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Abstract. This paper presents a study on the integration of spatial cog-
nition into a symbolic theory. The concepts of encoding object-locations
in local allocentric reference systems and noisy representations of loca-
tions have been integrated into the ACT-R architecture of cognition. The
intrinsic reference axis of the local reference systems automatically result
from the sequence of attended locations. The first part of the paper de-
scribes experiments we performed to test hypotheses on the usage of local
allocentric reference systems in the context of object-location memory in
graphical layout structures. The second part describes in more detail the
theory and its integration into ACT-R. Based on the theory a model
has been developed for the task in the experiments. The parameters for
the noise in the representation of locations and the parameters for the
recall of symbolic memory chunks were set to values in the magnitude
quoted in literature. The model satisfyingly reproduces the data from
user studies with 30 subjects.

1 Introduction

Symbolic theories of cognition are appealing for studies in the field of human-
computer interaction. Symbolic theories allow the expression of the cognition
process in relation to the task and the visual elements of the interface. One main
issue for cognitive modeling in this field is the integration of visual information.
Ehret [5] and Anderson et al. [2] describe symbolic models that reproduce learn-
ing curves for the location of information on a display. In these examples the
underlying mechanism for the learning of locations is the same as for the learn-
ing of facts. After some practice the location of specific objects, such as menu
buttons, can be retrieved without a time consuming random visual search and
encoding of labels. In both studies the locations of visual objects are represented
in absolute screen coordinates, and no noise in the representations of the scalar
values has been assumed. Accordingly, the success of a retrieval only depends
on the number of repetitions of the location of an item. However, the location
of an object can only be identified within a frame of reference. In experimental
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psychology it is well accepted to divide the frames of references into the following
two categories: an egocentric reference system, which specifies the location of an
object with respect to the observer, and an environmental (allocentric) refer-
ence system, which specifies the location of an object with respect to elements
and features of the environment. A good review of the experimental evidence on
the usage of these different reference systems in human spatial memory is given
by McNamara [9]. This aspect of human spatial memory implicates that the
structure of a graphical layout might affect the performance of object-location
memory. Object-location memory in the context of graphical layout-structures
has already been investigated in the field of information visualization by Ta-
vanti & Lind [13] and Cockburn [4]. These studies showed that different kinds
of displays influence performance in object-location retrieval from memory. In
both studies the memory task was to associate alphanumerical letters to object-
locations. Cockburn suspected that a horizontal oriented layout facilitates the
formation of effective letter mnemonics, whereas Tavanti & Lind speculated that
a more ’natural’ appearance of a visualization enhances object-location memory.
Both studies did not consider spatial relations of objects to each other within
the structure as a factor. Therefore, we performed our own experiments in which
the structure of the object-configurations was varied. In the first part this paper
reports the design and results of these experiments. A detailed analysis of the
user traces within this experiment suggests that users choose the last two at-
tended locations as a reference axis to which they encode the currently attended
location. The second part of the paper describes how we integrated this fact in
combination with the concept of noisy location dimensions into the visual mod-
ule of the symbolic ACT-R [2] architecture of cognition. Based on this extended
visual module a symbolic model for the memorizing-task has been formulated.
The parameters for noise in the location representation and activation decay of
memory chunks have been set to fit the data and are compared to values quoted
in literature.

2 Experiments

The task of our experiments was to memorize a randomly created sequence of
highlighted objects from different structures. The number of correct repeated
sequences is used as a measure of performance. This kind of memory task al-
lows an effective analysis of the errors made by subjects. Two experiments were
performed. The first experiment investigated the factor horizontal vs. vertical
oriented layout structure and the factor of the existence vs. non-existence of
symmetric features in the layout structure. The second experiment focused on
the investigation of noise in the encoding of spatial object-to-object relations.
In the following the procedure of the experiment is only sketched. More details
can be found in [18]. Thirty volunteer subjects (only male, average age 35) were
recruited from the staff of our institute to perform both experiments. All sub-
jects had normal or corrected-to-normal vision. Three sets of different structures
were created. Each structure consisted of red spheres of equal size. The layout
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structures were presented against a black background on a 21” VGA monitor
with a resolution of 1280x1024 pixels. The monitor was in front of the subjects
within 2 feet. Subjects were asked to respond by clicking with a mouse.

2.1 Experiment 1

The first experiment aimed at showing whether the performance of recalling
object-locations is still improved in the horizontal oriented structures, even if no
alphanumerical letters are used as retrieval keys.

Materials Fig. 1 shows the three structures that were used in the first experi-
ment. Each structure consists of 25 spherical items. The first structure represents
a 2D display of a tree-structure, like it is used in most common graphical user
interfaces. The second structure is horizontal oriented and exhibits some sym-
metrical features. The third structure is equivalent to the first one except that
it is rotated counterclockwise by 90 degrees.

A1 A2 A3

Fig. 1. Set of object configurations used in Experiment 1.

Design and Procedure In each encoding retrieval trial, the subject was pre-
sented with one structure. After an acoustical signal, the computer started to
highlight objects of one randomly created sequence. Only one object of the se-
quence was immediately highlighted. The sequences were five items long. The
highlighted object differed from the unhighlighted objects by color (blue instead
of red), increased size and a cross that appeared within its circle shape. The
end of a sequence was indicated by a second acoustical signal. Subjects were
instructed to repeat the highlighted objects in correct order, by clicking them
with the mouse. After five objects had been clicked, another acoustical signal
rang out. After a short break the next sequence was presented to the subject.
All sequences were created randomly with the property that no object is high-
lighted twice in succession. New random sequences were created for each subject
in order to avoid the event that an easy sequence was created by chance for
any structure (e.g., all objects of a sequence are only in one row). By creating
random sequences for each subject the factor of the sequence itself is balanced
among subjects. In order to examine a specific factor in detail the establishment
of a sequence for all test subjects is of interest. This was done in parts in the
second experiment reported below.
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Results The number of correct and erroneous repeated sequences for each struc-
ture is shown in Table 1.

Table 1. Contingency table (2 × 3) of correct and erroneous sequences in set A of
Experiment 1.

A1 A2 A3

Correct seqs 46 61 63
Erroneous seqs 74 59 57

The effect of structure approaches significance (2× 3 contingency table p =
0.056, χ2 = 5.77). When comparing the numbers of correct repeated sequences
between each pair of structures with a one-sided analysis of the corresponding
2 × 2 contingency tables, the exact Fisher test yields that performance in the
horizontal oriented structures is significantly higher (p < 0.05), whereas the
symmetric features in the structure did not show any significant effect.

The most important result of Experiment 1 is that it shows that the hor-
izontal oriented structures do improve performance, even if no alphanumerical
letters are used as retrieval keys.

2.2 Experiment 2

B1 B2 B3

C1 C2

Fig. 2. Set of object configurations used in Experiment 2

The second experiment aimed at showing how the usage of local frame of
references in human spatial memory, as they are discussed by McNamara [9],
affects the performance of object-location encoding/retrieval in dependence on
different graphical layout structures.
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Materials The structures used in the second experiment are shown in Fig. 2.
They are divided into two subsets because the limited pool of subjects did not
allow the testing of all permutations needed to prevent order effects. The struc-
tures in set B and C were created to test some factors assumed to play an
important role in the process of object-location encoding/retrieval in structures.
The motivation to choose these structures is founded in the assumptions and
expectations from before the experiments were performed. Mainly the following
factors were expected to contribute to the overall performance:

1. Hierarchical features,
2. Noise in the allocentric location-representation,
3. Noise in the egocentric location-representation,
4. Higher availability from memory of locations represented in allocentric frames

of references if objects are in spatial vicinity.

The last factor seems plausible because the effort to assess spatial object-to-
object relations is smaller if objects are close together; possibly no eye move-
ment is needed. This last factor would give the narrow matrix B1 an advantage
over the wide matrix B2 in respect to performance of object-location encod-
ing/retrieval. The other factors listed above may also contribute. The noise in
the location-representation is more grievous in the linear structure than in the
matrices since there is only one dimension that contributes information. In the
case of the matrices though, direction also contributes. Table 2 shows which
structure profits by which factor compared to another structure in its set. A +
sign in one cell means that the structure of the row takes an advantage over the
structure in the column in respect to the factor of the table; a – sign indicates
the opposite. The factor of hierarchical features is balanced within each set, so
this factor is not included in the tables. (For this purpose the linear structure
B3 has been separated into three groups with four objects). To estimate the

Table 2. The factors that the structures profit from in the structures of B and C (FOR
- frame of reference)

Less noise in Less noise in Higher availability of
allocentric FOR egocentric FOR allocentric FOR

B1 B2 B3 B1 B2 B3 B1 B2 B3

B1 0 ++ B1 – – – B1 ++ +
B2 0 ++ B2 ++ + B2 – – –
B3 – – – – B3 + – B3 – +

C1 C2 C1 C2 C1 C2

C1 + C1 – C1 +
C2 – C2 + C2 –



6 Winkelholz and Schlick

overall performance, the tendencies shown in the tables must be quantified. Fur-
thermore, not every factor might contribute equally to the overall performance.
Without any computational model as described in Sect. 3 and 4 only speculation
can occur about these questions. However, in the setup used in the experiment,
it can be assumed that the differences in the noise of the egocentric location-
representation are nearly negligible because the changes in the average visual
angles between the different objects in the scene are small compared to the hu-
man field of view. This is in contrast to an allocentric location-representation,
where the angles take values on the whole range. The effect of noise in the al-
locentric location-representation in the structure B1 and B2 is expected to have
an equal effect because all relative distances are equal. It was expected that the
effect of decrease in performance in the linear structure would be very distinct.
Structure C1 and C2 differ only by the distances between the six pairs of objects;
the distances between the two objects within a pair are equal. The hypothesis
for this structure is that for transitions within a sequence between objects of
two far distant pairs it will become more difficult for the subject to encode the
location of the object within a pair because the directions do not significantly
differ. One predefined sequence was used to show this effect. User traces can be
used for the parameterization of stochastic models. The regularities found by
the algorithms can be analyzed and interpreted [16].

Design and Procedure The experimental design was similar to Experiment 1.
This time the sequences were six items long. With one exception all sequences
were created randomly for each subject. One sequence for the structures of set C
was predefined. As mentioned above, this was done so experimental tracing data
could be effectively analyzed. The sequence was predefined for the structures
C1 and C2, respectively. The predefined sequence is shown in Fig. 3 on the left.
Its usage within the experiments was such that the probability that subjects
remembered the sequence from a previous presentation was low. Furthermore,
this effect had been balanced between the structures C1 and C2.

Results - Performance The numbers of correct repeated sequences are shown
in the contingency Table 3. The performance in the linear structure is signifi-

Table 3. Contingency table (2× 3) of correct and erroneous repeated sequences in set
B and C.

B1 B2 B3 C1 C2

Correct seqs 38 34 16 Correct seqs 35 25
Erroneous seqs 22 26 44 Erroneous seqs 25 35

cantly lower than in the structures of the matrices (exact Fisher-test p < 0.001).
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Although the number of correct sequences in the narrow structure is slightly
higher than in the wide matrix, this difference is not significant. For C1 and C2

in Table 3 the number of correct and erroneous sequences from the randomly
created sequences and the predefined sequence are combined. According to this
contingency table, performance in C2 is significantly lower than in C1 (exact
Fisher-test p < 0.05).

Analysis of errors A look at the errors subjects made in their answers provides
more insight into the underlying cognitive processes. To analyze the answer
sequences for the predefined sequence in set C we used a modified algorithm
for variable length Markov chains (VLMC) [14, 3] to parameterize a stochastic
model by the answer sequences. Roughly speaking, this algorithm can be seen as
a filter for subsequences (called contexts) from the data that contain predictive
information. We modified this algorithm in such a way that only contexts that
contain significant predictive information in a more statistical sense are included
into the model [17]. The conventional algorithms do not appropriately consider
that sample sizes for different contexts vary in the data. To apply this algorithm
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Fig. 3. Contexts of erroneous behavior found by the parameterization of a stochastic
model. Left: The structure with symbols assigned to the objects and the predefined
test sequence. Right: Table with contexts and possible interpretation.

to the answer sequences the objects in the structure must be assigned to symbols.
The contexts of erroneous behavior found by this method in the answer sequences
of the structures C1 and C2 are shown in Fig. 3. In the first column of the table
the contexts found by the algorithm are shown in parentheses followed by an
arrow and the most probable object occurring next in the answer sequences, if
this context is given. E.g. (7, 10) → 3 means: If subjects had clicked on object
7 followed by object 10, the most probable object they will click next is object
3. Multiple symbols/numbers listed on the right side of an arrow are ordered by
their probabilities, with the first in the list being the object that is most probable
of being next. On the right of an arrow possible next symbols are listed, as long
as their frequencies for the given context meet one of the two conditions. First,
the frequency is significantly higher than for the symbols with lower frequencies.
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Second, the frequency does not differ significantly from the frequency of the
symbol with the next higher probability. On the left side of the arrow, also the
most probable sequence that lead to the context is given, where the symbol
b stands for the beginning of the answer sequence. In structure C2 with the
more distant pairs there are more contexts concerned with the confusion of the
objects within the pairs of the upper left and lower right corners, whereas for
structure C1 there are more contexts concerning the omission of an object. The
most notable context for structure C2 is (7, 10) → 3. The angle between the line
from 7 to 10 and the line from 10 to 3 is similar to the angle between the lines 7
to 9 and 9 to 4. Therefore, this context indicates that subjects used the relative
change in the direction of two transitions as a reminder.

2.3 Conclusions

The results of these two experiments make the following suggestions with regard
to a computational model: first, as Wang et al. [15] suggested, the model should
encode spatial object-to-object relations between the previously and currently
attended objects as memory chunks. Second, the relation between three objects
should also be encoded. As will be discussed in the next section, this can be
interpreted since the visual system uses the connection line between two objects
as an allocentric reference axis. Third, the results from the comparison of the
horizontal and vertical oriented structures in the first experiment suggest that
noise in the distance dimensions of spatial memory is distorted towards a higher
accuracy in the horizontal direction. Fourth, subjects need not necessarily gaze
at objects they are attending in order to assess their locations. During all ex-
periments eye-movement data was collected. Because of a failure of the tracking
system the recorded data was very noisy. However, the eye-movement data re-
vealed that in structure B2 subjects tended to fixate on the middle of the screen.
Obviously, in B2 it is sufficient to fixate on a location in the middle of the screen
to asses most of the spatial object-to-object relations. According to theories of
visual attention, moving attention is possible without moving fixation. There-
fore, the effort to repeat transitions of the sequences in structure B1 and B2 is
similar, yet different in structure C2; here, subjects needed to move fixation to
resolve which object within a pair had been highlighted.

3 Theory

3.1 Rules for the cognitive process

One very popular architecture for cognitive modeling is ACT-R [2]. ACT-R con-
sists of several modules that are controlled by a central production system. These
modules are the visual module, memory module, manual module for controlling
the hands, and the goal module for keeping track of current goals and intentions.
The central production system interacts with these modules by the symbolic con-
tent of their specific buffers. The process is described by a set of rules. In each
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step of the cognition process one rule that matches the pattern of information in
the module buffers is selected. The rule is able to make requests to modules, e.g.,
to retrieve some information from memory. The retrieved information is loaded
into the buffer of the memory and in the next step a new rule applies to the
new content of the buffers. The minimal time for one cycle to be completed is 50
ms. The time consumption of a request and the outcome are determined by the
design of the module. The working principles of the modules are determined by
sub-symbolic mechanisms which may incorporate complex formulas. The most
elaborated module of ACT-R is the memory module. The memory is assumed
to be a collection of symbolic entities d(i) called chunks. The probability of a
successful retrieval and the retrieval time are determined by the activation of
the memory chunks, which is calculated by a formula taking into account the
time spans in which a chunk has already been retrieved, the strength of its asso-
ciation with the current goal and the similarity of the attributes in a request to
the values in the attributes of a memory chunk. This central equation of ACT-R
is given by:

ai(t) = bi(t) +
∑

j

wjsji +
∑

k

ukmki. (1)

The base activation bi(t) decays logarithmically over time and increases each
time the memory chunk is retrieved. The parameters sji reflect the frequency of
how often chunk d(i) has been retrieved if the symbolic value of attribute νjg of
the goal was identical to the current value. The parameter mki is the similarity
parameter, and we think could best be interpreted as the log-probability mki =
ln(P (νkx = νki)) that the value in attribute νkx in the request x is identical
to the value in the attribute νki of the chunk d(i). The parameters wj and uk

are weighting factors reflecting the importance of a single attribute. To decide
during a simulation which chunk will be retrieved from memory, noise is added
to (1), and the random variable

Ai = ai(t) + X + Y (2)

is considered. The random variables X and Y are independent normal distributed
with a mean of zero and a variance σX , σY . The value of the first random variable
X is added when the chunk has been created. And the second one Y is added
when ai(t) is reevaluated. The memory chunk with the highest activation will be
retrieved. If the activation of no memory chunk exceeds a threshold τa a failure
will be retrieved. Because of the decaying of the base activation a memory chunk
will be forgotten unless it is not frequently retrieved. The time needed for a
successful recall also depends on the activation by the relation t ∝ e−A. The
higher the activation, the faster a memory chunk can be recalled.

The visual model has recently been added to the theory. The current design
of the visual module is specialized in reading and finding objects with specific
features on the screen. Visual attention is guided by the commands activated by
the selected rule. An object location is represented by its coordinates in pixels
on the computer screen. In the following, we will present our approach to adding
the concept of noisy spatial relations to the visual module.



10 Winkelholz and Schlick

3.2 Locations and reference systems

As mentioned above, the visual module of ACT-R encodes object-locations in
the reference-system of the screen, which is equivalent to creating all spatial
object relations to one edge of the screen. The recently proposed extension called
ACT-R/S [6] focuses on an egocentric frame of reference. However, according
to Mou & McNamara [10] humans also use reference systems concerning the
intrinsic axis of the object configuration. E.g., two salient objects create an axis
that is used to specify the location of other objects. The most natural way to
integrate this into the concept of attention of the visual module is to consider
the last two attended objects as an axis of reference. This is an extension to the
proposal of Johnson et al. [8, 15] considering only the previously attended object
in creating object-to-object relations. This means that the distance is represented
in a pure environmental reference system, and the direction in respect to the
egocentric perceived up-vector, which is defined by the orientation of the retina
in space. In this sense, we call this reference system ”semi-allocentric” because
the encoded information is not independent from the position and orientation
of the observer. However, creating object-location memory chunks in this ”semi-
allocentric” reference system is less effort for the visual system because it only
needs to keep track of two objects, whereas in the case of the pure allocentric
reference system, three objects are needed. This point will be discussed in more
detail below in the context of visual indices. We considered all three different
reference systems that are summarized in Fig. 4. The introduction of object-
relations based on three objects is important for three reasons. First, it fits well
with the concept of intrinsic axes in the object configuration as reported by
Mou & McNamara. Second, the concept of angles is essential to most cognitive
operations in geometrical tasks. Third, it is the simplest percept for spatial
memory chunks that allows reconstructing object-locations, even if the whole
configuration is rotated.

3.3 Noise

The variances in pointing errors of recalled object-locations require the dimen-
sions stored in the memory chunks to be noisy. A clear definition of the reference
systems is needed to integrate noise into the stored dimensions. Huttenlocher et
al. [7] showed that the distribution of pointing errors supports the assumption
that subjects imagine object-locations on a plane relative to a center in polar
coordinates. We generalized this to use spherical coordinates in respect to an
extension of the visual module in three dimensions. This also has some interest-
ing implications on the representation of locations on a screen though, as will
be discussed in the following. Spherical coordinates are a system of curvilinear
coordinates that are natural for describing positions on a sphere or spheroid.
Generally, θ is defined to be the azimuthal angle in the xy-plane from the x-
axis, φ to be the polar angle from the z-axis and r to be distance (radius) from
a point to the origin. In the case of the allocentric reference system this means
that if the three points v−2, v−1, v0 were attended and v0 has to be represented
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in a local allocentric reference system, the point v−1 defines the origin, the polar
axis is given by (v−1,v−2), and the local spherical y-axis points orthogonal into
the screen. For the semi-allocentric reference system, v−1 is again the origin, but
the polar axis is parallel to the vertical axis of the screen and the x-axis is par-
allel to its horizontal axis. The viewpoint of the subject is the origin in the case
of the egocentric reference system. In the typical scenario of a user interacting
with symbols on the screen the differences in the angles and distances between
symbols represented in the egocentric system are very small compared to the
differences if represented in an allocentric or semi-allocentric reference system.
Therefore, if the same magnitude of noise is assumed in all reference systems,
memory chunks represented in the egocentric reference system would be far more
inaccurate compared to object-locations represented in the other two reference
systems, and as a result, can nearly be neglected. The next question is, if θ,
φ, and r should be considered as single, independent memory chunks. Because
it is impossible to imagine a distance without a direction and an angle with-
out corresponding lines, it is reasonable to combine distance and angle as one
percept in one memory chunk. This does not mean that the dimensions cannot
be separated later. E.g. , it should be possible to extract the r-dimension as a
distance and apply it to a different direction, as originally perceived. This kind
of transformation corresponds to a mental rotation, but these are probably post
processing activities of the cognitive system.

x = r cos( )sin(  )

y = r cos(  )φ
φ

φr r

egocentric semi-allocentric pure-allocentric

-2

-1

0

-1

0

0

spherical
y-axis

spherical
x-axis

φθ

Fig. 4. Three different frames of reference, that can be defined according to how
many attended object locations are considered. The objects are attended in the or-
der (v−2,v−1,v0).

For modeling the noise it is assumed that the dimensions of a location are
buffered in the neural system and the representation is noisy. A spatial location
is represented by d(r, θ, φ, θ′, φ′) , where r, θ, φ are the spherical coordinates of
the pure allocentric reference system and θ′, φ′ additionally hold the polar and
azimuth angles in the semi-allocentric reference system. These values are sum-
marized into one symbol representing this relation as one percept. The angles
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of the semi-allocentric reference system are integrated into the symbol accord-
ing to the assumption that we are not able to imagine any angle between two
directions without the two directions themselves. In this sense, the symbol of
a location encoded into a general allocentric reference system contains both
the semi-allocentric and the pure-allocentric reference systems. However, we do
distinguish a symbol that encodes only the dimension in the semi-allocentric
reference system to reflect that the visual system may only focus on a single di-
rection. Finally, the values of the dimensions are interpreted as the mean values
of a noisy neural representation.

P (rx, θx, φx, θ′x, φ′x|D = d(r, θ, φ, θ′, φ′)) = (3)
f(r, rx)f(θ, θx)f(φ, φx)f(θ′, θ′x)f(φ′, φ′x)

Where f(a, a0) is a logistic distribution with mean a0 and variance σa, the noise
in the r-dimension is biased. We used the logistic distribution for computational
reasons. The bias depends on the vertical or horizontal orientation of distance to
be estimated. The noise σr is relative to r, which means that it is scale invariant.
As the final noise in the r-dimension we use:

σr(φ′, r) = (fσr + (1− fσr ) cos2(φ′))σrr (4)

If during a simulation the cognitive system requests an object-location based on
a symbolic entity d(r, θ, φ, θ′, φ′), the values of the dimensions are set to random
values d̃ according to the noise given by (3). After the noise has been added to
the location request it is decided if the values are latched on possible features
in the display. Therefore, the object-locations x(i)(r, θ, φ, θ′, φ′) of all features in
question are calculated in the current local reference system corresponding to
the reference system in the request. The probability Px(i) , that visual attention
is caught by feature x(i), and the probability P0 that it is not, are given by:

Px(i) =
P (d̃(x)|x(i))

V −1 +
∑

i P (d̃(x)|x(i))
P0 =

V −1

V −1 +
∑

i P (d̃(x)|x(i))
(5)

These equations express the posterior probability P (x(i)|d(x)) that if a noisy
location d(x) from the neural representation in memory is given the location re-
sults from the feature x(i). The parameter V −1 describes the weight of a noisy
background. The likelihood functions P (d(x)|x(i)) are the truncated logistic dis-
tribution as if the feature x(i) would have been the stimulus and are similar to
(3). The process of the projection of a noisy neural location representation from
memory onto a new percept is illustrated in Fig. 5. The most rational choice
would be the feature with the maximum probability according to (5). However,
we assume this decision to be noisy as well, so the visual system maps the request
on the features with a probability given by (5). A similar mapping scheme can
be applied to map a perception to already existing memory chunks. Whenever
a location has been encoded into the symbolic entity d it will be stored in mem-
ory and the retrieval is determined by the memory module and equation (1).
This noise model has two interesting properties. First, because the truncated
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* *( , )rφ  
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Fig. 5. Perception, representation and re-/construction of a location.

logistic distribution is asymmetric, the expected report of an object-location is
biased away from the reference axis. This is the same effect as reported at cat-
egorical boundaries by Huttenlocher et al. [7]. Second, for object-locations on a
flat screen the values of θ are discrete θ = {π/2, 0,−π/2} and encode whether
the object-location in question is on the left side or the right side, or aligned,
when facing into the direction of the reference axis. This is consistent with the
assumption of interpreting the reference axis as a categorical boundary, where
θ encodes the category. Thus, the categorical boundaries of Huttenlocher et al.
are simply projected egocentric reference axes.

3.4 Visual indices

It is evident that humans browsing a graphical structure encode environmental
characteristics of object-locations, say the spatial relations to objects nearby.
The crucial point in encoding such environmental features is that after some
objects in the environment have been attended, attention needs to return to a
specific location previously attended. If this return depends on such noisy op-
erations as those so far described, the cognitive system will hardly return to a
specific reference point. At this point the concept of visual indexing, or FINST
- FINger INSTantiation [11], is needed. According to this theory, the cognitive
system has ”access to places in the visual field at which some visual features
are located, without assuming an explicit encoding of the location within some
coordinate system, nor an encoding of the feature type”. Experiments show that
the number of FINSTs in the visual system is limited to four or five. To imple-
ment environmental scan patterns, FINSTs need to enable the visual system to
access previously attended locations without or at least with minimal noise. In
the visual module of ACT-R the concept of FINSTs is currently only used to
determine if a location has already been attended, but it gives no direct access



14 Winkelholz and Schlick

to such an indexed location. In our simulations we gave the cognitive system
direct access to an indexed location by determining the visual index through the
sequential position in the chain of attended locations. This index can be used
to return (or avoid returning) attention to a particular location in the chain of
attended locations.

3.5 Competitive chunking

As a human subject learns object-locations in a graphical structure he/she be-
comes familiar with the structure after some time. This means that he/she rec-
ognizes environmental features faster and is able to link environmental features
more efficiently to object-locations. This implicit learning is similar to the ef-
fect that subjects are able to learn sequences of letters more efficiently if the
sequences contain well-known words or syllables. Servan-Schreiber & Anderson
[12] discussed this effect in the context of a symbolic theory as a competitive
chunking (CC) mechanism. According to the theory of CC, a memory chunk
for the sequence can be compressed by replacing elements of the sequence by
references to subchunks having a high activation, and therefore can be retrieved
quickly and reliably from memory. Memory chunks need to be declared in ACT-
R in advance. Subsequently, the mechanism of emerging subchunks is not part of
ACT-R. To investigate such a mechanism in the context of object-location mem-
ory we extended the formulae 1 for the activation of chunks in memory by a term
aCC

i , calculating correlations across attributes of chunks in memory, which re-
sults in virtual sub-chunks supporting their container chunks. We derived this
term heuristically and it is given by:

aCC
i = ai + cCC

ns∑
m=1

ns∑
n=1

N∑

k=1

ImniKmnik ln(1 + ecdbk) (6)

The index k runs through the chunks of the same kind; the index m and n
through the slots of the chunk type. The parameter Kmnik compares the simi-
larity of the slot values and is given by:

Kmnik =
{

P (νmk = νmi)P (νnk = νni) , if P (νmk = νmi)P (νnk = νni) > cτ

0 , otherwise
(7)

Hence, Kmnik is the probability that both values are equal. The parameters
P (νab = νcd) = pabcd express the probability that the values νab and νcd both re-
sult from the same source. For scalar values they can be calculated by a Bayesian
approach. To limit the contributions, Kmnik is cut by a threshold cτ . Thus,
roughly speaking, the sum of the Kmnik over the slot pairs is a measure of how
many equal slot values chunks d(i) and d(k) share. If only Kmnik is used as a
factor for the CC, slots also contribute, whose values are equal over all chunks.
This means that they do not carry any information. Therefore, we introduced
the factor Imni that estimates how much normalized information the knowledge
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of the value Vm = νmi in attribute m of memory chunk d(i) contains about the
values Vn in attribute n of the other chunks.

Imni = 1− H(Vn|Vm = νmi)
H(Vn)

(8)

If νmi contains no information about Vn, Imni is zero. If Vm is fully determined
by the knowledge of νmi then Imni is 1. If the slots only contained clearly dis-
tinguishable symbolic values, the entropies in (8) could be calculated by their
frequencies. In the case of spatial memory chunks though, the similarities have to
be taken into account. With the abbreviation P (νab = νcd) = pabcd the entropies
can be estimated by

H(Vn) = − 1
N

N∑

k=1

ln
∑N

k′ pnknk′

N
(9)

and

H(Vn|Vm = νmi) = − 1∑N
k′ pmimk′

N∑

k=1

pmimk ln
∑N

k′ pnknk′pmimk′∑N
k′ pmimk′

(10)

In the limit P (νnk = νnk′) = δ(νnk, νnk′) of clearly distinguishable slot values
the equations (9) and (10) are identical to a formula estimating the probabil-
ities of the entropies for the information by the frequencies of the slot values.
Furthermore, the contribution of each chunk is weighted by a factor according
to its basis activation bk with a lower bound to zero and approximating bk for
large activations. Due to the additional term (6) in the activation equation, vir-
tual subchunks emerge through the clustering of attribute values, which support
their container chunks (Fig. 6).
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Fig. 6. Virtual sub-chunks from correlations in attributes across parent chunks. The
rectangles symbolize the parent chunks with their attributes.
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4 Simulation

4.1 The model

The model we developed is based on the theory sketched in the previous sec-
tion. It is similar to a conventional model of list memory [1] and it describes the
encoding and retrieval stage of the memorizing task. The previously highlighted
objects up to the current location are mentally rehearsed during the encoding
of the sequentially presented object-locations. This rehearsal serves to boost the
activation of the corresponding memory chunks so they can be recalled reli-
ably later on. Different to common models of list memory, the model encodes
environmental-features of the object-locations (say, spatial relations to objects in
the vicinity) during the rehearsal or checks if one of the objects retrieved to the
environmental feature matches the environment of the currently attended object.
If the environment does not match, the reference system is restored through the
visual indices, and a new guess is made excluding the denied object-location.
The environmental features are encoded in competing chunks with a symbolic
tag to the corresponding object-location and spatial relations to objects in its
neighborhood. To check an environmental feature is time consuming because it
must be retrieved from memory. Therefore, the cognitive system needs to find a
tradeoff between the loss of time in the rehearsal and the reliability of the loca-
tion of a rehearsed object. In ACT-R it is possible to let different rules compete.
Which rule will be selected is determined stochastically proportional to parame-
ters reflecting the probability that the selection of each rule has induced a feeling
of success in the past. These parameters can be learned during the simulation.
In our simulation one rule for skipping and one rule for actually performing
the validation of a location by an environmental feature compete. The answer
stage is equal to the rehearsal stage, except that environmental features are not
encoded anymore and are validated for every location because time pressure is
no longer present. Overall, the model contains 142 rules. This unexpected high
number of rules results from the time pressure set on the task. At any possible
stage the model needs to check if a new object is highlighted, which leads to a
lot of exceptions. The ACT-R parameters for retrieval of memory chunks were
set to the defaults reported in literature [2]. The variance σ(θ,φ) of the noise for
the angular dimension was set to 0.06 radians and to 0.08 for the r-dimension.
The skewing factor fr in (4) of the noise in the r-dimension was chosen to be
0.8. The parameter for the background noise was set to V = 2.e3. The same
parameters and rules were used for all simulations and graphical structures.

4.2 Validation of the model

We simulated the experiments with 30 subjects ten times and compared the
mean values to the data. The model satisfyingly reproduces the overall per-
formance (Fig. 7) of the subjects (R2 = 0.83), though there is one disturbing
discrepancy: the model exhibits a different performance for structure A2 and A3,
yet a statistical test reports no difference for the data. The structures A2 and
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Fig. 7. Performance of different models compared to the data (model: model with
encoding of environmental features and competitive chunking [CC] mechanism enabled,
model-no-cc: model with encoding of environmental features, but without the CC.
model-no-env: model without encoding environmental features).

A3 are both horizontally oriented, but A2 is more regular than A3 and contains
some symmetrical features. Therefore, we expected that in A2 subjects become
familiar with the structure earlier by the CC mechanism. On the other hand,
the environmental features are more distinct in the less symmetric structures
and therefore provide more information for the validation of an object in the
sequence. As reported in Sect. 2.1, the analysis of the learning curves of the
subjects demonstrated these effects as a tendency, but could not be significantly
demonstrated. In the overall performance these two effects should have been
balanced to result in the observed error rate. Obviously, this is not the case. We
primarily integrated the encoding and validation of environmental characteris-
tics into the model in order to investigate the effect of becoming familiar with the
structure. The model, however, did not show these effects either (see Fig. 8a). In
the end it seems that the observed data could have been explained better without
considering the validation of objects by their environmental characteristics. To
examine the contribution of the encoding of environmental characteristics and
CC we made simulation runs without CC and without the encoding of environ-
mental features. The results are displayed in Fig. 7 and show that the encoding
of environmental features does not have the same effect for all structures. Inter-
estingly, the performance of the model not encoding environmental features is
similar to the complete model for the structures B1, B2, and C1. Performance
is even lower for these structures if environmental features are encoded without
CC. However, for the structures A1, A3, and C2 the model seems to signifi-
cantly benefit from the encoding of environmental features. This effect can be
explained by the observation that during the encoding of environmental features
the model loses a lot of time, especially if activation of memory chunks for en-
vironmental features are low. In this case the sequences cannot be rehearsed so
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often to boost activation. If spatial relations of preceding objects in the sequence
are as distinct as in B1, B2, and C1, the advantage of encoding environmental
features clearly does not compensate the disadvantage of time loss. Only if CC
is assumed is the activation of environmental features in memory high enough
to make the encoding of environmental features paying. For structures A1, A3,
and C2 the cognitive model benefits from encoding environmental features, even
if no CC supports their activation. For the unsymmetrical structures A1 and A3

the environmental features are more distinct and therefore more effective for the
validation of object-locations. Altogether, the attempt to fit the model without
encoding of environmental features to the data required lowering the variances in
the angular dimensions to 0.01 radians, which is only approximately 15% of the
variance assumed for the model with encoding of environmental features, and
therefore much lower than reported in literature [7]. Accordingly, the considera-
tion of strategies to validate object-locations are mandatory. Unfortunately, the
model encoding environmental features became very complex, and the new inte-
grated mechanism, such as the CC, should be further evaluated. Regardless, the
complete model reproduces some other effects that may result from encoding and
validating environmental features. This is displayed in Fig. 8b. Here the number
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Fig. 8. Performance of subjects and model. Left: Overall performance. Right: Depen-
dency of the performance from the position in the sequence.

of correct repeated objects is plotted over the position of the object in the se-
quence for two structures. Both curves show a plateau at the beginning up to the
third object. In the model this plateau results from the environmental features.
Because one object of the sequence is mainly learned by the spatial relation to
its predecessor, each correct reconstructed object of the sequence strongly de-
pends on a successful reconstruction of its predecessor. As a result, the cognitive
system focuses on the first objects in the rehearsal to boost the activation of
the corresponding memory chunks for a reliable recall. An analysis of the model
shows that the stronger decline after the second and third object in the curve
of the model results from an unreliable recall of environmental features rather
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than a failed recall of the primary spatial relation. The curves of the subjects
show an additional plateau at the end of the sequences. The error rate at the
end of the sequence is lower than for the whole sequence. This means that some
objects of the sequence have been reconstructed based only on the environmental
characteristics here. This hypothesis is supported by the observation that this
plateau is more distinct for structure C2. The model only validates an object by
the environmental features and repeats applying the spatial relation as long as
the validation fails. It contains no rules for a strategy for skipping one object
of the sequence and trying to identify the next object only by its environmen-
tal features. Therefore, the model only reproduces the plateau at the beginning.
Nevertheless, when gathering the measuring points of all curves for all structures
together the model achieves a correlation to the data with R2 = 0.92. Hence, the
performance of the model is generally satisfying. Additionally, the parameters
for the variances in the location representation are in the magnitude reported by
Huttenlocher et al. [7]. Huttenlocher et al. reported σφ = 0.17 (the model: 0.06)
and σr = 0.025 (the model: 0.08). The higher variance in the angular dimension
reported by Huttenlocher et al. may be explained by a missing reference point
in their experimental design. Subjects had to infer the reference point as the
center of a circle which increased uncertainty. Subjects might encode the dis-
tance as a distance to opposite reference points on the border of the circle. This
might decrease the overall measured variance in the distance of the answers. In
the model, the parameter for the variance refers to one single representation.
If strategies of subjects are assumed using multiple representation, the overall
variance in the answers is decreased as well.

5 Conclusions

This paper described extensions to the visual-module of the ACT-R theory which
enable the development of very detailed models for the visual working memory.
The concepts were derived from well-known effects in experimental psychology.
Overall, the modeling gave us a deeper insight into the mechanisms and bottle-
necks of encoding object-locations. One challenge in modeling the memorizing
task was the limited number of FINSTs. The number of FINSTs limits the com-
plexity of environmental features that can be encoded. This is interesting with
respect to visual working memory in three dimensions. Encoding of an object-
location in a real allocentric local reference system in three dimensions needs at
least three object-locations to define a reference plane. This reduces the number
of free FINSTs in an encoding task. This might explain why spatial reasoning
in three dimensions is more difficult for most people than spatial reasoning in
two dimensions. In future work we will extend the concepts described in this
paper to three dimensions. The future work will elaborate the chosen Bayesian
approach and will try to develop an integrated model of human cognition when
interacting with graph-based structures. Furthermore, we are aiming at addi-
tional validation studies based on very simple geometrical tasks without time
pressure.
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