderson is not part of the current version of ACT-R. 
However, we suspect that such a concept is needed, to 
describe the effect of becoming familiar with a 
configuration of objects. One way to manage subchunks 
within ACT-R is to couple them tightly to their parent 
chunks by their symbolic values in specific slots. This 
method does not result in an effect considered as CC, 
because it doesn’t allow accessing associated subchunks by 
free association. In many situations only one of possible 
several subchunks associated with the parent chunk needs to 
be retrieved, but by this approach the slots need to be 
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retrieved consecutively. Therefore, a more promising 
approach is to couple chunks only by symbolic tags they 
share. This way e.g. an arbitrary number of environmental 
features can be associated with one object-location, and can 
be retrieved competitively. The problem is that subchunks 
that have been learned in context of different parent chunks 
carry the same information but differ in the tag shared with 
its parent chunks. In the sense of CC they should be 
supported because of their common patterns. To study this 
effect in the learning of environmental features we extended 
ACT-R’s activation equation for memory chunks by the 
following term: 

1 1

ln(1 )s s d kn n c BN
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The index k runs through the chunks of the same kind, the 
index m and n through the slots of the chunk type. The 
parameter Kmnik compares the similarity of the slot values 
and can be expressed by the similarity parameters of the 
partial matching term: 
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The partial matching parameter  we interpret as the 
log probability ln(P(vmi=vmk)) that the value in slot m of 
chunk Di results from the same source as the value of slot m 
of chunk Dk. This is in accordance with the default choice of 
Mij=0 if the slot values are equal.. Hence Kmnik is the 
probability that both values are equal. To limit the 
contributions, Kmnik is cut by a threshold cτ. So roughly 
speaking the sum of the Kmnik over the slot pairs is a measure 
of how many equal slot values chunk i and k share. If only 
Kmnik is used as a factor for the competitive chunking, also 
slots contribute, which values are equal over all chunks, 
which means that they do not carry any information. 
Therefore we introduced the factor Imni, that estimates how 
much normalized information the knowledge of the value 
Vm=vmi in slot m of memory chunk Di contains about the 
values Vn in slot n of the other chunks. 
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Imni is zero if vmi contains no information about Vn and 1 if 
Vm is fully determined by the knowledge of vmi. If the slots 
only contained clearly distinguishable symbolic values, the 
entropies in (7) could be calculated by the frequencies. But 
in the case of spatial memory chunks the similarities have to 
be taken into account.   
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In the limit of clearly distinguishable slot values the 
equations (8) and (9) are identical to a formula estimating 
the probabilities of the entropies for the information by the 
frequencies of the slot values. Further, the contribution of 
each chunk is weighted by a factor according to its basis 
activation Bk with a lower bound to zero for and 
approximating Bk for large activations. 
Due to the additional term (5) in the activation equation 
virtual subchunks emerge through the clustering of attribute 
values, which support their container chunks. 

Simulation 
We used the extended visual module to model human 
performance in a task for the serial recall of object locations 
in graphical layout structures briefly reviewed in the 
introduction.  

Production rules 
The production system we developed describes the 
encoding and retrieval stage of the memorizing task. During 
the encoding of the sequentially presented object-locations 
the previously highlighted objects up to the current location 
are rehearsed. During the rehearsal, environmental features 
of the object locations are encoded or it is checked if one to 
the object-location retrieved environmental feature matches 
the environment of the current object. If the environment 
does not match, the reference system is restored through the 
visual indexes, and a new guess is made excluding the 
denied object-location. The environmental features are 
encoded in competing chunks with a symbolic tag to the 
corresponding object-location and spatial relations to 
objects in its neighborhood. To check an environmental 
feature is time consuming, because it has to be retrieved 
from memory. Therefore, the production rules for checking 
or encoding the environment compete. The answer stage is 
equal to the rehearsal stage, except that environmental 
features are not encoded anymore and are only checked.  
Overall the production system contains 142 rules. This 
unexpected high number of rules results from the time 
pressure set on the task. At any possible stage the model 
needs to check if a new card is highlighted, which leads to a 
lot of exceptions needed to be handled.  
Most ACT-R parameters were left at their defaults, and 
subsymbolic computation was enabled. Further, retrieval 
threshold (:rt 0.0), latency factor (:lf 0.35) and maximum 
difference (:md -100). The variance σ(θ,φ) of the noise for the 
angular dimension was set to 0.06 radians and to 0.08 for 
the r-dimension. This is smaller than the standard deviation 
reported by Huttenlocher et al. (1991), but in their 
experiments no reference point was displayed, hence noise 
might be larger because of an uncertain reference location. 
The skewing factor fr in eq. (1) of the noise in the r-
dimension was chosen to be 0.8. The parameter for the 
background noise was set to V=2.e3. The competitive 
chunking parameters were set to cc=0.7, cd=1.0 and cτ=0.8. 
For all simulations and graphical structures the same 
parameters and production rules were used.  
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Figure 4: a) graphical layout structures used in the experiments. b) overall performance, c) learning curves 

Results  
The results are shown in figure 4. The output of the 
simulation model adequately fits the data (R2=0.83). 
However, the simulation exhibits no learning curve. The 
competitive chunking mechanism worked as intended. The 
traces of the model reveal that in the first trial only the 
environmental feature of the first object-location gets 
enough activation to be retrieved, at the last trial mostly the 
environmental features of the first four object-locations are 
retrieved. But to get some kind of saturation from existing 
chunks in the competitive chunking equation, we let the 
model first learn sequences in random object-configuration. 
After this saturation the other structures seems not to be 
distinct enough to change the effects in the competitive 
chunking equations. The learning curves in the experimental 
data are not significant, so they should not be over-
interpreted. The model underestimates the performance of 
the subjects in the symmetrical tree structure A2. This may 
indicate that the visual system takes advantage of 
symmetries in an object-configuration that are not captured 
by the model yet. This could be done by more sophisticated 
scan patterns or the saturation in the competitive chunking 
should have been done by training the model on more 
regular structures.  

Conclusions and Future Work 
This paper described extensions to the visual-module of the 
ACT-R/PM theory that allows developing very detailed 
models for the visual working memory. The concepts were 
derived from well known effects in experimental 
psychology. In conclusion the modeling gave us a deep 
insight into the mechanisms and bottlenecks of encoding 
object-locations. One challenge in modeling the memorizing 
task was the limited number of FINSTs. The number of 
FINST limits the complexity of environmental features that 
can be encoded. This is interesting with respect to visual 
working memory in three dimensions. In three dimensions 
encoding of an object-location in a real allocentric local 
reference system needs at least three object locations to 
define a reference plane. This reduces the number of free 
FINST in an encoding task. This might explain why spatial 
reasoning in three dimensions is for most people more 
difficult than spatial reasoning in two dimensions. In future 

work we will extend the concepts described in this paper to 
three dimensions. Furthermore, we currently investigate 
how the occurrence of noisy scalar values in attributes of 
memory chunks should be considered in the equation for 
learning of association strength and base level learning. 
Furthermore, spatial reasoning tasks might be modeled in 
future work.  
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