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Abstract: The appropriate methodology for psychological research depends on whether one is studying mental algorithms or their
implementation. Mental algorithms are abstract specifications of the steps taken by procedures that run in the mind. Implementa-
tional issues concern the speed and reliability of these procedures. The algorithmic level can be explored only by studying across-task
variation. This contrasts with psychology’s dominant methodology of ooking for within-task generalities, which is appropriate only
for studying implementational issues.

The implementation-algorithm distinction is related to a number of other “levels” considered in cognitive science. Its realization
in Anderson’s ACT* theory of cognition is discussed. Research at the algorithmic level is more promising because it is hard to make
further fundamental scientific progress at the implementational level with the methodologies available. Protocol data, which are
appropriate only for algorithm-level theories, provide a richer source than data at the implementational level. Research at the
algorithmic level will also yield more insight into fundamental properties of human knowledge because it is the level at which
significant learning transitions are defined.

The best way to study the algorithmic level is to look for differential learning outcomes in pedagogical experiments that manipulate
instructional experience. This provides control and prediction in realistically complex learning situations. The intelligent tutoring
paradigm provides a particularly fruitful way to implement such experiments.

The implications of this analysis for the issue of modularity of mind, the status of language, research on human/computer
interaction, and connectionist models are also examined.

Keywords: algorithm; cognitive levels; connectionism; human/computer interaction; implementation; instruction; knowledge;

language; learning; methodology; modularity; tutoring

There is a set of beliefs in psychology about the nature of
human thought and how to come to understand it scien-
tifically. These beliefs are stated fairly directly by Gleit-
man in his introductory textbook:

Psychology is a science and, like all other sciences, it

looks for general principles — underlying uniformities

that different events have in common. A single event as
such means little; what counts is what any one event —
or object or person — shares with others. Ultimately, of
course, psychology — again, like all other sciences —
hopes to find a route back to understanding the indi-
vidual event. . . . Once such explanations are found,
they may lead to practical applications: to help counsel
and guide, and perhaps to effect desirable changes.

But, at least initially, the science’s main concern is with

the discovery of the general principles. (Gleitman

1983, p. 11)

This passage reflects three beliefs:

1. The same general psychological principles underlie
many different behaviors.

2. Psychologists should focus on discovering these
principles.

3. Applying these principles may be socially desirable,
but it is scientifically secondary.

These beliefs have influenced many of us to avoid
certain research topics and to focus on others. It is hard
to quarrel with what these beliefs lead us to focus on,
but there is room to question whether we should ignore
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what they imply we should ignore. This target article will
argue for the following points, which contradict (1)—(3)
above and which lead to a wider view of research
issues:

1’. To understand human cognition, one must under-
stand both mental algorithms (procedures) and their
implementation. Only the implementational level can be
understood in terms of general principles of cognition
that are constant across different situations. The al-
gorithms we possess are adapted to specific task demands
and are as varied as those task demands.

2’. There is important basic research to be done at the
algorithmic level.

3’. A good way to understand the algorithmic level is
to do pedagogical research on how these mental al-
gorithms are taught and learned.

The motivation for writing this target article is quite
straightforward: My research on human knowledge ac-
quisition has led me to develop and study intelligent
computer-based tutors. In so doing, I find myself fighting
the prejudices in (1)-(3). I accordingly wish to respond in
two ways. First, I would like to make a case for the
scientific respectability of my research. Second, I would
like to elicit some thoughtful discussion of the issue, so
that if there are flaws in my thinking, I can adjust my ideas
and research practices appropriately. (I should also ac-
knowledge from the outset that much of this paper.
particularly with respect to points 1’ and 2’, is merely a
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recasting of arguments already made by Newell and
Simon [1972].)

1. The algorithm-implementation distinction

Assertion 1': There is an important distinction to be
made between mental algorithms and their implementa-
tion.

The first assertion is a theoretical one about the struc-
ture of human cognition. There is a distinction to be made
between (a) the mental procedures and knowledge we
possess that enable us to behave adaptively, and (b) the
mechanisms that implement these procedures and
knowledge. The obvious analogy is to the standard com-
puter, where programs and stored data structures corre-
spond to the algorithm, and the actual machine and its
operation correspond to the implementation. The two
levels are quite independent because such abstract pro-
grams can be implemented in different cpus (central
processing units) and such data structures can be imple-
mented in memories with different properties.

There is no reason why human cognition must mirror
this computer distinction, but the distinction seems quite
ubiquitous across a broad range of cognitive theories. In
the standard flow chart models of information-processing
psychology (e.g., Chase & Clark 1972), there is a distinc-
tion between the flow chart, which describes the al-
gorithm, and the parameters, which determine how long
it takes to implement various stages. Production system
theories (e.g., Newell 1973) make a distinction between
production rules and the “rules of interpretation” for
production systems. Perhaps the only exception to the
ubiquitousness of the distinction is the work of some (but
not all) of the neural modelers (e.g., Anderson, J. R. &
Hinton 1981). Although they make distinctions between
the rules encoded in the neural system and the basic
principles of the neural system, these authors argue that
the basic principles are fundamental and the rules are
only approximate and epiphenomenal.

The algorithm-implementation distinction is a the-
oretical one: What is algorithm and what is implementa-
tion can vary from theory to theory. For example, compare
a theory like VanLehn's Sierra(1983) with a theory like
ACT* (Anderson, J. R. 1983). When a procedure hits an
impasse in Sierra, there is a fixed set of ways to repair the
procedure built into the implementation, whereas in AcT*
such repairs would be implemented by productions
learned through experience. In production systems like
Newell’s (1973) and J. R. Anderson’s (1976), goal stacks are
processed at the algorithmic level, whereas they occur at
the implementational level in more recent systems such as
ACT* or Rosenbloom and Newell’'s (1986). Each theory
specifies what its algorithmic language will be.

One might think that the distinction between the
algorithmic and the implementational levels was a purely
arbitrary choice about where to draw the line in the
hierarchical decomposition of a skill. However, as we will
see in the discussion of ACT*; a number of consequential
theoretical assumptions can line up at this boundary. The
boundary often defines the level at which learning occurs.
Knowledge is acquired in terms of the units of the
algorithmic level; the implementation of these units is
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fixed and cannot be modified by learning. In choosing a
finer-grained algorithmic level (i.e., in choosing not to
model certain things at a fixed implementational level’,
one is choosing to have learning progress in smaller
increments of knowledge and to make certain things open
to learning.

Pylyshyn (1980) has discussed a similar distinction
between algorithm and functional architecture. He uses
the term functional architecture, rather than implemen-
tation, to indicate that he is describing something ab-
stracted from the biological level. I prefer to avoid the use
of the term architecture, which I use to refer to the
interface between the algorithmic and the implementa-
tional levels; that is, the architecture specifies the compo-
nents out of which algorithms are built, and the architec-
tural components have their implementation specified in
terms of lower-level components (quasi-neural compo-
nents in AcT*). However, it may be that the only dif-
ference between Pylyshyn’s distinction and the present
one is terminological. Pylyshyn likewise draws heavily on
the computer analogy to articulate his distinction.

If one considers the computer analogy, it is not hard to
see why there might be a bias toward regarding the
implementational level as scientifically more rigorous.
The implementational level is closer to something rela-
tively “real” — the actual machine and its properties.
These properties are general and will be maintained
across tasks. In contrast, the program and data structure
seem the whim of the programmer. At first it might seem
that there could be no theory of what the programmer
chooses to implement. However, the experience in com-
puter science has been quite the opposite. The more
interesting and important theory has proven to reside at
the algorithmic level. The choice of program and data
structure has proven to have enormous consequences for
performance. These consequences are largely indepen-
dent of machine implementation; moreover, they have
proven to be systematic and capable of scientific study.

1.1. Marr’s levels. In his very influential work, Marr (1952)
specified not two, but three levels of analysis. The level
he calls representational and algorithmic corresponds
approximately to what I am calling the algorithmic level.
This level, according to Marr, is a highly abstract speci-
fication of the representation and processing of infor-
mation. Below this he places the level of hardware
implementation, which is concerned with how the repre-
sentations and algorithms are physically realized. This is
considerably lower and more concrete than my own
implementational level or Pylyshyn’s architectural level.
Marr, however, was thinking about computer algorithms
for parts of the visual system where it would make sense
to be very concrete. In the case of higher human cogni--
tion, on the other hand, we do not have the information
necessary to specify the hardware level. Hence, here the
implementational level is a good deal more abstract than
Marr’s lower level. I believe, however, that a hardware-
level specification is what an implementational theory
would become if we ever reached the utopian goal of
adequate neurophysiological knowledge.

Marr distinguishes a third level above representations
and algorithms that he calls the level of the “computa-
tional theory.” Its concerns are (Marr 1982, p. 25): “What
is the goal of computation, why is it appropriate, and what



is the logic of the strategy by which it can be carried out?”
As Marr notes, this is very much like Chomsky’s (1965)
“competence” level whereas Chomsky’s “performance”
level is a combination of the algorithmic and implementa-
tional levels. Marr’s computational level is also much like
Newell's (1981) knowledge level. Newell’s formulation is
probably more suitable for cognition than for vision. In
particular, he relates it to issues of deduction and prob-
lem-solving. The present essay does not consider the
knowledge level or computational theory, but I do not
mean to deny the utility of that level of analysis.

1.2. Criteria for the algorithm—implementation distinc-
tion. It is interesting to ask how we would distinguish the
implementational and algorithmic levels in a particular
theory. Pylyshyn (1980) offers two criteria for identifying
the implementational level:

1. Cognitive impenetrability: The operations at the
implementational level are not affected by the organism’s
goals and beliefs.

2. Complexity equivalence: The operation of the units
at the implementational level should not vary as a func-
tion of the context in which they are evoked. In particu-
lar, an implementational unit should always take the same
time to execute.

I am comfortable with Criterion 1, but I have reserva-
tions about Criterion 2; these have been expressed in J.
R. Anderson (1979). In addition to these criteria for
identifying the implementational level, I would like to
add two criteria for identifying the algorithmic level:

3. Learning: Learning takes place in knowledge struc-
tures defined at the algorithmic level, although there
must be a way of compiling these changes into the
implementational level.

4. Working memory transitions: Cognitive steps at the
algorithmic level correspond to changes in reportable
states of working memory.

More will be said about these last two criteria later in
the paper. All four criteria require considerable in-
terpretation to be applicable to any existing theory. To be
precise in developing further points, it will be necessary
to refer to a precise interpretation of the implementa-
tion—algorithm distinction at the risk of losing generality
in my arguments and conclusions. I will use the realiza-
tion of this distinction in the acT* theory.

1.3. The act* theory. Figure 1 illustrates the basic archi-
tecture of the act* system. The core concept is a “pro-
duction,” which is a procedural unit of knowledge. A
typical production in the act* theory would be the
following: IF the goal is to subtract the digits in a column.
and the subtrahend is larger than the minuend, THEN
set a subgoal to borrow. This rule makes reference to
information about current goals, the state of the problem
represented in working memory, and long-term de-
clarative knowledge about the relative magnitude of dig-
its. If the situation described in the condition side (the
“if” portion of the production) is satisfied, the produc-
tion’s action (the “then” portion of the production) can
execute, and a step of cognition will occur.

The arrows in Figure 1 illustrate the flow of information
in the system. Information encoded from the environ-
ment can be deposited in working memory. Information
in working memory can be stored in and retrieved from
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Figure 1. The overall architecture of the acT* system.

long-term declarative memory. Matching production
conditions to working memory serves to select produc-
tion; when these productions execute, they deposit new
information in working memory. Finally, new produc-
tions can be created by a learning process that operates on
a history of what productions have been executed and
what their consequences were.

There are two separate viewpoints about each of the
components of the AcT* theory. On the one hand, we can
analyze these components according to their abstract
input—output specifications. This is like an abstract speci-
fication of a programming language. On the other hand,
we can view each component according to how long it will
take and how likely it is to function properly. These
performance considerations are like considerations about
the machine implementation of a programming language.

The performance properties of acT* depend on a set of
assumptions about activation-based processing. The crit-
ical performance factors concern the speed and success
with which production conditions can be matched to
working memory; speed and success are in turn a function
of the level of activation of these elements. Certain nodes
encoding environmental elements or goals serve as
sources of activation. Activation spreads from these
source nodes throughout the declarative network of
knowledge. The amount of activation spread to any de-
clarative node depends on the strength and length of
paths connecting it to source nodes. Because of these
activation computations at the implementational level,
ACT* is a probabilistic system, capable of graded variation
in its response.

We have developed separate simulations of the imple-
mentational and algorithmic levels in the acT* theory.
One simulation was concerned with the microstructure of
activation spread and pattern-matching. This simulation
generated the probability and time of a production’s
executing, and successfully predicted various patterns of
data. This simulation proved much too costly, however,
for any interesting problem-solving such as calculus. We
therefore developed the GRaPES (Sauers & Farrell 1982)
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production system, which only simulates the algorithmic
level of the acT* theory.

In GRAPES each production that should “fire” (execute)
does so, and there is a unit time associated with each
production’s firing. Such a system completely eliminates
the graded responses produced by the implementational
level. It retains all the components in Figure 1, but each
occurs flawlessly. The simulations have considerable psy-
chological content in that they preserve certain assump-
tions in the acT* theory about

1. the representation of knowledge in declarative and
procedural memory and, more significantly, how these
relate through the pattern matcher;

2. the principles of conflict resolution that determine
which of the multiple matching productions actually fire
(given that the conflict resolution in act* depends on
activation, the conflict resolution principles in GRAPES
are discrete approximations to these activation compu-
tations);

3. the principles for goal-directed processing, which
determine how goals are set and achieved, and determine
the process of conflict resolution;

4. the steps of cognition as defined by discrete produc-
tion firing;

5. the principles of production learning, which deter-
mine how new productions are acquired from the trace of
old production firing.

The above assumptions are very much like an abstract
characterization of a programming language, specifying
what the program will do without commitment to the
performance specifics of its machine implementation. We
can, however, make interesting predictions about behav-
ior just from knowledge of the algorithmic level. If there
are systematic errors in the production set, we can pre-
dict systematic errors or bugs in the performance. We can
determine whether a particular production set will solve
problems directly or with a lot of search. To continue with
the computer analogy, these are like issues of correctness
and efficiency, which are very important in the analysis of
computer programs. Last, and most important, at the
algorithmic level we can explore how learning changes
the production system simulation. All these issues have
been studied in GRAPES simulations. In many simulations
we were able to predict the problem-solving behavior of
subjects (at the input—output level) with GRaPES (Ander-
son, J. R. et al. 1984; Anderson, J. R. etal. in press). We
have also been able to predict learning transitions in that
behavior; that is, how the production set spontaneously
improves with experience.

One might wonder about how realistic GRAPES simula-
tions are, given that we have not built in any performance
limitations. The one major way that GRAPES simulations
can deviate from psychological reality is that they can
match productions based on unlimited amounts of infor-
mation in working memory. However, it is easy to restrict
GRAPES productions in ways that closely approximate
human performance - for example, allowing a production
to refer only to long-term memory facts that are no further
than a specified distance from the current goal element.
This would be only an approximation to the situation
created by spreading activation. However, as Simon
(1969) noted, we need only approximate capacity charac-
terizations to get close behavioral approximations. The
behavior is determined more by the detail of the al-
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gorithm and the structure of the problem than by the
detail of the implementation.

One thing to emphasize about our work with the
GRAPES simulation is that it is intimately concerned with
across-task variation. At one level of across-task variation,
we are interested in how the same production set behaves
given different problems. This provides convergent data
on our assumptions about the production set. At another
level we are concerned with how the production set
changes with experience. This tests the acT* learning
theory. In no case are we engaged in the classic laboratory
experiment of repeating the same test over and over
again, trying to get reliable measurements of some iso-
lated phenomenon. The enterprise is devoted to under-
standing variations and complexity. Cognitive principles
exist, but only at the level of relations defined across very
different situations, rather than at the level of properties -
of a single type of situation.

1.4. Role of the mental program. Work at the algorithmic
level requires that one specify the actual production set
that is running. Many of the predictions derive more from
what specific productions are assumed than from how
they are assumed to be interpreted. Productions become
like constrained parameters that are estimated to fit the
data. However, it is important to recognize that it is also
impossible to do research at the implementational level
without making assumptions about the mental program.
A great deal of experimental research in psychology takes
the form of assuming some fixed program for doing a task,
estimating parameters that characterize its implementa-
tion, and fitting the program plus parameters to a set of
data. To the degree that a model fits, the empirical
package is taken as evidence for the correctness of the set
of assumptions about the program and the implementa-
tion. The work of investigators such as Chase and Clark
(1972) or Sternberg (1969) provides classic examples of
such approaches. This is a reasonable approach in situa-
tions where one can assume a fixed program that does not
change across subjects, experiences, or task variations.
There are probably many experimentally tractable situa-
tions for which these assumptions are reasonable. The
frequent belief, however, is that if these assumptions are
not satisfied, scientific analysis is not possible. This belief
is not justified. One can do a scientific analysis of the
principles of variation.

2. Basic research issues at the algorithmic level

Assertion 2': There is important basic research to be
done on algorithmic issues.

Iwould like to argue that there should be more concerr.
with the algorithmic level in cognitive science. However,
I am not trying to prescribe exactly how much research
should be done at one level or the other; nor do I wish to
commit myself to doing research only on one level. There
are two basic reasons for shifting to algorithmic issues:
One is to redress the imbalance that has existed in the
opposite direction; the other is that issues at the al-
gorithmic level are more interesting. Each reason will
now be discussed in turn.

There are two consequences of the overemphasis on
implementational issues in past research. One is that the



foundations have been laid for making rapid progress on
algorithmic issues. The second is that it is getting more
difficult to make further progress on implementational
matters. Serious research on algorithms probably did
have to wait until we had a basic understanding of how
these were implemented. We had to determine which
performance factors were critical in limiting the al-
gorithmic level. Different implementational theories can
imply that different factors are critical, and so one could
not advance at the algorithmic level without some com-
mitments about implementation. (For example, it seems
that working memory limitations are far more fundamen-
tal in AcT* than the time it takes for a production to fire.)
By analogy with computer algorithms, it is important to
know whether it is a Turing machine, standard computer,
or parallel device on which the algorithm is being imple-
mented. However, there is now a rich body of research
identifying the major factors influencing the execution of
a mental algorithm. Whereas there is hardly a theoretical
consensus, enough information is available to identify the
basic type of system with which we are working. Thus, for
example, there is general agreement about short-term
memory capacity and retention whether or not one be-
lieves in a distinct short-term memory.

Further research on implementational issues may be
reaching a point of diminishing returns relative to re-
search on the algorithmic level. One reason is the success
of the research of the past 30 years in cognitive psychol-
ogy. Having achieved a consensus about the basic facts,
there is no longer this consensus to be gained as the
reward for further research. Rather, we are entering a
stage in which researchers are stymied in their endeavors
to resolve many of the theoretical issues, such as the
status of short-term memory (Crowder 1982), parallel
versus serial processing (Townsend 1974), semantic ver-
sus episodic memory (Tulving 1983 and BBS multiple
book review, BBS 7(2) 1984), imaginal versus proposi-
tional representation (Kosslyn 1980; Pylyshyn 1981; see
also Kosslyn et al. “On the Demystification of Mental
Imagery” BBS 2(4) 1979; and Pylyshyn “Computation
and Cognition” BBS 3(1) 1980, and so on.) If one looks at
the history of research in these areas, one sees that new
empirical nuances are uncovered which were unantici-
pated by any theory but that all theories are slightly
modified to accommodate each such result. One gets the
impression that existing theories are not correct; nor is
the succession of theoretical modifications converging
rapidly on a correct theory. Although the accumulation of
such results does count as scientific progress, their incre-
mental impact diminishes because they are failing to
resolve outstanding theoretical uncertainties.

2.1. The scientific induction problem. This state of affairs
can be understood when we examine the scientific induc-
tion problem faced by anyone trying to formulate a theory
at the implementational level. Such theories are about
events occurring at the scale of milliseconds. Moreover, it
is generally thought that such events are probabilistic and
to some degree state-dependent: No two people behave
identically, and no person behaves identically on two
successive days.

The theories proposed involve a complex sequence of
internal states. For example, most theories of the
Sternberg (1969) memory task propose many intervening
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states reflecting different degrees of comparison of the
elements in the target set with the probe on various
features.! At the implementational level, these internal
states go by quickly: Theories may require as many as 100
significant state changes in a second. Yet, data are typ-
ically sampled only a few times per second at most, and
often one obtains just a binary response such as yes or no.
Thus, at the implementational level, the theorist is forced
to reconstruct a complex phenomenon with a very im-
poverished data base. The ratio of data to theoretical
detail is low, making for a very difficult scientific induc-
tion problem.

One might expect research at the algorithmic level to
be equally limited by this induction problem; here the
ratio of informative observation to theoretical detail is
more favorable, however. Three things change from the
implementational to the algorithmic level, one making
induction harder and two making it easier. First, the
theories are about more complex phenomena (e.g., how
one solves a physics problem). This is the step away from a
favorable ratio of theory to data. This is compensated by
the second difference, however, which is that algorithm-
level theories are more abstract and ignore implementa-
tional detail. For example, in simulating the Sternberg
task at the algorithmic level, one can use a single produc-
tion to detect a match to the target and another to detect a
mismatch. At this level it does not matter how that match
is implemented. If there really is an algorithmic level
(which is an empirical claim, but, as argued earlier, a
widely accepted one), then this is not a false abstraction,
but one that captures a true, functional level of the human
mind. _

This third difference is that there is a richer data source
at the algorithmic level. In Act* and other theories, the
steps of cognition at the algorithmic level correspond to
points of discrete changes in working memory. When a
production fires, it enters new information in working
memory and so changes the knowledge state. In contrast,
a step of cognition at the implementational level in the
ACT* corresponds to a change in activation pattern. In our
simulation there are 10-100 of these steps before there is
a step at the algorithmic level (i.e., a production firing).

It is important that different states at the algorithmic
level are correlated with major differences in the states of
working memory because this creates an important ad-
vantage over the implementational level with respect to
the induction problem. States of working memory are
potentially reportable, and we can collect running pro-
tocols rather than just final responses. At their best,
protocols offer the prospect of providing a state-by-state
description of the transitions at the algorithmic level, and
the scientist is simply left with the task of inducing the
rules that determine these transitions. Protocols in real
life are never so fine-grained as to report every state, nor
are the reports sufficiently rich to discriminate between
all possible pairs of states; however, they are a major
advance over the situation at the implementational level.
There are problems with the use of protocols, and there
have been many unfounded criticisms of their use (see
Ericsson and Simon, 1984, for a thorough discussion of
the issues), but they are a much better source of data than
what is available at the implementational level. Many of
these unjustified criticisms of protocols stem from the
belief that they are taken as sources of psychological
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theory rather than as sources of data about states of the
mind. For the latter, one need not require that the
subject accurately interpret his mental states, but only
that the theorist be able to specify some mapping be-
tween his reports and states of the theory. It should also
be noted that there is no reason why protocols need be
restricted to verbal reports. Eye movements (Just &
Carpenter 1979) provide another useful protocol source.
As another alternative, much of our research uses as data
the keystrokes and “mouse” clicks involved in computer-
terminal interactions. The essence of a protocol is that it
provides a running series of responses that can be used to
infer the sequence of mental states.

Protocol data are available only at the algorithmic level
because only at this level do the steps of cognition
correspond to reportable working-memory differences.
Thus, the data are much richer for constructing theories
at the algorithmic level than at the implementational
level, although there is little difference in the complexity
of the theories. The force of this point can be stated in
information-theoretic terms. A scientist is trying to dis-
cover a theory of a certain informational complexity.
Unless he claims prescience, he is going to have to
perform a set of experiments whose total informational
yield at least equals the informational measure of that
theory. Thus, he is better off using an experimental
methodology with a higher informational yield. In the
worst implementational case, an experimental trial yields
one bit of information - a binary choice among two
responses. In a protocol experiment where one gets n
responses per trial, each having m values, one gets n
log,(m) bits of data. Much of the history of scientific
progress seems to depend on the availability of tools that
raise the informational yield associated with an experi-
ment.

One of the reasons I had previously failed to appreciate
this argument about the relative richness of the data at the
two levels is that I believed it ignored the importance of
reaction-time data as a source of information. There is
certainly more information in a distribution of reaction
times than there is in a response probability. The prob-
lem is that the distributional information requires a pro-
portional complication in the underlying theory. Each
state transition requires a distribution of times associated
with it to explain the observed distributions. Thus,
whereas reaction time data increase the informativeness
ofa trial, the effect is cancelled by the increased complex-
ity of the theory.

I have tested this analysis of the value of protocol data
in a number of experiments on the Carnegie-Mellon
University psychological community, where I have pro-
duced computer simulations of “mystery” systems that
were simplified versions of known psychological theories.
People had access either to the input—output of these
systems or to protocols that gave partial information about
intermediate states. Their task was to try to identify the
rules of the system. Success was much more rapid and
complete with protocols. In the case of a nondeter-
ministic system, people had no success without the pro-
tocols, whereas they still had complete success with
protocols. Although these tests were of necessity infor-
mal, their outcomes were consistent with the idea that
induction is much more difficult in the absence of access
to intermediate-state information.
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One might think that the traditional low-information-
yield experiment has been used exclusively to decide
implementation-level issues where it is the only meth-
odology available. This has not been the case, however.
Many experiments in the literature (to point a finger only
at myself, consider J. R. Anderson, 1976, pp. 363-75)
have used the low-yield methodology to explore al-
gorithm-level issues in situations where much better
protocol data could have been obtained.

2.2. Interest. So far the argument for focusing on the
algorithmic level has been that there is more opportunity
for theoretical progress because it is not overresearched
and it is theoretically more tractable. In addition, I would
like to argue that the more interesting psychological
issues are at the algorithmic level. There are two related
arguments here: (1) that the algorithmic level accounts for
most of the variance in human behavior and (2) that the
algorithmic level is concerned with issues close to essen-
tial features of human nature. (Such arguments are neces-
sarily appeals to personal preferences, and the reader
who fails to share my aesthetic primitives will not be
convinced. However, these arguments might still help
explain why someone would choose to study the al-
gorithmic level.)

An important fact about computer programs is that
optimizing an algorithm can lead to much greater time
savings than optimizing its implementation. For most
complex programs one can predict more about the perfor-
mance by counting the number of language instructions
than by inquiring how these instructions are imple-
mented. The same is true of human performance in at
least some domains, such as interesting problem-solving
tasks. The variance is largely accounted for by the
number of productions and not by the time it takes for
each production step to execute. The difference in alter-
native efficiency of algorithms outweighs any difference
in efficiency of implementation. Thus, for example, ac-
counts of novice—expert differences in problem-solving
(e.g., Chietal. 1981; Larkin 1981) focus on differences at
the algorithmic level.

For this argument to be valid, it is not necessary that
the time for a production to execute be constant (and it is
not constant in the AcT* theory). It is only necessary that
the variance due to the execution of the production be
small compared to the variance due to the number of
productions executed. When we look at complex prob-
lem-solving tasks like writing a Lisp program, we easily
see a 100-1 range in the number of productions required
by eflicient and inefficient algorithms. Even if there were-
a 10-1 range in the time required for a production to
execute (which would be hard to get in the aAcT* theory),
99% of the variance would be due to the number of.
productions and not to the speed per production.2

We have also noted that if we are to develop a theory at
the algorithmic level, this theory will be focused on
learning. This directs us to perhaps the most important
and distinctive of human traits: our ability to acquire and
utilize new knowledge. One of the great intellectual
questions concerns the origins of that knowledge — how
genes and environment conspire to transform the new-
born into an adult adapted to its particular environment.

There is, of course, a great deal of research on human
learning and memory, but this work has been at the



implementational level. For example, there is abundant
research on the rate of retrieval of facts, the capacity of
short-term memory, the effect of study time on amount
learned, retention curves, inter-item confusions, and so
forth. What has largely been ignored is the algorithmic
question of how this knowledge is organized to allow
effective performance to occur in new task environments.
The interesting epistemological questions are at this
algorithmic level.

The one area in which there is a longstanding tradition
of concern with issues above the implementational level
is language acquisition, where the dominant question has
been how the child learns the rules of its language and not
how these rules are implemented. Credit for the early
focus on this question goes to the advocacy of the compe-
tence—performance distinction (Chomsky 1965), which
directed investigation toward issues above the imple-
mentational level. (Actually, concentrating on compe-
tence, as it is traditionally construed, led to a level of
abstraction even higher than the algorithmic one, with a
concern for knowledge independent of how it is used.
Various researchers in the field [e.g., Berwick, in press]
are now coming to realize that they must also consider
knowledge use, and that the problem of language acquisi-
tion is going to require work at the algorithmic level in
addition to the competence level.)

Let me conclude this section by comparing research at
the implementational and algorithmic levels with a choice
between working two mines: It is easier to mine the
algorithmic level; there is more ore left in the mine; and
the ore is inherently more valuable. The third considera-
tion should be emphasized. By studying the acquisition of
new algorithms, we are addressing fundamental epis-
temological questions and analyzing a quintessential
human trait.

3. Pedagogical experiments

Assertion 3': The best way to study the algorithmic level
is through pedagogical experiments.

There were two reasons given earlier for why learning
is the key issue at the algorithmic level: (1) By considering
learning, one can uncover the common mechanisms that
explain very different behaviors, and (2) the most in-
teresting psychological questions concern learning. We
can also learn much about the structure of a particular
mental procedure by studying the course of its develop-
ment to the current state. When we look at a well-oiled
skill, it often executes too smoothly for the performer to
give any report about what is happening. In the acrt*
theory, for example, a major component of skill acquisi-
tion, called knowledge compilation, eliminates the need
to use working memory to hold intermediate results in
the calculation of answers. Thus, one cannot use protocol
data to analyze a skill that is already compiled. However,
in ACT* the compiled skill preserves the logical structure
of the precompiled skill. So, if one has analyzed the
precompiled skill and identified its structure, one can use
that analysis to infer the structure of the compiled skill.

Even accepting that the study of learning is central,
there is room for debate about how we should go about
studying algorithm-learning. If we were to look at re-
search on language acquisition, we would see a strong
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bias toward the naturalistic study of unstructured learn-
ing situations, but there are problems with such a meth-
odology. Key predictions from any theory will be about
situations that do not occur naturally. For example, many
of the theories about language acquisition contain claims
about constructions that children cannot learn. Unfortu-
nately, however, there is seldom evidence that they
indeed cannot learn these constructions; only that natural
languages seem to lack them. These theories also make
predictions about how the types of sentences a child hears
will or will not affect acquisition. Unfortunately, the
naturalistic experiment excludes such manipulations of
input in all but the weakest form. In addition to these
difficulties, factors are confounded in naturalistic experi-
ments. For example, it is hard to separate conceptual
development from language acquisition. As a conse-
quence, investigators of language acquisition keep re-
turning to studies of artificial language learning in the
hope that these will yield cleaner results (e.g., Braine, in
press; Morgan & Newport 1981).

The problem with the attempt to introduce control into
research on learning is also well illustrated in the work on
artificial languages. In attempts to create a laboratory
version of the learning situation, one may not be preserv-
ing the essential features of the phenomenon to be stud-
ied. This is not an idle doubt when it comes to skill
acquisition. The essential feature of any interesting skill
concerns the way it deals with complex and demanding
problems. One might argue that our learning mecha-
nisms are adapted to deal with complexity. In seeking
laboratory simplifications, one may have thrown out
the features that would reflect these adaptations to com-
plexity.

Ideally, one would like to intervene in naturalistic
learning situations, produce controlled variations on what
is happening, and collect precise measurements on the
outcome. Unfortunately, this is not feasible in the case of
first-language acquisition, for a combination of ethical and
logistical reasons. The only experimental manipulations
of first-language learning in response to these constraints
have been weak and narrow (e g., Cazden 1965; Nelson et
al. 1973). However, the interesting observation is that
there is a large class of naturalistic learning situations
where one can intervene much more effectively, al-
though it is not totally unconstrained by logistical and
ethical issues: formal education. One can look at moti-
vated people learning representatively complex academ-
ic skills. One can intervene with major experimental
manipulations (and for decades educational researchers
have done so).

Thus, if one accepts the basic argument that learning is
the most interesting issue at the algorithmic level (an
argument based on certain aesthetic assumptions), then
the best way to study the algorithmic level is through
pedagogical experiments that manipulate learning histo-
ry and look for differences in the algorithms acquired.
This can yield the predictiveness and control associated
with the best experimental rigor.

3.1. Biases against pedagogical research. The appropri-
ateness of the pedagogical experiment seems so self-
evident that I have wondered why it is not a dominant
methodology in cognitive psychology. For example, why
are we not exploring issues of language acquisition in
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those programs that successfully teach second languages?
There are questions about whether second-language ac-
quisition involves the same mechanisms as first-language
acquisition (McLaughlin 1984), but why should these
questions diminish interest in second-language acquisi-
tion? Perhaps the major reason for the relative lack of
interest by cognitive psychologists in pedagogical experi-
ments is the belief it is hard to do good research in this
area. Among the many reasons for this belief is the
perception that much educational research is so weak.
Even if this is true, it remains a separate issue whether
the weaknesses of pedagogical research are inherently
irremediable.

I believe that some pedagogical research has been
unsuccessful because of inappropriate experimental and
theoretical methodology. A great deal of work in educa-
tional psychology has been dominated by dated percep-
tions of the “correct” methodology in cognitive psychol-
ogy. Methods and theories that are appropriate for
implementation-level problems are applied to algorithm-
level ones. Also, much of this research has ignored
variability at the algorithmic level, summarizing struc-
tural differences in algorithms with parameters of indi-
vidual differences such as intelligence measures. Given
that the research has not really been designed to under-
stand the algorithmic level, there should be little surprise
that there has not been much progress. (I should add that
I do think there are some stellar examples of research in
educational psychology [e.g., Brown & VanLehn 1980;
Chi et al. 1981; Resnick 1982], but these are the studies
that did use an appropriate methodology.) Not only are
pedagogical experiments the right ones for studying is-
sues at the algorithmic level, but to make progress on
these pedagogical issues, one must approach them with
the methodology appropriate to that level.

3.2. Learning by instruction versus learning by induction.
A second reason for the lack of interest in pedagogical
research is that it is believed that learning by instruction
is less interesting than learning by induction. Thus, the
teaching of second languages is thought to be less in-
teresting than the child’s naturalistic learning of the first
language. This makes a false dichotomy between the two
learning situations, however. Naturalistic learning proba-
bly does involve at least covert instruction; and learning
in a pedagogical situation certainly involves induction.
VanLehn (1983) and Neves (1981) have argued that all of a
child’s classroom learning of skills such as algebra and
subtraction is inductive. This may be too strong a claim,
but there is certainly some truth in it. The instruction
received in a classroom greatly underdetermines the skill
to be acquired.

One could even argue that pedagogical paradigms will
reveal more about the essential features of human learn-
ing than will other paradigms. Most human skills and
knowledge are not reinvented anew through raw induc-
tion by each generation but are passed from one genera-
tion to the next. In studying this knowledge transfer, part
instruction and part induction, we are studying the para-
digm for which our learning mechanisms are most
adapted.

3.3. Research agenda. Current pedagogical research ad-
dresses an interesting set of questions:
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1. How is knowledge initially acquired in a new do-
main (the tabula rasa question — e.g., Laird & Newell
1983; VanLehn 1983)?

2. How does knowledge in one domain transfer to
another (e.g., Moran 1983; Polson & Kieras 1985)?

3. How does declarative knowledge relate to pro-
cedural knowledge (my own research)?

4. How are experts different from novices (e.g., Chi et
al. 1981; Larkin 1981)?

5. How do skills speed up with practice (e.g., Newell
& Rosenbloom 1981)?

6. How do errors occur (e.g., Brown & VanLehn 1980;
Norman 1981)?

3.4. Summary. Pedagogical experiments offer a nearly
ideal combination of complexity, experimental rigor, and
representativeness. Biases against such applied research
are just that — biases. After all these years psychologists
still suffer from physics envy; we believe that we should
construct the human mind out of unmotivated postulates.
This ignores the fact that human cognition evolved as a
functional tool. We will never understand it until we
understand how our cognitive mechanisms adapt to func-
tionally important problems.

4. Intelligent tutoring

As stated previously, part of my motivation in writing this
target article was to provide a defense of my own research
practices. The argument to this point is that research on
pedagogical issues is strongly motivated by a basic scien-
tific interest in human cognition. My own research
decisions have been more specific than just performing
pedagogical experiments, however. I have chosen to de-
velop intelligent tutors. Although I cannot argue that the
development of intelligent tutors is the best way to under-
stand human cognition, I would suggest that it is a
reasonable way.

This section is aimed at two kinds of readers. The first is
those who accept the three initial arguments above but
who believe that research on computer-based tutors is
branching off into technology and abandoning the pure
intellectual objectives of cognitive psychology. The case
needs to be made for the scientific integrity of this
enterprise. The second is those who accept the argument
for pedagogical experiments in the abstract, but who feel
that the process of studying the phenomena in an academ-
ic course is overwhelming. I believe that computer-based
tutors are technology’s answer to this problem. )

The variety of ways to use computers to educate is
enormous, and the variety of ways to use artificial intel-
ligence methods is almost equally large (Brown & Greeno
1984; Clancey, in press; Johnson & Soloway 1984). All
forms of computer-based instruction allow the possibility
of automatic data-collection as well as some controlled
manipulation. I would like to focus, however, on a special
intelligent tutoring paradigm called model-tracing,
which is particularly appropriate for psychological pur-
poses. Elsewhere (Anderson, J. R. etal. 1985) it has been
argued that this methodology is also particularly effective
pedagogically, but this is not the issue here.

The model-tracing methodology requires running sim-
ulations of both how subjects should perform tasks and
how thev actually perform tasks. In our tutoring efforts



we have models of how students write (and how they
should write) programs in Lisp, proofs in geometry, and
algebraic solutions. In addition to these student models.
an interface must be created to allow students to solve
problems with the computer and to communicate their
performance to it. As the student is solving a problem,
one runs a real-time simulation of the student’s problem-
solving, noting where the actual student deviates from
the ideal student. Protocols of the student’s actual re-
sponses and the simulations of these responses are auto-
matically recorded. The key factor in delivering instruc-
fion is that at all points the tutor has a rich interpretation
of the student’s inferred mental state. Exactly how one
brings the tutor’s cognitive interpretation to bear in
instruction depends on one’s learning theory. Based on
our ACT* theory, we have developed a set of cognitive
principles for instruction built heavily around immediate
feedback.

There are two psychological advantages of having a
tutor that simulates the student’s problem-solving. First,
the success of the instruction reflects on the correctness of
the simulation and hence on the correctness of the cog-
nitive theory. If the simulation is really off base, as it has
been in some of our attempts, the tutoring effort fails and
this feeds back on our theoretical analysis of the skill.

The second function of the simulation is to enable us to
interpret the student’s behavior objectively. We are no
longer left to induce informally what rules the subject is
following. The tutor defines an objective procedure for
mapping student behavior onto inferred production
rules. Thus, the tutor serves as the data collection mecha-
nism for the ideal pedagogical experiment, which manip-
ulates instruction and records the consequences in terms
of the algorithms (productions). Apart from the gain in
objectivity, one increases the rate at which protocols can
be analyzed. For instance, I recently (Anderson J. R., in
press) analyzed some 500 hours of protocol data with the
time investment that used to go into the hand analysis of
10 hours.

Whereas any computer at all will permit one to define
the instructional manipulation precisely, the model-trac-
ing methodology allows manipulations which vary in-
struction in response to the student’s current state of
knowledge. Many predictions about learning require this
kind of contingent responding. \

Working in the intelligent tutoring domain naturally
focuses one on searching the space of possible tutors for
the one that optimizes learning. In addition to the applied
motivation behind this focus, there is fundamental scien-
tific motivation. The manipulations that optimize learn-
ing tell us a great deal about the learning mechanisms.
However, in my own research I have also been interested
in studying variations on the tutor that the theory predicts
will be defective and will lead to slower learning. There
are, of course, serious constraints on how one can deploy
such “defective” tutors. One cannot use them in real
classroom situations.

4.1. Possible arguments against intelligent tutoring. Al-
though I believe that intelligent tutoring represents a
major methodological advance, it is important to ac-
knowledge problems that may be associated with it. The
most serious of these may be the danger that one’s time
could become too consumed in understanding the do-
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main of instruction (e.g., calculus) and that details of
computer implementation could become too dominant.
On the other hand, such “cost-of-development” crit-
icisms can be made of the efforts devoted to any research
tool; they are no more valid when the tool has applied
significance. On the contrary, the applied value of the
tool may in part justify the cost of developing it. In the
long run, the cost-benefit ratio may favor intelligent
tutors over most tool-building efforts in psychology or
science in general.

One should not rely on the potential practical benefits
of intelligent tutors to justify their development, howev-
er. The educational establishment is extremely resistant
to change, and it is quite possible that improved educa-
tional technology will simply be ignored. For many rea-
sons, educational effectiveness has little impact on educa-
tional policy. The real justification for developing
intelligent tutors has to be the goal of understanding
human learning. If these tutors have a beneficial effect on
society, so much the better.

Another argument against tutoring is that the psycho-
logical benefits of intelligent tutoring research have been
few to date. This is related to the fact that the Al
techniques used to create such tutors are still evolving
and to the fact that the cost of appropriate equipment is
only now becoming realistic. There has been relatively
rapid development in the past couple of years (Clancey,
in press).

5. The importance of applied research

This paper should not be read as an assertion that there is
no value in nonapplied research or in research that
studies general implementation-level principles; howev-
er, it is important to stress the scientific value of applied
research on the acquisition of domain-specific cognitive
algorithms. The human system is not a set of principles of
physics let loose in a relatively unstructured universe.
We are an artifact of evolution — a system designed to
achieve applications. Our most uniquely human attribute
is our ability to acquire new abilities to deal with novel
problems; that is, evolution has shaped us to achieve
domain-specific applications. To refuse to consider what
is task-specific or what is applied is to refuse to consider
the most important aspects of human cognition.

6. Auxiliary theoretical issues

6.1. The modularity issue. There has been a lot of interest
recently (e.g., Chomsky 1980; Fodor 1983) in whether
the mind is modular, that is, whether different faculties
operate according to different cognitive principles. The
theory presented here implies that, at the implementa-
tional level, the mind is not modular in that the imple-
mentational principles are domain-general. The issue is
more complex at the algorithmic level. The present claim
is that the algorithms that arise in different domains are
specific to those domains. For example, one would not be
able to predict problem-solving expertise in the domain
of programming as a generalization of problem-solving
expertise in the domain of physics. On the other hand,
these different algorithmic structures are a consequence
of the same learning principles interacting with the differ-
ent structures of each domain.
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Cognition is hence structured differently in different
domains at the algorithmic level, even if this structure is
the result of domain-general learning mechanisms. The
possibility of such a state of affairs complicates consider-
ably the issue about modularity of mind. Ignoring for a
moment the issue of the status of language, Fodor (1983;
see also multiple book review, BBS 8(1) 1985) and I
(Anderson, J. R. 1983) have each written books arguing
that higher-level mental processes are nonmodular, in
contrast to the position of Chomsky (1980), for example
[see also Chomsky: “Rules and Representations” BBS
3(1) 1980]. Despite our agreement here, Fodor is pessi-
mistic about a science of such central processes, whereas I
am optimistic. He also views language as a modular input
system, whereas I am currently agnostic about whether it
is separate from other higher-level processes. In any case,
a strong position of nonmodularity for the central pro-
cesses would imply the following:

1. At the implementational level, the same principles
describe mental operations in all domains of cognition.

2. The same learning principles apply to the acquisi-
tion of competence in all domains.

3. There is a single declarative knowledge base avail-
able for use in all domains.

4. The algorithms for processing knowledge are do-
main-general.

I think Fodor would accept (4). I read him as believing
that all cognition takes place by means of some general
inferential algorithm applying to declarative assertions.
Not believing this, I had proposed (4) in 1983 only
because I had not thought out carefully the implications of
my theory. The act* theory would in fact imply that as
we become skilled in a domain, the problem-solving
structure of that domain becomes specialized. Note that
this is a case of acquired modularity rather than of innate
modularity.

6.2. The status of language. There is a good deal of

confusion in cognitive science about the status of lan-
guage. Some see the study of language as guiding our
efforts to understand cognition, whereas others (such as
Fodor 1983) see language as not being part of cognition at
all but a modular input system like vision. Some see it as
the one area of cognitive science where there has been
real progress; others see it as a field of hopeless stag-
nation.

If we were to view language as a domain appropriate to
the analysis offered in this paper, what would be the
methodological implications for its study? There are a
number of rather startling implications, and one can take
their aptness as an indication of whether language is really
appropriately analyzed in this framework:

1. If the implementation-algorithm distinction is ap-
plied to language, then we should identify the rules that
govern language comprehension and production with the
algorithmic level and the factors that control the perfor-
mance of these rules with the implementational level.
Adult language would accordingly be a highly over-
learned skill in which conscious access to its algorithmic
structure had largely been lost. Thus, experiments on the
use of native language by adult speakers (perhaps the
most popular psycholinguistic paradigm) are not likely to
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produce rapid progress on the algorithmic level because
we lose the special methodological advantage of that level
- namely, conscious access to intervening states.

2. If the best way to study algorithmic structure and
acquisition is in paradigms that expose the sequence of
internal states, then (a) we need to study language perfor-
mance in beginning language users whose processing is
slower and perhaps more open to report; and (b) we
probably cannot use verbal protocols because of the
obvious conflict within the linguistic modality if one
attempts both to report and perform. Ericsson and Simon
(1984) argue for the virtue of immediate retrospective
reports that may avoid some of this modality conflict;
however, I still suspect that the study of language pro-
cessing poses a special methodological problem because
the best modality for report is occupied by the behavior
under study.

3. If there were a methodology for tracing the cog-
nitive states in initial language use, apart from verbal
report, then pedagogical programs for teaching second
languages would be an excellent paradigm for studying
language. The advantage of the instructional setting is
that (a) it is concerned with directly manipulating the
learning environment; (b) it works with slow processing
subjects; (c) these subjects are relatively instructible; (d)
it allows us to trace learning; and (e) it represents real-
istically complex phenomena (in contrast to work on
artificial languages). Of course, there is the possibility
that this approach will only teach us about second-lan-
guage acquisition, not first-language learning. This still
seems an eminently worthy goal.

6.3. Research on human/computer interaction. Work on
intelligent tutoring can be classified as a special case of
research on human/computer interaction. In the recent
literature on this topic (Card et al. 1983; Card & Newell
1985; Polson & Kieras 1985; Sebrechts & Black 1982),
there is a considerable overlap with the position put
forward here:

1. The field of human/computer interaction is ready
for cognitive applications. Although we have not resolved
the theoretical debates at the implementational level, we
have characterized the behavior of the system at this level
to a close degree of approximation. Behavior at the
algorithmic level is determined by a principle of ra-
tionality (Card et al. 1983), whereby it is adapted to the
problem domain; we can accordingly predict algorithms
by task analysis.

2. There will be a strong feedback from studies of
human/computer interaction to cognitive psychology in
that, as we try to account for complex phenomena, we will
learn where the gaps are in our theoretical conceptions
and where our theories are seriously off the mark. When
comparing two theories, it is more important to find a
phenomenon that neither theory can handle than to do a
hair-splitting experiment whose only purpose is to dis-
criminate between the two theories. The former kind of
evidence is likely to be useful in assessing other theories,
whereas the latter kind tends to lose its significance when
both theories are proven wrong.

The difference between the research I am advocating
here and more general research on human/computer



interaction concerns whether the research is focused on
the computer or on learning. (Of course, specific research
endeavors can focus on both.) Pedagogical research is
likely to yield more scientific information than research
on human/computer interaction, although it will proba-
bly have a lesser applied impact. This is because research
on learning is focused on the issue that will make sense of
the broad variation at the algorithmic level. In contrast,
work on human/computer interaction will yield one type
of algorithm for text editing, another for programming,
and so forth, without achieving a higher level of analysis.

6.4. Relation to connectionist models. Connectionist
models (e.g., Ackley et al. 1985; Anderson, J. A. 1983;
Feldman & Ballard 1982; Hinton & Anderson 1981;
McClelland & Rumelhart 1986; Rumelhart & McClelland
1986) seem to be theories at the implementational level as
it is defined in this paper. So it may seem surprising to
find Rumelhart and McClelland (1985), in their response
to Broadbent (1985), arguing that their connectionist
models correspond to Marr’s representational and al-
gorithmic level and not to his hardware implementational
level. As noted earlier, however, these two levels of
Marr’s framework do not correspond to the algorithmic
and implementational level as they are defined in this
paper. Rumelhart and McClelland are clearly not work-
ing at the true hardware level, any more than most
cognitive psychologists are. Theirs is nevertheless an
implementation-level theory as this is defined in the
present paper.

We can see that Rumelhart and McClelland’s theory is
not at the algorithmic level by looking at some of the
criteria that have been used to define it. The authors
would not want to posit an equivalence between changes
in reportable states of working memory and changes in
the activation levels of their connectionist models. This is
alevel of serial-like processing that is above their theory.
Rumelhart and McClelland would be equally unwilling to
accept Pylyshyn’s criterion of cognitive penetrability for
the algorithmic level, which would require their connec-
tionistic computations to be affected by beliefs.

It is interesting that the AcT* implementational level
embodies all the desirable features Rumelhart and Mc-
Clelland (1986) derive from neural consideration: The
processing units are slow; a system involves a large
number of elements with a large number of connections;
the elements communicate by activation and inhibition;
they have continuously available output; the system is
capable of graceful degradation; it has distributed control;
computation takes place by relaxation; and learning in-
volves modifying connections. Despite the fact that the
ACT* implementational level has all these properties,
Rumelhart and McClelland repeatedly refer to act* as an
instance of the “other” class of models, the one that
contrasts with their own PDP (parallel distributed pro-
cessing) models. I think they do this because there is an
exclusionary clause in their definition of a PDP model, to
the effect that there is only an implementational level and
any theoretical assertions at the algorithmic level are
necessarily only approximations to the underlying truth.
In contrast, in acT* the algorithmic level is quite real and
not an approximation. It is true that the actual implemen-
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tation involves factors not specified in the algorithm, just
as a computer will do things not specified by its program.
However, this does not tell against the reality of act*
algorithms or the computer’s program.

McClelland and Rumelhart actually use a computer
analogy to make their point about the priority of the
implementational level. In their analogy, the algorithmic
level corresponds to a pascaL program and the imple-
mentational level corresponds to assembly code. My view
is that the mind programs itself (i.e., learns) at the pascaL
(i.e., symbolic) level and that this learning is compiled
into the assembly level (connections). Their view is that
the mind programs itself at the assembly level and that
the assembly-level code can be approximated only by the
pascAL code. The reason I see this otherwise is that this
allows me to account for the findings on the learning of
problem-solving skills. Why do Rumelhart and Mec-
Clelland instead see it as they do? In Rumelhart and
McClelland (1985), they write:

Because there is presumably no compiler to enforce

the identity of our higher level and lower level descrip-

tions in science, there is no reason to suppose there is a

higher level description exactly equivalent to any par-

ticular lower level description. (pp. 195-96)
Subsequently, in Rumelhart and McClelland (1986), they
write:

Since there is every reason to suppose that most of the

programming that might be taking place in the brain is

taking place at a “lower level” rather than a “higher
level” it seems unlikely that some particular higher
level description will be identical to some particular

lower level description. (pp. 124-25)

So, it seems that the postulate of a symbolic level
(Newell’s, 1980, physical symbol hypotheses) is simply
swept aside by assumption. I suggest that there is no
reason to reject the algorithmic level and quite a bit of
current evidence that can be accommodated only at that
level. (This is not to deny that there is much evidence
requiring the implementational level too.) I assume
Rumelhart and McClelland’s belief that there is no com-
piler is based on the fact that we do not yet know how the
brain accomplishes the conversion from the symbolic to
the neural level. But if we were to take that as a criterion
for rejecting theories, we would have to go on and reject
many of the connectionist proposals. So although there
seems little else in the general premises of connectionist
modeling to disagree about, I do find it somewhat over-
zealous to exclude an algorithmic level.

ACKNOWLEDGMENTS

This research is supported by grants NSF 82-08189, MDR-
8470337, and IST-8318629 from the National Science Founda-
tion. I would like to thank Lynne Reder for going over this
manuscript with me.

NOTES

1. In the Sternberg task a subject is asked to hold in memory
a target set of a few items; frequently digits. A probe item is
presented to the subject, who must decide if the probe is in the
target set. .

2. If the range due to factor 1is n; to 1, and the range due to
factor 2 is n, to 1, the contribution of factor 1 to the variance is
n,2(n;2 + ny2).
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Many levels: More than one is algorithmic
Michael A. Arbib

Program in Neural, Informational, and Behavioral Sciences, University of
Southern California, Los Angeles, Calif. 90089

As Anderson states somewhat indirectly, Marr (1982) offered
four levels of analysis:

L. the functional level, which expresses the goals of a com-
putation and the general strategy by which it is to be carried out
(it is unfortunate that Marr calls this the “computational” level,
because it is far from indicating the steps — serial or parallel -
whereby computation is undertaken; rather, it corresponds to
what in computer program synthesis would be the specification
of a program in input/output terms, plus perhaps a top-down
sketch of program design);

2. the representational level, which provides a highly ab-
stract specification of the representation of information;

3. the algorithmic level, which provides a highly abstract
specification of the processing of information; and

4. the hardware implementational level, which is concerned
with how the representation and algorithm are physically
realized.

Anderson offers an analysis in terms of two levels: His al-
gorithmic level corresponds to a combination of the representa-
tional and algorithmic levels; his implementational level is more
abstract than Marr’s lower level, although it aims toward a
neurophysiological level, data permitting. But I would argue
that the dichotomy — algorithm versus implementation — runs
counter to well-established terminology. An implementation is
an algorithm, but in a “fine-grain” language. It is not “al-
gorithmicity” that distinguishes the levels, but rather the lan-
guage in which each is to be expressed.

In computer science, we start with an informal specification of
a program; generate an algorithm in a quasi-mathematical lan-
guage by more or less ad hoc methods; translate it into a
program for a fixed high-level language (e.g., pascaL) by fairly
stereotyped methods; and use a compiler or interpreter to
mechanically translate it into, say, machine language. Here,
subject to agreed on conventions for coding input and output,
the semantics of the program is preserved through all levels
from initial specification of input/output behavior to the de-
tailed implementation in machine language.

Anderson suggests that his algorithmic level is akin to the
high-level language level, whereas his implementational level is
more akin to the machine-language level. However, Anderson
fails to observe that in computer science we start with the
correct specification of the program (at all levels), whereas the
task of the psychologist is to go from some vague formulation of
interest in some limited domain of cognition to a precise for-
mulation of the algorithm for some related, but perhaps more
narrowly constrained, domain. In particular, a specification at
Anderson’s algorithmic level is only a hypothesis and may
receive refinement when, and only when, this hypothesis is
subject to data available only at the implementational level
(e.g., neural recording). More to the point: The high-level
program has precisely the same semantics (for well-coded in-
puts) as its machine-language translation; but it is an open
question whether or not a psychological “algorithm” is any more
than an approximate description of the semantics of the neural
net, say, that constitutes its implementation in the human brain.
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In my companion target article, I offer schemas as providinga
high level of analysis and neural nets as providing a low level;
but I assert that a successful cognitive neuroscience must embed
them in a finer net of levels to achieve an efficacious set of
analytical tools. I had expected Anderson to offer his act*
theory as his algorithmic level, because it has some similarities
to what I aim for in schema theory. (I would like a clear
statement about the extent to which parallelism is necessary for
an ACT* analysis.) But Anderson offers AcT* as his implementa-
tional level, with GraPEs (which throws away details of activa-
tion levels) as the algorithmic level. Thus, in his theory the
implementational level cannot be compiled from the al-
gorithmic level; rather, it must be obtained by the ad hoc filling
in of details, presumably to better match the task. But because
the units are the same (only the interactions differ) in AcT* and
GRAPES, I must ask where the necessary data for this refinement
came from - or, in other words, what psychological-level data
must the psychologist throw away in order to form an “al-
gorithmic” model?

I agree with Anderson (sec. 4.4, para. 3) that the acr*
“implementational level embodies all the desirable features
Rumelhart and McClelland (1986) derive from neural considera-
tion.” But then I stress that connectionist models are models,
perhaps just below the schema level, which are quasi-neural,
but not at the neural level. In general, I believe that psychologi-
cal models will involve parallel distributed models in which the
units are not well represented as elements of the simple kind
used in most PDP models (cf. the schemas for high-level vision
in Appendix A of my target article). This same vision example
leads me to doubt Anderson’s claim (sec. 1.4, para. 5) that even
if “different states at the algorithmic level are correlated with
major differences in the states of working memory,” it is also
true that “states of working memory are potentially reportable,”
at least in a sense of “potential” that leads to easy protocol
extraction. Rather, the vision example seems to show a multi-
plicity of processes which must be included in any theory that is
to bear the name “algorithmic,” but which are below the level of
introspection.

Anderson’s rich article offers many more points upon which to
comment, including a discussion of tutoring strategies (e.g.,
Woolf & McDonald 1984) and of identifying “bugs” in building
student models in the development of machine tutors. On
another matter, I refer the reader to Arbib (1987) for my view on
the modularity issue (see specifically the final section). Here, let
me close with a brief summary of my reaction to Anderson’s
three assertions:

Assertion 1': There is an important distinction to be made
between mental algorithms and their implementation.

Assertion 2': There is important basic research to be done on
algorithmic issues.

Yes, but since an “algorithm” is an unambiguous recipe for
carrying out some task through a structure of simple steps, I
urge that the use of “algorithmic” to describe just one of the
levels of algorithmic refinement be abandoned. Why not bite
the bullet and call the higher level “the mental level”? There are-
“nonalgorithmic” levels of specification that are essential to
psychological analysis, although GRaPES and AcT* by no means
exhaust the useful levels of algorithmic analysis.

Assertion 3': The best way to study the algorithmic level is
through pedagogical experiments.

A useful way? Yes. The best? Not proven. As a student of
visuomotor coordination, I find it hard to agree with Anderson
(sec. 1.5, para. 4) that “if we are to develop a theory at the
algorithmic level, this theory will be focused on learning.”
However, I do not disagree with the importance of learning, and
point to the work of Hill (1983) on language acquisition as an
important example of such study at the schema level. Of course,
brain damage also provides an alternative to learning for the
comparison of variant mental algorithms, and Gigley (1983)
offers a preliminary study in this direction with respect to



sentence understanding. The study of psycholinguistics, neu-
rology, visual psychophysics, motor skills and language acquisi-
tion all have great value in the explication of human knowledge.

Functional principles and situated problem
solving

William J. Clancey

Department of Computer Science, Knowledge Systems Laboratory,
Stanford University, Palo Alto, Calif. 94304

Anderson’s distinction between algorithm and implementation
is useful, intuitive, and argued well. One could perhaps ques-
tion his description of the algorithmic level in terms of actual
“procedures that run in the mind,” but a more concrete argu-
ment can be made against his claim that cognitive principles do
not exist at the algorithmic level.

Anderson writes, “Only the implementational level can be
understood in terms of general principles of cognition that are
constant across different situations. The algorithms we possess
are adapted to specific task demands and are as varied as those
task demands.” In contrast, recent expert systems research
attempting to design “generic tools” tends to support Gleitman
(1983): Recurrent knowledge organization and inference pro-
cedures for general tasks (e.g., diagnosis, planning, control) in
different domains (e.g., medicine, electronics) can be ab-
stracted from individual behavior. Indeed, these results are
reflected in how expert systems researchers use the word “task”
- a kind of problem (such as diagnosis or programming), not a
specific problem to solve (patient to diagnose or program to
write).

Anderson’s analysis is apparently biased by research focusing
on relatively formal problems, such as geometry and Lisp
programming. From the perspective of expert systems devel-
oped for scientific and engineering problems, cognitive science
research in mathematics, typing, programming, and so forth is
knowledge-impoverished. To capture what Anderson calls “a
true functional level of the human mind,” we must consider
tasks that relate a person’s behavior to some nonformal world. In
general, both everyday and complex problem solving outside of
formal domains like mathematics involve modeling the world in
order to take action. Making selective observations, we con-
struct and test alternative situation-specific models (e.g., alter-
native descriptions of disease processes in a particular patient),
and relate them to action plans (e.g., therapy plans). To under-
stand “how our cognitive mechanisms adapt to functionally
important problems,” as Anderson says, we must look at prob-
lems in which the problem solver is situated; that is, we must
study problems in which the problem solver is faced with
constructing a model of the outside world, within some social
setting, and relating it to the needs of some task.

More specifically, engineering problems studied in expert
systems research involve modeling some system in the world (a
device, a manufacturing plant, a human body, a circuit, etc.)
that the person is trying to design, repair, assemble, identify,
diagnose, control, and so forth (called “generic tasks” [Chandra-
sekaran 1934; Clancey 1985]). Engineering problem solving of
this type involves a modeling step to describe the world and a
planning step to choose a course of action. Anderson’s Lisp and
geometry problems involve no world to interpret; they have no
functional significance in themselves. Rather, they are formal
modeling tools that would be used in the context of some larger
system-manipulating task, involving goals for doing something
with this system in the world. This antecedent, mostly
qualitative problem solving, which expert systems research
focuses upon, provides the analysis that leads to a theorem to
prove, a program to write, or an equation to solve.

Qualitative models can be described on different levels: the
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task and system, the computational method (classification vs.
construction), the relational network representation (e.g., pro-
totype hierarchy, state-transition graph, procedural hierarchy),
and the implementation in a program (rules, frames, objects,
etc.) (Clancey 1986). Recurrence or “principles” include both a
vocabulary of relations for abstracting processes in the world
(e.g., cause, progression over time, severity, location, flow-
volume characteristics) and cognitive processes (often called
“inference procedures”) for describing complex processes in the
world by explaining and predicting their behavior. For exam-
ple, routine diagnostic problem solving in medicine and sand-
casting can be modeled by a common set of knowledge struc-
tures and inference procedure (Thompson & Clancey 1986).

Cognitive principles of this type are not necessarily explicitly
stored in the brain or even articulatable by the problem solver.
Rather, they are abstractions of a grammatical form that express
commonalities in the behavior of individual problem solvers.
These abstractions include both kinds of patterns experts can
articulate (familiar problem-solving situations and familiar
courses of action) and recurrent changes in attention and ra-
tionales for making observations when forming a model. An
example of such recurrence is the process of “triggering” a
partial model on the basis of a few observations. Triggering
reflects both the cognitive ability to usefully relate a new
situation to past experience and the properties of a world in
which processes tend to recur. Thus, the study of recurrence of
processes in cognition and the world are'complementary, in-
volving the interaction of task resources and demands.

Analysis at this level contradicts Anderson’s remark that “one
cannot use protocol data to analyze a skill that is already com-
piled.” In complex problem solving such as medical diagnosis,
we abstract sequences of data requests (observations made by
the physician) by relating them to changes in the situation-
specific model (Clancey 1984). Moreover, if the problem solver
has a model of how he reasons, as some good teachers do, we can
ask for his description of the functional modeling goals that lie
behind his questions (e.g., to detect erroneous data, or to
establish temporal boundaries on the underlying cause).

The heuristic classification (HC) model of problem solving
was developed to describe expert systems, but it is also a
hypothesis describing human problem solving. The HC model
claims that expertise (knowledge based on experience) consists
of the ability to recognize situations by abstracting specific
observations and relating these systems models to abstract
courses of action, which are subsequently refined to meet the
needs of the specific situation. Theories of problem solving
based on such a model of experiential knowledge describe a
computational method (HC), the modeling requirements of a
task (e.g., testing hypotheses, discriminating among alternative
system models), and the world (e.g., nature of the recurrence in
the domain, urgency, efficiency, cost of observations, impor-
tance of ordering observations). Strikingly, problem-solving
research in geometry, LISP and pascal programming, subtrac-
tion, algebra, and so forth ignores the inherent difficulties of
modeling nonformal systems, in which data are uncertain and
incomplete, system functionality is not axiomatic, and no writ-
ten calculus exists. Consequently, this research presents an
impoverished view of experiential knowledge structures and
inference.

In conclusion, Anderson’s call to the algorithmic level is
reasonable, but application tasks for functionally important
problems must be “situated,” if we are to capture cognitive
principles at this level. By situated, we mean, first, that the task
involves explaining and predicting events in the world in order
to plan courses of action (which will in turn satisfy higher goals),
and second, that the problem-solving activity is itself con-
strained by a social context. In expert systems research focusing
on “generic tasks,” cognitive principles at the algorithmic level
include representation requirements for modeling processes in
the world (i.e., what is articulatable from experience must bear a
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useful relation to the complexity of the world) and inferential
competence (i.e., the constraints problem solvers for similar
tasks in different domains must satisfy when gathering informa-
tion and manipulating representations in the process of for-
mulating adequate situation-specific models and action plans).

The algorithm/implementation distinction

Austen Clark
Department of Philosophy, University of Tulsa, Tulsa, Okla. 74104

I have some reservations about the way Anderson distinguishes
algorithms from implementations. These reservations should
not be taken to imply that there is no such distinction. Rather, if
the distinction is an important one, then it is important to state it
precisely.

First, it is clear that Anderson’s sense of “algorithm” is much
broader than that used in computer science or logic. There, an
algorithm is a finite sequence of instructions, which, if followed
correctly and as long as necessary, is guaranteed to terminate in
finite time (see Knuth 1973, pp. 1-9; Rogers 1967, pp. 1-5). The
distinction between algorithms and implementations is easy to
state: The same algorithm (e.g., Euclid’s algorithm) can be
implemented in many different programs, perhaps written in
different programming languages. Furthermore, a given pro-
gram (e.g., sequence of PASCAL statements) might have very
different implementations on different machines. We get the
distinction between the two notions because each of those many
different machine implementations implements just the same
algorithm.

Perhaps this can clarify one element of the argument of
Rumelhart and McClelland (1985). As long as one can point to
different implementations of the same algorithm, there is good
warrant for using a high-level “algorithm” vocabulary in addi-
tion to a lower-level “assembly language” vocabulary. Unfortu-
nately, humans provide the only known implementations of
cognitive-psychological “algorithms,” and the warrant for using
the higher-level language is correspondingly weaker (although
not necessarily zero). Talk of algorithms or computations is
presumably not talk of something over and above neural pro-
cesses. Anderson sometimes writes as if there really were a
distinct “algorithmic level” over and above the “implementa-
tional level”; unless we embrace dualism, these levels are
dstinct only in the sense that they are distinct vocabularies we
use for talking about one and the same thing.

An algorithm is essentially a sequence of instructions — an
ordered set. This is not true of a set of productions, in which no
rigid sequencing of instructions is established. Indeed, one of
the attractions of a pattern-matching production system is pre-
cisely that one does not need to specify a rigid flow of control. To
get a unique sequence of steps from a production system, one
must specify principles of conflict resolution. If two productions
both match patterns in working memory, competing activation
levels determine which one fires.

However, the principles determining activation levels —
spread of activation, inhibition, strength of productions, goal
activation, and so forth - are clearly implementational princi-
ples. It follows that we cannot derive a unique sequence of
instructions from the theory without considering details of the
implementation. Now, to determine the efficiency of a produc-
tion set, and sometimes even its correctness, we must be able to
determine the order in which the productions will fire. If this is
correct, I fail to see how efficiency or correctness can be
addressed purely from the algorithmic level, as Anderson seems
to suggest in Sections 1.2 and 1.5.

Finally, algorithms, strictly speaking, are guaranteed to ter-
minate in finite time. Not all tasks have algorithmic solutions in
this sense; indeed, for some problems one can prove that there
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cannot be an algorithm. Church’s theorem shows that there can
be no algorithm for determining which sentences of predicate
logic are theorems (see Church 1936; Jeffrey 1981, pp. 125-55).
If ACT* is on the right track, there is presumably some set of
productions people learn for sorting sentences into theorems or
nontheorems; but no such set of productions can ever be an
algorithm for the task.

All this may seem like mere semantic quibbling: Anderson is
free to use “algorithm” to mean something like “the set of
productions a person learns for carrying out some cognitive
task,” which I'd guess is what he means. But there is an
underlying substantive issue. The way in which Anderson
makes the distinction seems to make far too heavy a commit-
ment to the truth of a particular cognitive theory — the acr*
theory, or something very similar to it.

In particular. neither of the two new criteria Anderson pro-

,poses in Section 1.1 for identifying the algorithmic level seems

to me to state necessary conditions for algorithms. It is startling
to read that “cognitive steps at the algorithmic level correspond
to changes in reportable states of working memory.” This would
rule out most of what Marr called “algorithms,” because they
have no such effect. Consider what Marr (1982) described as
“algorithms” for edge detection, stereopsis, or motion percep-
tion. Why must every algorithm when activated have some
effect on working memory? Even if we drop the claim that those
effects are inevitably reportable, this still seems to give far too
narrow a criterion for identifying algorithms.

Anderson says at one point that “work at the algorithmic level
requires that one specify the actual production set that is
running” (sect. 1.3). If he really means this, it follows that one
cannot work at the algorithmic level unless there really is a
production set that is “running” (i.e., unless ACT* or something
similar is true), and, furthermore, that one can specify the actual
set that is running. This is what I mean by saying his distinction
entails substantive claims.

Similar sorts of substantive commitments are made in the
claim that “learning takes place in knowledge structures defined
at the algorithmic level” (sect. 1.1). If, as Anderson says, thisisa
criterion “for identifying the algorithmic level,” the implication
is that all learning is (in effect) learning of productions. Again,
this might be true, but there is little ground to think the
distinction will perish if it turns out to be false. Notice that
Marr’s edge-detection and stereopsis algorithms require no
such learning. Note too that they are cognitively impenetrable.

Perhaps only philosophers will think it worthwhile to spend
this much time worrying about conceptual distinctions, because
that is what they spend all their time doing. Personally, I think
Anderson’s current research stands on its own merits and needs
no elaborate justification or theoretical defense. To demonstrate
the value of pedagogical research, it seems to me sufficient to
point to some of his current work (e.g., Anderson & Skwarecki
1986) and say “See?” If others find that insufficient, I hope
Anderson’s target article persuades them.

The scientific induction problem: A case for
case studies

K. Anders Ericsson
Department of Psychology, University of Colorado, Boulder, Colo. 80309

The dramatic increase in the complexity of theories and comput-
er models of cognitive processes has not been matched by a
methodology that yields observations sufficiently detailed for
empirical evaluation of the proposed mechanisms. In his impor-
tant target article, Anderson addresses this difficult problem by
proposing different levels of description for cognitive processes:
the level of mental algorithms and the level of their implementa-



tion. He argues that sufficiently rich observations, such as
sequences of eye fixations and verbal protocols, can be used to
describe the cognitive processes at the level of sequences of
mental states. From such sequential descriptions of mental
states, it should be possible to induce the general (algorithmic)
processes specifying the sequence of steps allowing us to dis-
cover general characteristics of these processes across different
task domains.

My commentary will focus on the induction problem, where
algorithmic processes are induced from detailed observations of
the sequential structure of a cognitive activity. I will point to
some difficulties with this induction, as well as to some possible
methods for dealing with these difficulties. Most observations
relating to processing steps or mental states, such as eye fixa-
tions and verbal reports, reveal the heeded (attended) informa-
tion at the corresponding states but provide no direct evidence
about the processes responsible for bringing the information
into attention (Ericsson & Simon 1984). From the protocol data,
we can infer a sequence of states defined by heeded information,
and it is from this sequence that processes responsible for
generating those states can be hypothesized. In the ideal case,
the subjects make use of the same limited knowledge so that a
task analysis can specify all the alternative ways in which a given
cognitive processing activity can be realized as a sequence of
processing steps operating on information that is in attention.
Under these conditions, protocol data are often sufficiently
informative to allow us to reject most sequences of processing
steps that could be hypothesized (Ericsson & Simon 1984).
However, with considerable individual differences in the
amount and content of the relevant available knowledge and
with distinctly different learning histories, the induction prob-
lem becomes increasingly difficult.

A possible solution to this problem is to record and analyze
the learning history of an individual subject, as illustrated, for
example, by Pirolli and Anderson (1985). When one finds that
there is adaptive use of information presented or that there is
learning, one can review the protocol of the subject’s previous
processing of related information to induce the general pro-
cesses accounting for the learning. Induction in such a complex
situation will at best provide us with a plausible account rather
than permitting us to reject alternative accounts. In order to
significantly improve the empirical evidence for a hypothesized
process, we must be able to elicit the process under controlled
conditions that allow us to test our hypothesis. I will argue that it
is possible to identify hypothesized processes in the context of
case studies of skill acquisition and to examine the same pro-
cesses under specially designed experimental conditions.

In investigations of exceptional memory performance (Chase
& Ericsson 1981; 1982; Ericsson & Polson, in press; Mueller
1911; 1917; Staszewski 1986), the same subjects have been
studied several times each week for months and even years. The
cognitive processes of the these subjects have been monitored
both through retrospective verbal reports and through conven-
tional performance measures. From such observations it has
been possible to identify reliable and stable characteristics of
both encoding and retrieval processes that differ between sub-
jects (e.g., differences relating to the types of knowledge used
for encoding presented digits). A mathematics professor studied
by Mueller (1911; 1917) used his extensive knowledge of num-
bers to form meaningful associations (451697 — 451 = 11 X 41;
697 = 17 X 41). A subject studied by Chase and Ericsson (1981;
1982) used his experience as a runner to encode digit groups as
running times for various races (349 — 3 minutes, 49 seconds —
near world-record mile time). For the latter subject, Chase and
Ericsson (1981) induced the rules specifying which digit se-
quences would be encoded as running times and which would
not. In an experiment. their subject was presented with only
encodable digit sequences or only digit sequences not encoda-
ble as running times, and dramatic differences in performance
were found. Many other characteristics of the cognitive pro-
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cesses of memory experts have been examined by specially
designed experiments.

The scientific induction problem for case studies appears to
involve at least three steps. The first is to form hypotheses about
information-processing activity on individual trials, something
Anderson has already discussed. The second step is to identify
stable information-processing activity across trials for a given
individual and, ideally, to validate its induced structure with
experimental tests under systematically controlled conditions.
The last and most critical step is to seek generalizable charac-
feristics of memory skill across different individuals. There is
remarkable consistency in the general characteristics of memory
skill; Ericsson (1985) showed that the skill of a large number of
memory experts could be readily characterized using the princi-
ples of skilled memory proposed by Chase and Ericsson (1982).

Once the knowledge and cognitive processes used by a given
subject in a task are well understood, issues of generalizability
across subject matter and task domains can be addressed in
transfer experiments. By systematically varying the content and
structure of tasks. not only can detailed hypotheses about
generalizability of processes and knowledge be evaluated
against performance data, but the access and mediation of
particular knowledge can be monitored through verbal reports,
as shown, for example, in Ericsson and Polson (in press).

In sum, the case studies described above can be viewed as
illustrations of the general methodological approach proposed
by Anderson. These studies not only show that such an approach
is feasible but also support Anderson’s conjecture that gener-
alizable mental procedures can be identified across individuals
and across knowledge domains.

The evolutionary aspect of cognitive
functions

J.-P. Ewert

Department of Neuroethology, University of Kassel, D-3500 Kassel, Federal
Republic of Germany

Anderson emphasizes that one may never understand human
cognition until one realizes how it adapts to functionally impor-
tant problems. He provides convincing methodological material
to support the claim that the study of cognition at the al-
gorithmic (rather than the implementational) level will yield
important insights into fundamental properties of human knowl-
edge, and that this may have an impact on progress in psycho-
logical research per se. However, because these methods do not
allow one to compare comparable cognitive mechanisms of
vertebrate animals, Anderson’s notions about the uniqueness of
human cognition are not well supported. An algorithm resulting
from the analysis of human mental functions is probably differ-
ent from the algorithm that the underlying neuronal substrate is
using (see Creutzfeldt 1983, p. 426; 1986, p. 16). One can only
compare algorithmic levels of cognitive processes between man
and animal in terms of neuronal structures and related informa-
tion processing. It appears to me that the way fundamental
processes of cognition (perception, memory, retention, recall,
retrieval; see Lynch et al. 1984) are implemented in the human
brain camr come to be understood in terms of the evolution of
related structures and functions of the vertebrate brain (for
discussions see Bullock 1983; Griffin 1982; Northcutt 1981;
1986; Ploog & Gottwald 1974). In the following, we will mention
some general aspects of cognition and then ask whether an
algorithmic/implementational terminology can also be applied
to neural systems that mediate primordial homologues in lower
vertebrates.

According to Anderson, human cognition — a system designed
to achieve domain-specific applications — is an “artifact of
evolution.” Putting aside the question of whether this term is
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appropriate, we agree with Anderson’s notion that the “ability
to acquire new abilities to deal with novel problems” is a
uniquely human attribute as far as the linguistic system and its
verbal capacity is concerned (e.g., see Arbib et al. 1982).
Anything that depends significantly on language, its grammar,
its symbolic structure, and its logic, may not be available to
nonverbal species (Schopenhauer, 1883, even suggests that the
superior structure of certain languages, such as classical Greek,
permits better construction of thoughts and their connections).
All this implies that there are mental perceptual processes that
are built out of linguistic competence and experience. Walker
(1983) points out that the question here is whether language-
dependent mental processes are added to, develop from, or take
advantage of neural organizations and representations that arise
in the brains of vertebrate animals in general, or whether
nothing would be left that resembled human cognitive functions
if linguistic devices were excluded.

To prevent misunderstanding, some definitions are in order
here. Cognition is the process by which knowledge is gained
about the world; this is not necessarily bound up with linguistic
descriptions. Mental function refers to internal activities influ-
enced by memories of past experiences and expectations of
future ones (Paillard 1987). More specifically, these may be
organized events in neural tissue occurring in response to
antecedent (internal or external) signals that they classify, trans-
form, and coordinate prior to initiating actions (at least poten-
tially) whose effects can be anticipated to the extent that avail-
able information permits. Acquired knowledge is thus a kind of
representation of previously experienced situations that can be
recognized and eventually foreseen. Perception is the use of the
senses to acquire abstract knowledge of the outside world by
combining certain pieces of sensory information into coherent,
perceptual wholes (e.g., see Ewert 1987a). This means that a
couple of separate events are not sufficient to define a significant
stimulus pattern or spatial structure, respectively; an algorithm
describes the rules about the relationships between events, to
which the appropriate perceptual systems are adapted.

Piaget (1971) proposes the term schema for these “perceptual
wholes” that correspond to units of knowledge — mental entities
— that are prerequisites for cognitive functions. A schema
encodes local and contextual knowledge about the criteria for
recognizing an object. Uexkiill (1909), Lorenz (1943), and Tin-
bergen (1951) have shown that animals possess schemas as
internal “small-scale models of external reality” (Craik 1943);
the fundamentals of animal cognition can accordingly be evalu-
ated in terms of the qualities and interactions of their perceptual
and motor schemas (cf. target articles by Arbib and Ewert, this
issue; see also commentary by Ewert on Arbib’s target article).
Schemas are the means whereby man and animal perceive a
symbolic picture of their physical environments (Creutzfeldt
1986, p. 22). These schemas do not copy the environment but
provide significant information about behaviorally relevant sen-
sory and functional aspects of it. With the aid of its innate
releasing mechanisms, a toad uses inherited abstract knowledge
about its prey by comparing the spatiotemporal aspects of
configural visual cues with an inborn prey schema. A bird uses
inherited knowledge about nest building by placing pieces of
straw in the form of a nest according to an inborn nest schema.
An important property of schemas is (1) that they refer to the
physical original only approximately, in an abstract fashion, and
(2) that they can be modified by accumulating individual experi-
ence through the introduction of new features (e. g., by classical
conditioning), or they can be elaborated by utilizing new feature
relationships (e.g., operant conditioning). The latter processes,
together with the context-dependent formation and combina-
tion of schemas into symbols and abstract concepts (ideas),
characterize an aspect of human cognition. So far, we follow
Hume (1902) when he argued that a theory of human cognition
will acquire additional authority if we find that the same theory
is requisite to explain the same phenomena in other animals,
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thus implying common, basic neural mechanisms underlying
human and animal knowledge and suggesting that human supe-
riority is a matter of degree. (The discontinuity results from
language, which obviously involves special tuning of neural
systems, permitting stages of intelligence that only humans can
reach.)

Primate and nonprimate mammals possess comparable kinds
of “neuronal machines” (Creutzfeldt 1983; Eccles et al. 1967;
Hebb 1949; Hubel & Wiesel 1977; Mountcastle 1957) suitable
for constructing schemas as internal representations. Being
percept- or act-related cell assemblies, these functional units
amount to perceptual and motor schemas and can be traced back
to equivalent units in lower vertebrates such as toads (see target
articles by Ewert and Arbib, this issue). According to our
current concepts, object perception and cognition proceed
in parallel/hierarchically organized distributed connectionist
networks (Rummelhart & McClelland 1986) consisting of inter-
acting functional modular units (e.g., Creutzfeldt 1983) that
represent “presently excited, distinctive neural gnostic organi-
zations” (Bindra 1976). Hence, cognition can be analyzed in
terms of aspects of brain function and its evolution with respect
to differentiation, take-over, addition, and conservation of func-
tion (e.g., Ebbesson 1984; Walker 1983).

It is known from comparative neurology that many functional
properties of the human brain can be traced back to related
properties of anatomically homologous structures of lower ver-
tebrates (see Ebbesson 1980; Northcutt 1986; Vanegas 1984). In
general, we can say, for example, that all terrestrial vertebrates,
including man, have certain species-specific sensorimotor coor-
dinations for head and body turning wired into the midbrain and
hindbrain, and that object recognition and adaptation to novel
signals require forebrain (telencephalic/diencephalic) interven-
tion. The optic tectum, whose intrinsic circuitry is responsive to
retinal input alone, functions for “noticing,” whereas its connec-
tivity with prosencephalic structures enables the system to
“examine” and “recognize” signals; the latter is cognitive and
controlled by context (Ewert 1987b). According to Paillard
(1987), the turning of sensorimotor instruments can be regarded
as a primordial form of adaptive response to environmental
constraints that have prepared the way for the emergence of
cognitive instruments for the control of perception and action.
In mammals there are forebrain structures — for example, the
hippocampus, a component of a limbic/diencephalic system
significantly involved in memory, and homologous structures of
the medial pallium (or “primordium hippocampi,” Herrick
1933) with partly comparable functions — that can be traced back
to amphibians (Ewert & Finkenstidt 1987). These homologous
structures receive appropriate inputs from sensory systems and
serve to distinguish between previous familiar and novel events
(Gaffan 1976; Vinogradova 1975) and to accumulate knowledge
of local geography by providing “cognitive maps” (O’Keefe &
Nadel 1979; Tolman 1948).

We therefore conclude that it is not fully justified to view the
“ability to acquire new abilities to deal with novel problems” as a
uniquely human attribute, because essential equivalents can be
traced back to homologous neural substrates and functional
properties in vertebrate animals down to amphibians. Conse-
quently, one can inquire into the phyletic roots of cognitive
processes at both algorithmic levels (defined by Anderson as
constructed by the mental procedures that enable us to behave
adaptively) and implementational levels (defined as the mecha-
nisms that implement those procedures). For example, in toads
the algorithm for prey-catching is given by Figure 1 (see Ewert’s
target article, this issue). This algorithm may be inherent in
“sensorimotor codes” of command releasing systems, CRSs (as
described in sect. 6.3). Does the implementational level refer to
sensorimotor functions of CRSs? Can sensorimotor codes —
whose prosencephalic/mesencephalic circuitry determines in-
nate rules according to which the relations among visual cues
describe prey in space — be interpreted in terms of species-



specific cognition? Do the functional units of interconnected
cells that determine tectal T5(2) prey-selective neuronal proper-
ties in the manner of a prey schema implement their function
according to a “wired-in algorithm”? Does information provided
by “modulatory limbic-diencephalic circuits™ that enable toads’
CRSs to behave adaptively in relation to past and present events
pertain to an algorithmic level?

In summary, we think that the comparative study of brain
function helps us understand why animals may use different
algorithms for similar tasks or similar algorithms for different
tasks, respectively (see also commentary by Ewert on Arbib’s
target article, this issue). The algorithm the animal uses is the
expression of its implementation. The implementation cannot
be fully understood without an evolutionary history. The evolu-
tionary story cannot be told at the algorithmic level.

The study of cognition and instructional
design: Mutual nurturance

Robert Glaser

Learning Research and Development Center and Department of
Psychology, University of Pittsburgh, Pittsburgh, Pa. 15260

From a historical perspective, Anderson’s target article con-
tinues a line of thinking that Dewey, Thorndike, Skinner, and
others pursued on the relationships among learning theory,
pedagogical experimentation, and instructional science. The
underlying assumption with each has been that behavioral
science research will uncover fundamental laws of learning and
parameters of individual differences that can be applied to
educational practice. In Thorndike’s (1922) analysis of S-R (stim-
ulus-response) bonds in learning school subjects, in Skinner’s
attempts to extrapolate operant analysis to programmed instruc-
tion [see Skinner: “An Operant Analysis of Problem-Solving”
BBS 7(4) 1984], and in attempts by statistical learning theorists
such as Atkinson (Atkinson & Paulson 1972) to develop optimal
practice programs for verbal performance, this assumption was
clear. Gestalt psychologists such as Wertheimer (1959) also
considered the potential of their theories for informing the
teaching of thinking, problem solving, and understanding. Not
often explicitly stated was the underlying proposition that at-
tempts at pedagogical application can provide a significant test
of scientific knowledge, raising issues that help amend current
theory, generate new theory, and force more complete explana-
tions of human performance. Certainly in other sciences this
two-way communication between theoretical research and at-
tempts at application has generated active fields of basic re-
search and raised fundamental research questions.

Many behavioral scientists now believe that the potential of
their science for influencing pedagogical practice has grown
markedly. Greater understanding of cognition and the struc-
tures of human knowledge have led to increasing information
about complex human activity. Findings are accumulating on
how humans acquire competence and skill in language, mathe-
matics, and science, and in various forms of expertise learned
over the course of schooling, training, and experience. This
newly uncovered richness in scientific descriptions of human
performance contrasts with the psychological analysis of infor-
mation-lean processes that were the focus of older theories of
human intelligence, learning, and perception. The modern
discovery that human performance entails complex structures of
knowledge has advanced our understanding; our awareness of
the influence of these memory structures on cognition demands
a new level of lawful explanations of human behavior. Ander-
son’s target article is a significant contribution to much-needed
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discussion of methodological questions that arise in the study of
knowledge acquisition.

In support of Anderson’s analysis, the argument for research
at the algorithmic level is currently overwhelming. Many areas
of investigation show changes in theory and data that are re-
flected in Anderson’s suggested approach. Early studies of
information processing in problem solving, of development in
children, and of the design of artificial intelligence expert
systems concentrated on knowledge-lean, generally intelligent
processes, such as general heuristics of search, increases in the
power of memory with maturation and the computational power
of computer systems. With research experience and accumulat-
ing evidence, a further shift in paradigm has occurred. The
study of high levels of human competence and expertise has
revealed the involvement of organized, integrated structures
that are integral to effectiveness in thinking and problem solv-
ing. In developmental psychology, studies on competent chil-
dren’s knowledge in a subject-matter domain indicate that
structure and cohesiveness facilitate access to, and use of, the
knowledge in a way that makes them act more developmentally
mature than novice children their own age. In the design of
expert systems, it has been more productive to emulate the
specialized knowledge structure and methods of an expert than
to simulate the processes of general intelligence and the
heuristics of general problem solving.

These findings uncover the significant qualities of competent
performance that emerge when an individual engages a highly
organized knowledge structure or appropriate schema that in-
cludes concepts, models, planning mechanisms, and metacog-
nitive strategies. These structures do engage fundamental pro-
cesses of the human system, but learning ability and intelligence
also seem to be significant functions of knowledge and knowl-
edge-organizing capability. Thus, the present challenge is to
study competence and learning in terms of the interplay be-
tween knowledge structure and processing ability — at what I
interpret to be Anderson’s algorithmic level. Performance ana-
lyzed at this level illuminates a critical difference that is of major
significance for education, a difference between individuals who
have acquired considerable competence in particular domains
of knowledge and skill and those who are less competent. The
acquisition and efficient utilization of an organized body of
conceptual and procedural knowledge should now become a
major arena of study for cognitive science.

Although I agree with Anderson that substantial promise for
the study of learning and more interesting and important theory
reside at what he calls the algorithmic level, I believe we should
also consider how the study of implementational processes will
be influenced. To use his computer analogy, the program and
data structure are of enormous consequences to performance,
but they are significantly influenced by machine implementa-
tion or architectural features of the system (Anderson instead
suggests they are largely independent). In certain research
endeavors, the connection between research at the algorithmic
and the implementational levels will be important to maintain;
research at the implementational level on phenomena of memo-
ry and perception will be forced to revise its concepts by
research findings at higher levels of performance. The memory
capacity ofa child who is knowledgeable in a specific domain and
the rapid pattern recognition of the expert in a particular field
will both need to be explained eventually at these two levels of
description. With this in mind for the long term, investigation
and theory development at the algorithmic level on how humans
acquire domain-specific knowledge and skill should proceed
now as directly as possible. As Anderson proposes, a reasonable
methodology is to attempt to produce, through pedagogical
experimentation, the performances that humans can attain.
Theories of learning will be generated and tested once we
attempt to understand the factors that produce or retard the
acquisition of knowledge and the properties of the tutorial
situations involved.
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Pedagogical “engineering” experiments are highly appropri-
ate at our current state of knowledge about individual dif-
ferences and the nature of competent performance. A lesson
from experience, however, is in order. In the past, attempts in
educational psychology to study individual abilities in learning
were weakened by an unfruitful combination of two streams of
psychological science ~ the study of individual differences in the
psychometric tradition, on the one hand, and the study of
conditions of learning in relatively simple situations, on the
other. No common theory connected these two endeavors.
Nevertheless, for some years studies were carried out on what
was called aptitude—treatment interaction (ATI). The results of
these studies were carefully documented by Cronbach and
Snow (1977) and others, and indicated a singular lack of em-
pirical regularities. In hindsight, it was an impossible task.
Variables studied in the learning laboratory, such as massed and
spaced practice and inductive and deductive learning, were
Juxtaposed with traditional assessments of mental abilities and
personality variables; apparently, at the analytical levels investi-
gated, the underlying processes and mechanisms involved had
little in common. At present, cognitive psychology shows pro-
gress that may produce more fruitful contact. Individual dif-
ferences are being analyzed in information-processing terms, as
are the learning strategies of individuals; and protocol-analysis
techniques are bringing these together in the study of single
cases. From this point of view, attempts to make advances in
learning theory that encompass individual abilities and disposi-
tions may become more theoretically and practically effective.

Anderson’s discussion of pedagogical variables and conditions
for learning is somewhat one-sided. Based upon the kinds of
tutors he has built, the subject matter he has studied, and the
tutorial tactics he has used, he claims that learning by induction
— that is, working with examples, making mistakes, correcting
them, and inducing the correct procedures — is much more
“interesting” than learning by instruction — that is, learning
from being told. The latter, I assume, includes learning from
listening, from modeling, from apprenticeship situations, and
from being assisted in using metacognitive strategies for learn-
ing. These are certainly forms of learning that cannot be ignored
and that will need to be investigated regardless of one’s tutorial
predilections. So when Anderson says that his claim that one
form of learning is more interesting than another may be too
strong a claim, I concur.

To conclude, investigations in different fields with various
approaches — the study of highly competent performance and
expertise, the study of the nature of human development and its
structure-dependent transitions, and the study of expert sys-
tems in Al - all converge on the significance of “knowledge
structure-process interactions” and the importance of knowl-
edge organization and representation in facilitating human abil-
ity. Anderson’s proposal for work at the algorithmic level of
analysis and his methodological statement are supported by this
evidence. The form of investigation he proposes should assist in
the development of learning theory that meets the complexity of
human performance, and it should also inform the study of
fundamental human architecture at the implementational level.
A major challenge at the algorithmic level is to derive connec-
tions between learning theory and instructional theory more
systematically so that, as learning theory is developed in various
domains, normative principles for achieving knowledge and
skill are identified. Instructional intervention methodology can
test the adequacy of theory, not only as a scientific description of
experimental data, but also as a source of prescriptive heuristics
that can guide the design of instructional systems. In keeping
with the spirit of Anderson’s paper, Miller (1986) has written,
“When the next experiment in any program of research comes
to seem too trivial to justify the effort of doing it, a useful
application can do wonders to revitalize and redirect the work”

(p. 295).
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Ambiguities in “the algorithmic level”

Alvin I. Goldman
Department of Philosophy, University of Arizona, Tucson, Ariz. 85721

I am not unsympathetic to the idea of research “at the al-
gorithmic level,” but there seem to be some ambiguities in what
Anderson means by this phrase. In some places, he apparently
means the study of algorithms themselves — that is, mental
procedures, or what he calls (in the acT* framework) “produc-
tions.” In other places, “research at the algorithmic level”
appears to refer to the study of how procedures are acquired or
learned. These interpretations are quite different. As Anderson
points out, procedures themselves are typically task-specific.
On the other hand, principles for the learning or acquisition of
procedures could be the same across all tasks and domains.
Indeed, it seems clear that Anderson believes that acquisition
(and tuning) principles are the same for all domains, because he
formulates such a unique set of principles in Anderson (1983). It
is therefore puzzling to find him writing that “only the imple-
mentational level can be understood in terms of general princi-
ples of cognition that are constant across different situations”
(para. 3). Given the theory of production learning in Anderson
(1983), he seems committed to the notion that there are princi-
ples of algorithmic learning that can be understood in terms of
general principles of cognition. So if research at the algorithmic
level s, or at least includes, the study of production acquisition,
then the algorithmic level must also feature principles of cogni-
tion that are constant across situations. Of course, the re-
searcher who wishes to investigate such learning principles is
well advised, as Anderson stresses, to sample what goes on in
many task domains. But this only means that empirical evidence
should be drawn from varied instances; it does not conflict with
the claim that there is a common set of learning principles.

This apparent inconsistency might suggest that the better
interpretation of what Anderson intends by algorithmic level is
the study of algorithms themselves, not the study of principles of
their acquisition. There are two problems with this interpreta-
tion. First, it doesn’t sit well with the fact that he often formu-
lates his endorsement of algorithm-level research in terms of the
learning of algorithms (see his statement of point 3', para. 3).
Second, it is doubtful that the study of algorithms themselves is
a suitable topic for psychological theory. The class of cognitive
domains is indefinitely large and varied: science, religion, tele-
phone dialing, bridge plaving, and so on. Moreover, the partic-
ular sets of procedures that different cognizers possess in any
one of these domains will be peculiar to their specific experi-
ence, historical situation, tutors, and the like. It seems implausi-
ble to suppose that psychology is the appropriate discipline to
study this enormous range of differences, or all the variables that
influence it. Psychology seems well equipped to study the
general mental mechanisms of procedure acquisition, not the
variety of procedures themselves. To use the phraseology 1
employ in Goldman (1986), psychology can shed light on basic
mental “processes,” but not on the innumerable intellectual
“methods” that different cognizers encounter and internalize.

Anderson points out that differences in production sets proba-
bly account for most of the variance in human behavior. Does it
follow from this, in addition to the assumption that psychology is
interested in the study of human behavior, that psychology
should study these differences? No. Of equal importance in
accounting for the variance in human behavior are differences in
information stored in declarative memory, the cognizer’s “be-
liefs” or units of (unproceduralized) “knowledge.” But it does
not follow from this that psychology should try to study all
factual subject matters. Only the common principles of learning
~ both belief acquisition (and retention) and procedure acquisi-
tion (and retention) — are natural targets of research in cognitive
psychology.



There is another aspect of the algorithmic level that is promi-
nentin Anderson’s target article. This is the conception of a level
that abstracts from implementational details. This marks a
distinction familiar from the work of many previous writers (as
Anderson notes): the program/hardware distinction, the al-
gorithmic/functional architecture distinction, and so on. How-
ever, this way of drawing the distinction does not seem to be
equivalent to either of the two others ways of drawing the
distinction discussed above. For example, because production
acquisition can be studied at either a higher or a lower level of
abstraction, the algorithmic level as defined by the study of
production acquisition cannot be equated with the algorithmic
level as defined by abstraction from implementational details.
Thus, Anderson’s exposition suggests two or more different
distinctions, not a single distinction.

The possibility of multiple distinctions is further suggested by
another feature of the discussion. Anderson picks out speed and
reliability as the critical factors in activation-based processing,
and chooses these as the ones from which the algorithmic level
should abstract. But why choose precisely these factors as the
ones from which the higher level of analysis should abstract? In
principle, there seem to be indefinitely many processing details
from which a researcher might wish to abstract (for certain
purposes). The general idea of abstracting from processing
details does not fix a unique distinction between implementa-
tional and algorithmic levels. I would invite Anderson to elabo-
rate on just which processing details should be omitted and the
rationale for this choice.

These comments are not meant to express doubts about either
the legitimacy or utility of algorithm-level research in general or
Anderson’s current research program in particular. But before
we assess the cogency of his case for this general type of
research. it would help to have a more precise delimitation of
the way in which such research is to be understood.

A flawed analogy?

James Hendler

Department of Computer Science, University of Maryland, College Park,
Md. 20742

Anderson, with appropriate reference to Marr (1982), bases
much of his target article on a discussion prompted by a division
of cognition into two relatively decomposable layers: the imple-
mentational and the algorithmic. Anderson says that “the ob-
vious analogy is to the standard computer, where programs and
stored data structures correspond to the algorithm, and the
actual machine and its operation correspond to the implementa-
tion.” He goes on to liken his two levels to Pylyshyn’s (1980)
distinction between algorithm and functional architecture and
points out that “Pylyshyn likewise draws heavily on the comput-
er analogy to articulate his distinction.” In this commentary, I
wish to question whether the arguments based on the near
decomposability of these levels are valid. In particular, I hope to
show that the very analogy drawn on, that of the “standard
computer,” helps demonstrate problems with the algorithmic—
implementational dichotomy and the assertions based thereon.

Let us consider what happens in a standard computer during a
standard programming task. We start with a high-level goal — for
example. “compute the mean for a set of grades.” This goal is
broken down into an algorithm, a carefully specified procedure
giving step-by-step operations on a set of data structures, which
must also be defined. In our averaging example, we start with
the algorithm (sum the grades into a total and divide this by the
number of grades) and some decisions about how the grades are
to be entered and stored (e.g., are they to be read from the
keyboard and stored in an array, or are they read from a file and
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operated on as read, etc.). Most computer scientists would refer
to the latter decisions as implementational details, but Anderson
would have us categorize these as algorithmic structures.

As the code is prepared to run on the computer, it goes
through many stages. At the top level are the many programs for
computing an average. One such is

(defun AVG (x)
(quotient (apply 'plus x) (length x)))

But, of course, we could have entered many variants, some with
loops, some with recursion, or we could even have hand-coded
the program for some particular number of arguments. The code
is now run through a compiler to provide intermediate code
such as a LIsP machine’s

20 MOVE D-PDL FEFI6
21 MOVE D-PDL ARGI0
22 (MISC) APPLY D-PDL
23 MOVE D:PDL ARGI0
24 (MISC) LENGTH D|PDL

25 (MISC) % DIV D-RETURN

This intermediate code would look very different on any of the
many other non-LIsP machines that run Lisp. However, we
could simply have typed this as the program for computing an
average and thus by the definition above, we are still looking at
an algorithm.

As the standard computer prepares to run this program, yet
more decomposition occurs until we reach the memory instruc-
tions, a set of 1's and O’s that represent the program at the
machine level. At this point, we'd certainly like to think we are
at the implementational level, but we still have a program, with
associated data structures (which we could have typed in di-
rectly on many machines), and thus we might still have to
consider ourselves as discussing algorithmic issues.

The problem here is that we have been focusing on the code
itselfas it passes through various transformations between levels
of description. We start at what is clearly an algorithmic level
and proceed by small steps to the implementational. Where
does the transition take place? At the editor level, when we
compose the LIsP code? At the compiler level, when the inter-
mediate code is produced? At the assembler level, when that
code is turned into machine instructions?

How can we claim that all these levels are nearly decomposi-
tional and claim to have an understanding of this program, or of
programming in general, if we cannot describe the algorithms
and mechanisms that produce the transformations of the code?
How can we gain an understanding of cognition without theories
that bridge levels and describe the mental algorithms and
cognitive mechanisms that allow information flow through these
layers? If we focus on the distinction between algorithmic and
implementational, we may miss important issues arising from
these transformations. If we base our research on this distinc-
tion, we may ignore important cognitive mechanisms.

This problem arises if we try to pursue Anderson’s lines of
argument about the validity of different methodologies and
models by examining some spreading-activation models. If we
look at programs like AcT* or NETL (Fahlman 1979), we see
architectures that run the activation over a network and supply
information that higher-level processes can use. Thus, the
implementational and algorithmic levels can be distinguished
fairly easily, assuming one is willing to make the cutoff at the
point where those programs do. If, however, we look at two
other spreading-activation systems, local connectionist models
(cf. Feldman & Ballard 1982) and symbolic marker-passing
algorithms (the modern descendants of Quillian 1966), the
distinction is less clear.
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Anderson proposes that connectionist models are implemen-
tational. He justifies this, in his discussion of the Rumelhart and
McClelland work, with the claim that “the authors would not
want to posit an equivalance between changes in reportable
states of working memory and changes in the activation levels of
their connectionist models.” Recent local connectionist models,
however, do have states that may correspond to these. For
example, Shastri (1985) proposes a model for doing hierarchical
reasoning on such an architecture, and Cottrell (1985) proposes
amodel for performing word-sense disambiguation. Thus, what
seem to be algorithmic functions are occurring at what Anderson
calls the implementational level.

Symbolic marker-passing algorithms seem to go the other
way. Charniak’s (1983) marker-passer and my own (Hendler, in
press) use algorithms that propagate symbolic information over
a network to find inference chains used by a natural language
processor and planner, respectively. This model of marker-
passing involves the propagation of a large amount of informa-
tion and uses various types of heuristics for analyzing the
returns. I would be hesitant to call our models implementational
(I certainly wouldn’t claim they were neurophysiologically cor-
rect), but they seem to operate below what Anderson regards as
the algorithmic level.

To get a handle on the psychological reality of local connec-
tionism, marker-passing, and other such models, it is not
enough to run only the experiments Anderson proposes at the
algorithmic level or the traditional experiments at the imple-
mentational. Clearly, the field of cognitive psychology must
expand its methods to include new innovations such as Ander-
son’s learning experiments, but we shouldn’t (as his target
article might cause us to believe) limit experimentation to
looking solely at the two levels. New experimentation and
cognitive modeling must examine the boundaries between dif-
ferent phenomena, the transformation of information from high-
level symbols to the neurophysiological level. Without this we
will never be able to describe the overall architecture and
mechanisms of cognition.

Generality and applications

Jill H. Larkin

Department of Psychology, Carnegie-Mellon University, Pittsburgh, Pa.
15213

Decisions about what to work on are among the most important
ones a researcher makes. Anderson’s target article, while argu-
ing the promise of one kind of research, provides a thoughtful
discussion of general criteria for good research. The purpose of
this commentary is to consider further three issues Anderson
raises — the implementation—algorithm dichotomy, the need for
general results, and the role of applications — and to elaborate
their merit and basis as general principles for productive
science.

The implementation-algorithm dichotomy. Anderson argues
that psychological algorithms are different from their imple-
mentational mechanisms and that there is a clear and nonarbitr-
ary boundary between them. But throughout science there are
always difficult problems about how to cut a domain into man-
ageable pieces, either according to phenomena (e.g., high-
energy physics) or by level of detail (e.g., atomic physics and
chemistry). When the cut is appropriate. progress is indepen-
dently possible on both sides. Chemists can understand the
interaction of atoms by largely ignoring all but the outer shell of
electrons, whereas atomic physicists study these internals
largely ignoring interactions between atoms. Yet this partition
of fields is somewhat arbitrary, and there are always regions of
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overlap. The trick is to cut at a point that yields a theoretical
structure that (a) covers an interesting range of phenomena and
(b) can operate relatively independently of phenomena outside
its domain.

Unfortunately, in new and complex fields, the place for the
theoretical cut may not be obvious. Anderson argues that the
algorithmic category should include processes that are reporta-
ble and correspond to working-memory transitions, and pro-
cesses that change through learning. Although these criteria are
sensible, there may be other equally sensible cuts. For exam-
ple, there are processes (e.g., language, vision. and imagery!
that seem to be particularly easy and efficient for humans.
Furthermore, because the mechanisms of these rapid processes
seem to interact little with slower, more conscious logical
reasoning, it might be useful to treat these processes as the-
oretical black boxes, akin to Anderson’s implementational level.

In short, cutting out a useful algorithmic domain depends on
some subtle judgments about what are basic units of human
thought, units whose internal details do not strongly affect the
algorithmic processing. If this cut can be made well, then
productive research can occur on both sides of the cut, each
informing the other, but neither dependent on progress in the
other.

The need for generality. My only serious disagreement with
Anderson’s target article concerns its downplaying of the need
for general scientific results. Anderson states in several ways
that generality is to be found in implementation and not in
algorithms; he never clearly describes the kind of scientifically
useful results that might come from studies of algorithms. The
reader is left with the unfortunate inference that these results
may be a grab-bag of domain-specific models, plus a few prac-
tical applications. This is not satisfactory; science does not
progress unless last year’s results are something that can be built
upon this year. Fortunately, I think Anderson is wrong in saying
that algorithmic results must be domain-specific. First, as he
suggests briefly, it is possible that a relatively small number of
learning mechanisms, operating in a wide variety of environ-
ments, could account parsimoniously for many domain-specific
task algorithms. Anderson (1982) has proposed such mecha-
nisms himself, and this is the central point made by Simon
(1981). Second, as we understand domain-specific algorithmic
models better, we may develop a set of constraints that can be
placed on all such models. Finally, we may develop tools (like
the production system) that are consistently useful in building
algorithmic models. Not only do such tools make work easier.
but understanding why they are useful can be a path to under-
standing general properties of human information-processing
algorithms.

Contributions of an applied science. Anderson discusses the
special value of using pedagogical experiments to test al-
gorithmic theories — that is, using an applied domain as an
experimental setting. However, merely using an applied sci-
ence as a testbed overlooks its value as a source of theoretical
questions. Basic research scientists rightly emphasize answer-
ing questions through disciplined laboratory work in which’
much is suppressed so that selected results can be seen clearly.
But finding good questions requires a broad view, without
premature narrowing that may exclude the most interesting
issues. Connection with applications can be a valuable source of
new questions, because successful applications cannot neglect
any issue of practical importance. For example, I recently
studied “traditional” computer-based instructional programs
that are (a) used for instruction and (b) tutor the student in
problem solving. In all cases, far more than half the computer
code is devoted to the screen presentation. This observation
suggests that using computer tutors as a test of psychological
theory will require good models of knowledge presentation.
This aspect of pedagogy has been largely neglected by cognitive
scientists working with intelligent tutors and illustrates the



importance of using an applied domain as a resource for identify-
ing central questions.

Connectionism and motivation are
compatible

Daniel S. Levine
Department of Mathematics, University of Texas, Arlington, Texas 76019

The distinction between algorithmic and implementational lev-
els drawn in the target article is a useful one. I believe, though,
that this distinction has implications for connectionist (or neural
network) models beyond those that Anderson has explored.

The question of algorithmic understanding of human problem
solving is inseparable from the study of goal-directed behavior.
Studying goals, in turn, implies studying motivational influ-
ences. The pedagogical issues Anderson raises clearly include
motivational effects. For example, learning is influenced by the
learner’s attitudes toward his teacher, toward previous encoun-
ters with the body of knowledge to be learned, or even toward
computers if they are used in the instructional process.
Tikhomirov (1985) has shown, moreover, that actual problem-
solving methods used in a given task differ with the motivational
level of the solver. In particular, those who are given higher
motivation (for example, by being told that a task is a test of their
abilities) formulate more detailed subgoals and alternative strat-
egies than those given lower motivation.

Connectionist models have often ignored motivational vari-
ables, but not always. The three major exceptions have been
Grossberg (1971; 1975; 1982); Barto and his colleagues (Barto et
al. 1983; Sutton & Barto 1981; and Klopf (1982). Grossberg
(1975) and Grossberg and Levine (1975) have included drive
representations, so that an organism can choose which incoming
events are motivationally significant and can selectively en-
hance those events. A similar role, though arising from a differ-
ent mechanism, is played by the “adaptive critic” of Barto et al.
(1983). Grossberg (1982) develops this theory further with
distinctions between the methods for processing familiar and
novel events.

Higher-level cognitive processes and problem solving in
humans are generally conceded to involve the association areas
of the neocortex, particularly the frontal cortex. Levine (1986)
has suggested ways in which the frontal lobes are likely to
influence some previously developed neural network models
due to Grossberg and his colleagues. These suggestions are
based on many experimental and clinical studies (Fuster 1980;
Nauta 1971) showing that the frontal lobes are important pre-
cisely because they integrate inputs from subcortical emotional
and visceral processing areas as well as inputs from the sensory
cortices. Hence frontal damage weakens the influence of cur-
rent reward or punishment on behavior. The weakening of
reinforcement signals can lead to effects such as inability to
change category boundaries once established (which has been
simulated by Leven and Levine, submitted) and excessive
attraction to novel stimuli.

For the level Anderson advocates studying I am uncomfort-
able with the word “algorithmic” because of its connotations of a
premeditated set of strategies to handle a definable task (which
is not, I believe, what Anderson had in mind). Perhaps
“heuristic” would be a better word for this level. The heuristics
for real-time problem solving are not only different, as the target
article emphasized, between novice and expert, but they often
evolve in the course of solving the problem. To understand the
laws (not rigid rules, but rules of thumb) by which this takes
place, it is helpful to have a good connectionist understanding of
the mutual interactions within the “triune brain” (MacLean
1970). Leven and Levine (submitted) instantiate triunity in
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neural networks by studying the interdependent effects of
emotion, habit, and novelty on cognition.

The neural network studies to which I have referred are not
necessarily definitive, but they are illustrative of one direction
in which connectionist models are now proceeding. As these
models evolve further, they will be less restricted to what
Anderson calls the implementational level and will include
more of the algorithmic or heuristic level. With the current
explosion of both theory and data, this should be a matter of a
few years rather than decades. The “physics envy” in psychol-
ogy that Anderson rightly criticizes will soon be laid to rest, not,
one hopes, by constructing the “human mind out of unmoti-
vated postulates” but by describing important mental processes
with motivated principles.

Nonverbal knowledge as algorithms

Chris Mortensen

Department of Philosophy, University of Adelaide, Adelaide, S. A. 5001,
Australia

Anderson’s case for algorithms is nicely argued. However, it is
worth stressing a limitation of the proposed methodology, which
he himself notes (sect. 1.1, para. 1) but sets aside. Because, as he
points out, we are evolved creatures, much of our information
acquisition is bound to be prelinguistic (or as I prefer to put it,
nonverbal). Anderson remarks that in the case of the visual
system, algorithms will be much closer to quite concrete imple-
mentational structure. I will argue that the ubiquity of sensory
information in working memory requires us to admit algorithms
that are not so easy to treat on his verbalist model and that,
though open to computer pedagogy, point to an expanded
conception thereof.

The advantage of the algorithmic approach is that it operates
nicely on a level with working memory differences and with
reports (protocols) of processes inside the CNS. I think it is
reasonable to dismiss with Anderson (sect. 4.4, para. 7) the
objection that such a level should not be too realistically con-
ceived (as a Dennettian might argue): The realism is to be
justified by the fecundity of the approach. So a philosopher
might ask whether verbal protocols exhaust the information we
consciously and unconsciously store and use in production
memory. The point is that the sensory information that is in us
and is used in matching and action far outruns our capacity to
report its content (compare police identikit pictures with verbal
descriptions). One might feel inclined to dub this “nonverbal or
not wholly verbal knowledge or belief,” except that its role in
action (productions) forces us to expand the notion to include
ideas like intention and desire as well; thus the more general
“nonverbal propositional attitudes.”

To describe sensory information as nonverbal should not be
misconstrued as divorcing it from algorithmic investigation,
however, if only because of the strong interaction with memory
and procedures whose contents are more fully verbal. Any
account of the workings of the mind has to deal with the (partial)
translations of information between the parallel processors,
especially the important special case of verbal protocols of
sensory knowledge. To this can be added the observation that
discredited empiricism was not so grotesquely wrong: Our
information-storage and processing systems are simply saturat-
ed with the sensory. It is hardly unexpected that learning theory
felt that it had to deal with this. On the other hand, the evident
parallelism of the processors should incline one to accept more
easily the significant autonomy or irreducibility of different
modes of representation or content that the brain uses, paral-
lelism also being the natural cashing of Anderson’s “domain
specificity.” Nor should the present suggestion be misconstrued
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as necessarily maintaining some sort of literal mental-image
story, because, as I have argued elsewhere (Mortensen 1983),
this is a further issue, the determination of which is at least
partly neurophysiological.

But now we might ask how Anderson’s model of a production
adapts to procedures that go beyond the verbal. It is not so
unthinkable (e.g., IF the scene looks like that, THEN set
subgoal), but it is different. The interesting thing is that the
propositional contents here look to be controlled much more by
the very concrete implementational systems, in accordance
with his (sect. 1.1, para. 1). It is hard to escape the conclusion
that the investigation of the algorithms for such systems will
have to be driven much more by the admittedly very difficult
investigation of evolved hardware.

One might speculate on uncovering algorithms using a com-
puter pedagogy that expands on such things as learning Lisp and
calculus, in the direction of geometry, spatial reasoning in
games, colour and sound structures, musical composition, and
much more. Anderson mentions the case of proofs in geometry,
but here one can find a clash of paradigms between philosophers
and mathematicians who maintain the primacy of the ver-
bal/symbolic in geometry (suggested by Anderson’s reference to
“proofs” here), and those who maintain the primacy of purely
spatial knowledge, or “spatial intuition.” My basic point is that
the protocols we have informally available to us suggest the
fruitfulness of such computer pedagogy in investigating the
latter thesis using the algorithmic approach.

To sum up, Anderson’s methodology of algorithms, protocols,
and computer pedagogy looks highly fruitful at the present stage
of investigation; but, in the long run, a broadened conception
of nonverbal algorithms and their ubiquity will be an essential

step toward “the utopian goal of adequate neurophysiological
knowledge.”

Ways and means

Adam V. Reed
AT&T Bell Laboratories, Middletown, N.J. 07748

Like Anderson, I would like to see cognitive psychology make
faster progress in identifying the structure of mental operations.
Unfortunately, I have serious misgivings about the dichotomy
on which Anderson bases his recommendations, about the
terminology with which he labels one side of this dichotomy,
and about his prescription for progress.

The dichotomy. The dichotomy between studying algorithms
and studying their implementation is both imprecise and super-
ficial. There are at least six kinds of questions one may ask about
an information-processing system:

1. What functions is the system capable of performing?

2. What functions does it actually perform?

3. What procedures does the system carry out in order to
perform those functions?

4. How much time and what other resources are required to
carry out each of those procedures? What are the trade-offs, for
each procedure, between time and resource availability, and
the quality (accuracy) of results?

5. What are the elementary operations from which pro-
cedures are assembled?

6. What are the time and resource requirements, and the
reliability, of each elementary operation?

Each subdiscipline of computer science is concerned with the
answers to a specific category of questions from the above list.
The theory of computability is concerned with (1). The theory of
specification is concerned with (2). The various software disci-
plines, such as heuristic programming and algorithm design, are
concerned with (3). The (somewhat misnamed) theory of com-
plexity is concerned with (4). The theory of instruction sets is
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concerned with (5), whereas (6) is the subject of processor and,
where applicable, microcode design.

The historical categorizations of questions about human cog-
nition tend to correspond cleanly to ordered sets of categories
from the above list. For example, Chomsky (1965) cut between
category (1), which he called competence, and categories (2)-
(6), which he called performance. Pylyshyn (1980) cut between
(1)-(4), “algorithm,” and (5)—(6), “functional architecture.”
Marr (1982) called (1)-(2) “representational,” (3)-(5) “al-
gorithmic,” and (6) “hardware.” Anderson also attempts a di-
chotomy, but he doesn’t cut clean. The intended cut may be
between (3) and (4), but what is (3) concerned with, if not with
how functional capabilities are actually implemented? And what
is the point of (4), if not the characterization of procedures — in
Anderson’s terminology, “algorithms”? Would it not be cleaner
to follow the example of computer science and explicitly ac-
knowledge all six of the above categories?

By setting up more precise categories, it becomes possible to
discern among them a network of mutual constraints. For
example, with respect to any given task, the answers to (3), (3),
and (6) mutually determine the answer to (4). The answers to 4@,
(5), and (6) would necessarily constrain the answer to (3), just as
the answers to (3), (4), and (5) would constrain the answer to (6).
Answers to (2) and (1) mutually constrain each other; and the
answer to (3) can only be formulated with at least a presumptive
setof answers to (2) and (5). Often, the most fruitful way to attack
a question in one category is to answer some questions in the
constraining ones. Thus, the claim that attention to the “wrong”
questions in the above set is responsible for lack of progress on
others ought to elicit skepticism.

The terminology. In the customary terminology of computer
science, an algorithm is not just any procedure: It is, specifical-
ly, a procedure that has been proven to vield a correct result in
finite time. In contrast, a heuristic is a procedure that has a
nonzero expectation of yielding, within a specified time, a result
that satisfies some criterion of usefulness. Computer simulation
of any but the simplest of cognitive tasks is far more likely to be
heuristic than algorithmic. Indeed, artificial intelligence tech-
niques are often taught under the label of “heuristic program-
ming.” I see no justification for using the term “algorithmic” in
reference to human cognition. Communication between psy-
chologists and computer scientists doing cognitive science is
confused enough already.

The prescription. Anderson claims that the identification of
procedures used to perform psychological tasks may be
achieved only through the study of across-task variation in
protocol data. He dismisses as irrelevant for that purpose the
measurement of performance variables, such as time and ac-
curacy, as a function of parametric variation of the same generic
task. Yet protocol data can provide, at best, selective glimpses at
intermediate points in the performance of a task. In general,
these intermediate points will be shared by any number of
structurally different algorithms or heuristics.

Anderson notes, correctly, that in computer applications the
choice of program and data structure has proven to have enor-
mous consequences for performance . . . largely independent
of machine implementation.” This is one of the key results in the
branch of computer science known as complexity theory. Com-
plexity theory is concerned with the relationship between the
structure of algorithms and heuristics on the one hand and their
resource requirements and relative performance on the other.
These relationships usually take the form of an expression
relating some resource requirement or performance variable,
such as time, to a parametrically variable task characteristic,
such as the size of the input set, for each category of procedural
structure. For example (Aho et al. 1974), sorting algorithms of
the quicksort structure has an expected time to completion of
O(n log n), where n is the number of items to be sorted.

Now suppose a psychologist hypothesized that humans used a
procedure analogous to quicksort when performing a sorting



task. Given the result derived by Aho et al., the obvious
prediction of this hypothesis is that sorting time for humans
should follow the above pattern, except possibly for a fixed
component A and an input/output processing component Bn;
that is, expected sort completion time would be predicted to
vary as [A + Bn + O(n log n)] with input set size n. If measured
performance did not conform to this prediction, the hypothesis
that humans used a variant of the quicksort algorithm to perform
sorting tasks would be disconfirmed. Conversely, confirmation
would constitute presumptive evidence for the hypothesis,
because other sorting algorithms have other patterns of ex-
pected time. A more definitive confirmation could be obtained
by looking at completion-time distributions, and especially at
their worst-case extreme, because the worst-case performance
of the quicksort algorithm is known to be quadratic with n.

Because heuristics, unlike algorithms, are not guaranteed to
produce the correct result, they require the use of time-ac-
curacy curves (Reed 1973; 1976) rather than reaction-time
distributions. In any case, parametric data remain necessary to
tell which specific procedures, of the many that are compatible
with any given set of protocol data, are actually carried out in the
human mind.

Is there more than one type of mental
algorithm?

Ronan G. Reilly
Educational Research Centre, St. Patrick’s College, Dublin 9, Ireland

There are a number of ways in which Anderson’s definition of
mental algorithm is unsatisfactorily ambiguous. He initially
asserts that “mental algorithms are abstract specifications of the
steps taken by procedures that run in the mind.” He then moves
from this definition to a more concrete one, in which he states
that the steps at the algorithmic level “correspond to points of
discrete changes in working memory,” or indeed to the firing of
aproduction rule. Thus, he appears to move from something of a
“competence” definition of the algorithmic level to a “perfor-
mance” one. Yet, when specifically discussing language, Ander-
son equates competence with algorithm and performance with
implementation. This indicates a somewhat loose definition of
the algorithmic concept. In the rest of this commentary, I will
propose a more precise definition. In particular, I will argue that
there are two forms of algorithmic representation, that it is
essential to distinguish between them, and that the distinction
has implications for the viability of Anderson’s research agenda
for cognitive science.

There is a need, I feel, to distinguish between an abstract
algorithm (algorithm!) and an executable algorithm (algorithm?).
To use a computer analogy, algorithm! is equivalent to the high-
level specification of a program, algorithm? is the specification
rendered in some machine-independent algorithmic language,
and, finally, the implementational level is equivalent to the
compiled program within a specificoperating system on aspecific
machine. In using the term “executable” here, I do notimply that
the algorithm is implemented or compiled in Anderson’s sense
(“performable” might be a more accurate term). Anderson (1983)
claims that we learn a skill by the proceduralization of its initially
declarative representation. He would equate algorithm! with a
declarative representation, and algorithm2 with its subsequently
proceduralized form. In Anderson’s ACT* model, both al-
gorithmic forms would be considered executable, whereas I
argue that they are not.

Some examples will help illustrate what I mean. Take the
following instructions:

1. Draw a symmetric 6-pointed star.

2. Draw an isosceles triangle. Superimpose another isosceles
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triangle of the same size, but rotated by 45° about the two
triangles” common center.

3. Draw an isosceles triangle. Superimpose an inverted isos-

celes triangle of the same size, where both triangles have the
same center.
Each of the above is a means of achieving the same end: drawing
a “Star of David.” Instructions (2) and (3 are equivalent in their
degree of specificity, whereas instruction (1) is somewhat more
abstract. Yet, they are all underspecified with respect to the
following instructions:

4. Draw this: [an actual picture of a 6-pointed star].

5. Draw like this: [somebody drawing a 6-pointed star].
Instruction (4) has greater specificity with regard to size and
location on the page. Instruction (3) is the most specific of all, in
that it provides the learner with location information, as well as
information about how to draw the components of the figure. In
terms of speed of task completion, instruction (5) will almost
certainly be the most effective, and instruction (1), the least
effective. Instructions (1) through (3) represent gradations of
specificity from the abstract to the concrete. They also represent
gradations of speed of task performance.

Although the speed at which the algorithm can be constructed
and executed is determined, in part, by instruction specificity,
this is not the full story. One could imagine ever more detailed
and ever more precise instructions being provided to the learn-
er, with this level of detail interfering with the execution of the
task. Yet the wealth of detail available to the learner from seeing
the task performed (as in instruction 5) does not interfere, but
rather aids, in speeding the performance of the task. Why is
this? One possibility is that the abstract, verbally based encod-
ing is somewhat removed from its executable form. The verbal
instructions need to be transformed into an executable form
prior to execution, thus giving rise to a processing bottleneck,
whereas the visual percept maps directly, or less indirectly,
onto an executable form. The verbal form corresponds to what I
have called algorithm!, and the executable form to algorithm?2.
It is also possible to map from algorithm? back to algorithm?.
This occurs when we ask learners to provide a verbal report of
their mental algorithms. Note that algorithm? is not the pro-
ceduralized or compiled version of the algorithm being learned.
It can be in a declarative form and can be operated upon by
general problem-solving productions. as envisaged by Ander-
son (1983). It is, however, a separate and, I maintain, a psycho-
logically real representation. Skill acquisition can take place via
either route, but the processes involved can be reported only if
rendered as an algorithm!.

I have dwelt on tasks that, when learned, manifest themselves
in overt action. When one looks at “purer” cognitive tasks, the
distinction between algorithm! and algorithm2 becomes less
easy to discern. For example, take learning to do mental arith-
metic and, in particular, the addition of 2-digit numbers. The
instructions for performing such tasks (encoded as algorithm?)
bear about as much relation to the algorithm that performs the
task (algorithm?) as, say, key-presses on a pocket calculator do to
the electronic processes that perform the calculations. There is a
necessary relation between the two algorithms, but one should
not be mistaken for the other. This would be the equivalent of
mistaking the map for the terrain. In tasks in which the medium
of instruction is primarily verbal and, as a result, in which the
primary route to algorithm? is via algorithm!, the distinction
between the two types of algorithm becomes less significant.
However, even in this latter case, there may be independent
routes to algorithm? (such as through observing the use of an
abacus) that may make the distinction behaviorally relevant.

The main implication the distinction has for Anderson’s re-
search agenda is that verbal reports of mental algorithms do not
directly tap the algorithms used in the performance of a task.
Such verbal reports are therefore less reliable than Anderson
seems to assume. Furthermore, protocol analysis will throw
direct light only on the structure of algorithm!, which repre-
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sents merely a part — albeit an important part — of the whole
learning process. To put the preceding argument another way,
there is a valid distinction to be made between learning by
observation, learning by instruction, and learning by doing — a
distinction not captured by Anderson’s definition of algorithm.

Weak versus strong claims about the
algorithmic level

Paul S. Rosenbloom

Departments of Computer Science and Psychology, Stanford University,
Stanford, Calif. 94305

While reading Anderson’s target article, I constantly found
myselfin the seemingly paradoxical position of agreeing with his
arguments, but disagreeing with his conclusions. His arguments
do support a weak form of his conclusions: (1) The algorithmic
level is important, understudied, and relatively tractable; (2)
learning is one of the important issues at the algorithmic level;
and (3) intelligent tutoring does provide a powerful meth-
odology for studying learning at the algorithmic level. However,
the same arguments become severely overextended in the
attempt to defend the stronger conclusions actually presented in
his article: (1) “Issues at the algorithmic level are more interest-
ing”; (2) “learning is the key issue at the algorithmic level”; and
(3) “the best way to study the algorithmic level is through
pedagogical experiments.” In proposing these stronger conclu-
sions, Anderson is attempting to go beyond his stated goal of
justifying his own research enterprise to the implicit claim that
this is where the field as a whole ought to focus. Such claims are
notoriously difficult to justify by reasoned arguments, because
they are often more a question of personal research strategy than
of established fact. For similar reasons, they are also difficult to
argue against. Nonetheless, in the remainder of this commen-
tary I will attempt to cast some doubt on the first two of
Anderson’s strong conclusions.

The first strong claim is that the algorithmic level is the “most
interesting and fundamental” one. There are a variety of ways to
counter this claim. One is to deny that any one level is more
fundamental or interesting than the others. This could be
argued by making an analogy to the levels of physics, chemistry,
and biology. Each level has its own set of important questions to
answer and its own set of techniques to be used in answering
them. A second way to counter the claim is to argue that some
other level is the most interesting and fundamental one. For
example, from the point of view of the knowledge level, much of
the algorithmic level is simply implementational detail. At the
knowledge level, we can ask the fundamental questions about
what knowledge the person has and how that knowledge
changes over time. A third way is to consider focusing on
interfaces between levels rather than on the levels themselves.
The interface between the implementational and algorithmic
levels — what Anderson refers to as the architecture — has an
existence that is independent of the contents of the individual
levels. As Anderson mentions, the GRAPES (Sauers & Farrell
1982) and acT* (Anderson, J. R. 1983) architectures have differ-
ent implementations but support essentially the same al-
gorithmic level. The architecture is like the implementational
level in being understandable in terms of general principles.
However, in studying the architecture, we have the advantage
of being able to use data from both the implementational and the
algorithmic levels. Knowledge of the architecture provides
leverage by constraining the contents of the implementational
and algorithmic levels. Given a characterization of the architec-
ture and a description of a task to be performed, it should be
possible to predict the set of algorithms that subject could be
using. Despite the importance of the architecture, there is not
yet a consensus about its structure.
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The second strong claim is that “learning is the key issue at
the algorithmic level.” There are at least two reasons to doubt
this. The first is that learning is only one of many influences on
the behavior of the algorithmic level. In general, the algorithm
exhibited by a subject on an experimental task is determined by
a combination of the demands of the task, the existing contents
of the subject’s algorithmic level, and the subject’s architecture.
Even if we ignore all of the nonarchitectural influences, perfor-
mance is influenced not only by the learning component, but
also by the representational, problem-solving, perceptional,
and motor components. For example, the problem-solving
capabilities provided by the architecture determine what al.
gorithms the subject can and cannot perform (at least in any
straightforward fashion). The problem-solving component may
also play a key role in the process of determining what will be
learned. The second reason for doubting that learning is the key
issue at the algorithmic level is that the study of the algorithmic
level is tractable, as Anderson mentions, because of the exis-
tence of reportable cognitive steps in novice performance, not
because of learning. Learning clearly influences both how the
novice performs and how the novice is transformed into an
expert, but it need not occur at the same level as reportable
cognitive steps, as Anderson claims. For example, in the soar
system (Laird et al., in press), learning occurs at the level of
productions — as in ACT* and GRAPES - but reportable cognitive
steps occur at a level above the productions, at the problem-
solving level.

Levels of research

Colleen Seifert and Donald A. Norman

Institute for Cognitive Science, University of California at San Diego, La
Jolla, Calif. 92093

We believe that Anderson has made a valuable contribution in
his target article, but not necessarily the major one he thought
he was making. He creates a controversy by claiming that there
is a level of psychological investigation that is unfruitful to
pursue because the data are so limited. In particular, he decries
the very level at which cognitive psychologists have focused
most of their energy. He then argues for the usefulness -of
protocol studies, claiming that not only do they provide valuable
information, but that the information is of superior quality,
thereby making the usual measures obsolete. Along the way, he
separates psychological processes into implementation and al-
gorithm, despite years of demonstrations and arguments that
these two levels are fundamentally intertwined, that today’s
algorithms are tomorrow’s mechanisms. Indeed, one of the
major points of the connectionist revolution [see Ballard: “Cor-
tical Connections and Parallel Processing” BBS 9(1) 1986.] is
that mechanism has taken over the work of what was heretofore
thought to require high-level, symbol-processing algorithms.
Even if the connectionist approach is wrong (or, more likely,
somewhat overambitious), its very existence shows the volatile
nature of any distinction between these two so-called levels.

Anderson argues that psychological phenomena at the imple-
mentational level take place in the millisecond region, yet the
experiments we perform can give only sparse data at this level.
In particular, he speaks of reaction-time data and percent-
correct data. But this is not all there is, and surely Anderson
does not mean to neglect the rich range of data that psychol-
ogists have relied upon for years; for example:

1. the nature and form of the response

2. the kind of error

3. the relative ordering of difficulties

4. the relative ordering of times

5. scaling results, whether direct or indirect (as in multidi-
mensional scaling techniques)

6. time—error tradeoff functions



The perplexing aspect of Anderson’s argument is that protocol
data, which Anderson has suddenly discovered, are thought by
many to be too sparse to yield powerful constraints for theories.
At best, protocol data can only illuminate the states through
which people pass on their way to a solution. Yet Anderson
argues now that these methods are superior!

We agree with Anderson that research at the algorithmic level
is essential, that protocol methods are valuable and necessary,
and that matching the power of the data with the nature of the
hypotheses is crucial. But there are very rich sets of tools
available for all levels of investigation (witness the partial list we
gave above, which yields very subtle analyses and powerful
constraints on interpretations), and there are strong limitations
on the power of tools at all levels, especially the well-known
weaknesses of protocol methods).

Anderson does provide good arguments about the value of
research questions at the “algorithmic level,” however. The
intention behind the target article, we believe, was to call for
increased attention to other types of research issues. Our view is
that Anderson did not go far enough in explaining the problems
that face researchers interested in algorithm-level questions.
Consider the following in which Anderson remarks on the
failure of experimenters to utilize protocol information: “Many
experiments in the literature (to point a finger only at myself,
consider J. R. Anderson, 1976, pp. 363—75) have used the low-
vield methodology to explore algorithm-level issues in situa-
tions where much better protocol data could have been ob-
tained” (sect. 1.4, para. 9).

The question Anderson raises, but does not really address, is
why experimenters have stayed with “low-information-yield”
experiments when they could have used protocols. Three rea-
sonable causal factors come to mind:

1. Protocol methodology has never been developed beyond
the notion of transcripts.

2. The traditional view of appropriate methodology requires
every observation to be reported with a significance level.

3. The mainstream view of “algorithm-level” work is that any
study utilizing a task domain is about the domain and not about
cognition.

Anderson’s paper should be a demonstration of the science of
protocol study and a call for further developing techniques that
allow constrained and reliable observation of performance on
cognitive tasks. Of course, as Anderson notes, more information
about the operation of cognitive processes is better than less,
but the question is, What kind of information can be collected
and productively observed? Anderson presents only a limited
solution to the problem of the richness of protocol data and the
difficulties of analysis and representation. He limits the content
of the protocols to the output of the reasoning task — that is,
written computer programs and geometric proofs. Observing
the output of the cognitive process (the series of output pro-
grams produced in trying to find a solution) provides interesting
results. As Anderson demonstrates, it has the added benefit of
allowing the automatization of the protocol analysis, where the
output programs are compared via computer analysis. Howev-
er, this technique throws away much of the richness in protocol
data that Anderson argues is necessary for good observations:
There is no record of the subjects” reports of the planning
process, and no possibility of observing, for example, ex-
pressions of difficulty or confusion. In order to automate analy-
sis, many interesting aspects of the subjects’ cognitive behavior
will necessarily be thrown out.

Whereas comparing written output of attempts at solving a
problem will provide much useful information, there is a good
deal more to be gained from protocol studies. Unfortunately,
protocol methodology has not been developed much beyond
taking transcriptions. Too often, protocol analysis appears to be
an art rather than a science. Protocol analysis needs new meth-
ods that will aid in gathering systematic observations and that
will provide a way to consider a variety of explanations and
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points of view about the behavior observed. These methods
must go beyond transcript analysis to provide a window on
cognition of the process-tracing flavor (see, for example, Card et
al. 1983). Of course, protocols are most useful when a model
exists that is actually capable of generating the trace, because
then the subjects’ traces can provide very detailed feedback
about where the model is right or wrong.(for example, Rumel-
hart and Norman’s, (1982), connectionist model of typing). If
verbal protocols are taken, then some model is required of how
the natural language trace is generated. A method to verify
hypotheses about cognitive behavior, objective and falsifiable,
is the goal; the claim is that, along with an important role in
generating ideas, protocol studies of cognition can be used to
evaluate hypotheses. (By the way, we do not mean to restrict the
definition of protocols: What about simple observation of cog-
nitive behaviors? An analysis that approaches the content of a
sample of behavior from a variety of levels and perspectives
about what is occurring may provide suggestions about model
development and some new ideas about hypothesis testing.)

Part of the agenda for this new methodology includes efficient
methods for presenting results in ways that demonstrate to
someone who hasn’t watched hours of tapes that the conclusions
do indeed hold. Newell and Simon’s (1972) development of the
Problem Behavior Graph was one such attempt, but it floun-
dered, in part because of the tremendous amount of effort
required for its generation. Perhaps one of the reasons this work
is not accepted as readily as traditional statistical studies is that it
is difficult to evaluate how good a job an experimenter has done
in analyzing the protocols. Traditional studies use a standard
measuring stick, the F test, to decide whether a researcher is
right in drawing particular conclusions. Quantitative methods
provide a standard of objectivity; is it the only one possible?
Unfortunately, with few exceptions, psychologists have adapted
their questions to the methods available rather than to inventing
new methods that are better suited to their questions. On the
other hand, current protocol methods go too far in the other
direction, sacrificing objectivity in order to get the data that
some questions require. No method exists for reporting the
content of protocols so as to verify observed trends in the data;
instead, afew examples are simply drawn from the transcripts. A
method for communicating protocol content that is understand-
able to outsiders and allow the quality of the study to be
evaluated would increase the usefulness and publishability of
this work.

We agree with Anderson’s important sociological observation
that mainstream interests in the field consign any work on
“applied”-domain problems to a field other than psychology.
Any study using computers in the task is deemed more appro-
priate in a human-factors journal, and any study of the learning
of “real-world” information belongs in the educational journals.
This is not true for the implementational-level examples Ander-
son cites; for example, a study of short-term memory using
number recall as a task is not considered to be an experiment
about numbers, but about memory. For problems at the al-
gorithmic level, the domain of the task is considered more
important than any generalities about learning or cognition that
can be taken from the work; this must stop. Studies at all levels
of behavior can yield general principles of psychology (or, more
generally, general principles of cognitive science). Even if the
behavior studied does depend on a domain context, the results
can provide principles about the role of artifacts and structured
tasks in the cognitive processes that occur in natural settings
(Hutchins 1986; Norman, in press). As long as mainstream
psychology continues to view work at the algorithmic level as
domain-related rather than as basic science, researchers in-
terested in these problems will be forced to seek refuge else-
where, hiding out in education or computer science in order to
publish and receive grants under peer review (much to the
benefit of computer science and education!).

Even the computational modeling Anderson describes as a
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successful test of his ideas is not widely accepted in psychologi-
cal journals as a compelling methodology. Anderson might well
have written his target article as an attempt to justify the use of
cognitive modeling in psychology. Although interest in com-
putational models, especially parallel-distributed processing or
connectionist models, has increased in the field, the mainstream
journals still expect experimental work. It seems clear that some
questions, at least, will require modeling to refine and develop
ideas about cognition; even the sample study that Anderson
presents includes computer simulation. The repertoire of “em-
pirical” methods need not be limited to experimental studies; it
can be extended to include both computational models and
protocol methods, and can be further developed through new
approaches in each area. Broader questions require a wider
range of appropriate methodologies, a greater variety of tasks in
which to observe cognitive functioning, and the use of domains
involving real-world behavior. Questions proposed by Ander-
son as algorithmic level should be applauded for their natu-
ralistic basis, rather than ruled out as too applied and uninterest-
ing for those truly concerned with cognitive processes.

It is not necessary to agree with Anderson’s distinction be-
tween implementational and algorithmic levels to agree with
this paper’s message; a precise distinction is not required so
much as a precise definition of interesting research questions for
the field. Anderson’s point, slightly interpreted, is that we
should broaden the scope of questions that are considered to be
“core psychology,” and therefore encourage the development of
a variety of tools and methods to examine those questions.
Anderson has come up with a good solution for his own ques-
tions; his article should be read as a challenge to consider the
possibilities of a more diverse view of what constitutes basic
research in psychology.

In conclusion, we agree with Anderson’s argument that we
must do work on both implementation and algorithms and that
we must use all the types of data-collection devices at our
disposal. We must certainly also look at both pure research and
applications. Perhaps the fuss that Anderson has generated will
encourage others to be more broad-minded in their questions
and methods. Now all that is left is just to do it.

Connectionism and implementation

Paul Smolensky

Department of Computer Science and Institute of Cognitive Science,
University of Colorado, Boulder, Colo. 80309

Anderson is careful not to advocate the abandonment of other
research programs while advocating his own. The question
addressed in this commentary i$, How can Anderson’s research
program be reconciled with one that he argues against - a
connectionist approach? The argument I summarize here is
presented at length in Smolensky (1987b).

The basic argument is this: The character of cognition varies
dramatically with the scale of the description. On a coarse scale,
the programs of Anderson’s algorithmic level describe the se-
quential transitions between mental states. Symbols denoting
the conscious-domain concepts, and rules explicitly mediating
serial transitions, are appropriate descriptive tools. On a fine
scale — so the connectionist hypothesis goes — conscious-domain
concepts are composed of multiple constituents, not consciously
accessible, and mental processing consists of massively parallel
satisfaction of numerical constraints among these fine-grained
constituents. These numerical constraints comprise the knowl-
edge on the fine scale.

The questions addressed by Anderson’s research program
and those addressed by the connectionist program that emerges
from the above hypothesis are quite complementary. Ander-
son’s algorithms specify the sequential computations of the
coarse scale, but as he points out in his discussion of language
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acquisition, not all cognitive tasks can be described at this scale.
The methodology he advocates is severely limited in domains
such as first-language acquisition, where the processes of in-
terest do not involve extended sequential transitions among
multiple, consciously accessible states. Let us call behavior to
which Anderson’s methods apply Type A and the rest Type B. It
is with Type B behavior that the connectionist approach offers
its greatest potential contribution.

The connectionist hypothesis on the nature of the fine-scale
description of cognition puts the coarse-scale description of
Anderson’s algorithms in a different light from the one that
comes from the traditional view of cognitive architecture. An-
derson defines the cognitive architecture to be the set of com-
putational components out of which mental algorithms or pro-
grams are constructed. He points out that his theories at the
algorithmic level are predicated on the consensus view, accord-
ing to which the cognitive architecture provides such symbolic
computational components as variables, recursive symbolic
structures, pattern matchers, and random-access memory — all
the ingredients that make possible an algorithm or program
stated as a production system. How are the symbolic compo-
nents of this architecture implemented? Implementations of the
sort provided by conventional computers are not consistent with
the connectionist hypothesis concerning the fine-scale descrip-
tion of cognition. This means that a major problem for the
connectionist program is the implementation of symbolic com-
putation. More precisely, the question is, How can a system
with connectionist microstructure support a coarse-level de-
scription, for Type A behavior, like that of symbolic algorithms
of the Anderson type? For Type B behavior, there is no reason to
demand such a description. The goal is not to provide a connec-
tionist implementation of a symbolic architecture that can be
used to perform all higher cognition. It is a connectionist goal to
explain why the connectionist fine structure admits Anderson-
style symbolic algorithmic accounts of the coarse structure in
Type A behaviors — and not in Type B behaviors.

This view places two important items on the connectionist
research agenda: explicitly relating fine- and coarse-scale de-
scriptions of connectionist accounts of Type A behavior on the
one hand and of Type B on the other. Symbolic algorithms such
as Anderson’s provide higher-level accounts of Type A behav-
ior, and it is important to see explicitly how such accounts can be
implemented in a connectionist microstructure.! At the same
time, it is also important to develop accounts of Type B behavior
atlevels higher than the “implementation-level” descriptions in
terms of individual units and connections. The concepts for
coarse descriptions of connectionist accounts of Type B behav-
ior are quite approximate and provide incomplete descriptions
that cannot by themselves serve as the basis for formalization
(Rumelhart et al. 1986; Smolensky 1986; 1987a).

Anderson points out that theories about complex behaviors
require considerable data to constrain them, and that the best
data supply rich information about mental states many times
during the execution of a complex task. He points out that verbal
protocols are not the only possible sources of such data. It is a-
point well taken that adequate constraint of connectionist mod-
els requires the development of methodologies that provide rich
real-time data during processing. One promising source of such,
data are detailed time courses of probabilities for many possible
responses (e.g., Kounios et al. 1987). It is clear that the lack of
conscious access to the fundamental elements of connectionist
models presents serious methodological challenges to the re-
search advocated by Anderson.

Anderson tries to motivate his research program by explain-
ing that what he finds most interesting are questions such as:
What algorithms determine the sequences of conscious states
that people go through (in Type A behaviors)? How do old
concepts and production rules give rise to new ones as people
learn? The connectionist approach is instead motivated by such
questions as: How can the consciously accessible aspects of



mental states be characterized in terms of lower-level constitu-
ents? Wk do the consciously accessible aspects of mental states
follow sequential symbolic algorithms sometimes but not at
other times? How do consciously accessible concepts or symbols
emerge f=om nonsymbolic constituents (rather than from other
symbols'Z How do symbolic production rules emerge from
experiences (rather than from other rules)? The “implementa-
tional” guestions that arise from the connectionist hypothesis
call for explanations of higher-level processes — explanations
that are considerably more ambitious than those previously
attempted in cognitive science.

NOTE

1. Although it is true that Anderson’s implementation of AcT* incor-
porates a zumber of the elements of connectionist computation, it lacks
the cruciz] feature of distributed representation (Hinton et al. 1986a)
and criticzlly involves a number of elements of symbolic computation
that are —ot part of an orthodox connectionist implementation; the
hardest parts of the job of distributed connectionist implementation of
symbolic computation remain, for example, pointers (Hinton 1987;
Touretzky 1986) and variable binding (Smolensky 1987c¢; Touretzky &
Hinton 1555).

Interactive instructional systems and models
of human problem solving

Edward P. Stabler, Jr.

Canadian institute for Advanced Research and Department of Computer
Science, Liniversity of Western Ontario, London, Ontario, Canada N6A 587

One notable feature of the recent research on human problem-
solving protocols and on interactive instructional systems is its
emphasis on what Larkin (1981) calls “formal domains” — that is,
on domains such as “mathematics, applied mathematics, most of
what are called ‘hard’ sciences, as well as sophisticated games
(e.g., chess, go).” Larkin distinguishes these formal domains
from such domains as “biology, psychology, and English liter-
ature [in which] it is extremely hard to find unambiguous sets of
principles sufficient to solve problems” (p. 311). In his target
article, Anderson does not mention the emphasis on formal
domains in this research (or in the sample of this research that he
cites), but a consideration of how this emphasis might be
explained provides some insights into the methodologies for the
sort of “pedagogical research” he advocates.

Larkin describes the formal domains that have been of partic-
ular interest as “involving considerable amounts of rich seman-
tic knowledge but characterized by a set of principles logically
sufficient to solve problems in that domain” (p. 311). This
provides one obvious explanation of the emphasis on formal
domains in protocol studies and in the development of auto-
mated tutors: In these domains we have formal representations
of the principles the students must learn and apply in problems.
If we also suppose that the students’ knowledge is actually
encoded in much the way it is formalized and that the principles
for using that knowledge are much like the strategies used in
searching for formal proofs, then we also have a basis for
modeling the mental state of the student. In the informal
domains. no formalized representation is available to serve
either as a specification of what the student should do nor as a
basis for modeling the student.

This explanation of the emphasis on formal domains also
suggests a way to reconcile Anderson’s methodological recom-
mendations with Chomsky’s and Marr’s. Anderson defends the
following assertions:

Assertion 1’: There is an important distinction to be made
between mental algorithms and their implementation.

Assertion 2': There is important basic research to be done on
algorithmic issues.
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Assertion 3': The best way to study the algorithmic level is
through pedagogical experiments.

The algorithmic level is compared to Chomsky’s performance
level and to Marr’s algorithmic level. Anderson’s proposals are
similar to Chomsky’s and Marr’s in recommending that atten-
tion be given to psychological accounts above the “implementa-
tional” level, but both Chomsky and Marr regard the “highest”
levels of theorizing as methodologically prior to the lower levels.
Chomsky suggests that we cannot expect to learn much by
studying the mechanisms of linguistic performance until we
have some grip on what linguistic knowledge the subject has —
the “competence theory” (cf. for example, Chomsky 1975, pp.
16-17). Marr makes a similar point about his “first level” theory
of what function is being computed: “The theory of a computa-
tion must precede the design of algorithms for carrying it out,
because one cannot seriously contemplate designing an al-
gorithm or a program until one knows precisely what it is meant
to be doing” (Marr 1979, p. 19). Anderson’s recommendations
square with these remarks if we take him as suggesting that, in
the formal domains, we have an account of precisely what
computation is being carried out. In that case, we can proceed to
consider what algorithms are involved; that is, the implicit
assumption of researchers in this field may be:

Assertion 4: In formal domains, we have an account of what

overall computations are being carried out, and so in these areas
we can most profitably study the algorithmic level.
This would explain the emphasis on formal domains, and it
would allow Anderson’s methodological recommendations to fit
neatly with Chomsky’s and Marr’s. Let’s consider this idea more
carefully.

Notice that in the case of human problem-solving in formal
domains, the account of what computation is being carried out
can depend in an obvious way on whether we “include” the
external medium of computation, such as the subject’s marks on
a piece of paper; that is, in considering precisely what computa-
tion is being carried out, we should distinguish the computation
being carried out overtly from the psychological processing that
underlies such a performance. In adding two large integers, for
example, the common rule involves adding the least significant
digits first, recording the sum, and then proceeding to the next
pair of digits, possibly with a “carry,” and so on. But the
psychological processes underlying this rule are certainly rather
different — for one thing, when the integers being added have
many digits, there may not be any psychological representation
of the two integers at all. In this case, at any one time, the
subject needs a mental representation of only the relevant pair
of digits and the carry. The psychological process must only
involve adding a pair of digits with a carry, keeping track of what
is recorded, and so on.

In other, more complex tasks in formal domains, this distinc-
tion becomes less transparent, because the psychologically
relevant properties of what is recorded and the psychologically
relevant but unrecorded aspects of a problem are often far from
obvious. Consider, for example, the Anderson et al. (1981) study
of a student’s attempt to construct proofs in geometry. At several
points, Anderson et al. notice that the student apparently failed
to understand certain things he had read or written. A case like
this illustrates the obvious point that the mental representation
does not generally correspond exactly to the external ex-
pressions being read and produced, and hence we cannot
suppose that the properties of the mental representations of
geometric results or methods correspond to similar properties
in the formulae.

In formal domains, then, although we have external represen-
tations of the principles needed to solve problems (e.g., for-
mulae, logical statements), we do not ipso facto have an account
of what psychological computation is being carried out — that is,
it is not plausible to assume that the psychological representa-
tion of knowledge of formal domains is similar to the statements
or formulae that comprise the external representation of that
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knowledge. (It is interesting to note that the “schema” repre-
sentation of geometric propositions attributed to the subject in
Anderson etal. [1981] is very much like the external representa-
tion, and this is why the problem with the inability to deal with
one of the concepts in the schema was remarked upon and
actually marked in the representation.) In the second place, it is
not plausible that the strategies humans use for solving prob-
lems in formal domains are much like the strategies used by
automatic systems searching for formal proofs. This point is clear
from the failure, in spite of great efforts, to find a formal system
for constructing proofs that behaves at all like a mathematician,
or even as well as an undergraduate logic student (cf. Bledsoe
1977; Bundy 1983; Loveland 1984). The problem in finding
proofs in formal systems is similar to the problem in learning:
The ways in which students and mathematicians select from the
enormous space of possible paths to a proof are unknown, as are
the ways in which learners select from the enormous space of
possible hypotheses that fit the data. If the protocol approach
had discovered how humans (experts or students) do these
things, it would not be in need of defense, and lacking such an
account undermines our ability to model a student.

Another aspect of the Anderson et al. (1981) study illustrates
the difficulties of drawing inferences from a protocol without a
prior theory of the mental representations and the computations
over them. After suggesting that one of the fundamental mecha-
nisms of learning is analogical, the authors note that their
computational model of analogical reasoning finds only super-
ficial, syntactic properties that are shared by pairs of problems.
They carefully do not commit themselves to the view that the
student relies exclusively on such superficial similarities, and
they provide no general account of what analogical reasoning
involves. In fact, the range of relevant properties the student
might consider in this sort of reasoning — based on his psycho-
logical representations of previous problems, together with
what he can gather from the record of his work and the text —
seems quite unlimited. It really is implausible that the proper-
ties that suggest analogies are generally superficial, syntactic
properties, or that the relevant properties would generally be
reportable by the subject - so little of cognitive psychology is
that simple! Even if Fodor's (1983; see also multiple book review
in BBS 8(1) 1985) skepticism about the prospects of any account
of such reasoning is rejected, a consideration of any of the well-
known studies casts doubt on the prospects for a simple syntactic
account of analogical reasoning — even simple recall tasks are
more complex. The point here is again just that the psychologi-
cally relevant features of the task may not be definable over the
external representation at all, and the lack of a good theory
regarding the mental representations being used by the subject
will seriously complicate the inference from the protocol to the
algorithm. In other words, we cannot accept Assertion 4, and we
find the protocol approach to the study of the algorithmic level
to be subject to the difficulties that the views of Chomsky and
Marr would lead one to expect. We are forced to try to develop
the knowledge and computation-level theory, together with the
account of the algorithm used - a strategy that one would expect
to be difficult.

The real test of Anderson’s methodology will be its empirical
success in leading us to substantial new theories of human
problem solving and learning. Unfortunately, Anderson does
not attempt to argue for his proposals with examples of psycho-
logical principles that his methodology has uncovered. A survey
of the protocol research literature, however, shows that it is full
of interesting informal insights. It is surprising that careful
protocol studies have not been pursued more vigorously in the
past. Whether the new interest in this research will ultimately
lead us to algorithmic accounts of how people go about solving
problems, however, has not yet been convincingly established.
It is still an open question whether the individual variability in
problem-solving strategies will be constrained enough to allow
for effective error diagnosis even in the majority of cases,
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whether there are general-purpose skill acquisition strategies,
and so on.

In any case, the methodology of protocol analysis and ped-
agogical research should be distinguished from empirical claims
that require support. Anderson has sprinkled a number of
unsupported empirical claims through his discussion that can be
sorted out from the methodological ideas. One of the empirical
claims in need of support is that in reality, as in AcT*, “if one has
analyzed the precompiled skill and identified its structure, one
can use that analysis to infer the structure of the compiled skill.”
No study is cited to support the idea that our “precompiled
skills™ are really similar in structure to the well-practiced “com-
piled skills.” Another empirical claim that is perfectly open to
testing is Anderson’s idea that at the algorithmic level, all the
psychologically relevant states are reportable, and hence that
they do not pass at a very rapid rate. Obviously, the test of these
claims is empirical, and their falsity would not necessarily
undermine the usefulness of protocol analysis, but only the
directness of its bearing on the theory.

It is worth noting that the prospects for instructional technol-
ogies are not so bleak. Even if we cannot get an algorithmic
account of how naive students solve geometry problems, for
example, it will be useful to have a catalog of common misunder-
standings. Instructional systems can then be designed to watch
for symptoms of these misunderstandings and to administer
corrective instruction when they are detected. Obviously, this
does not require a very “rich account of the student’s mental
state,” and the value of the technology does not depend on the
success of attempts to provide algorithmic accounts of all the
problem-solving strategies a student might use. Of course, a
correct algorithmic account of the user’s skill-acquisition strat-
egies might well be very useful in designing an instructional
system, but no such account is needed for building a system with
great practical value. In other words, for practical purposes, we
can do quite well if we have only the following:

Assertion 4': In formal domains, we have an account of what

overall, overt computations should be carried out, and so in
these areas we can most profitably develop interactive instruc-
tional systems.
I think this is the explanation of the emphasis on formal domains
in the development of automated tutors. It is also clear that
protocol research in formal domains has been inspired in large
part by these practical efforts to design tutors that can be more
responsive to the needs of individual students, rather than by
the promise of new psychological breakthroughs in computa-
tional theories of learning and problem solving. In my opinion,
the practical potential of this research suffices to make it worth
doing; the possibility of important new psychological insights is
just an added bonus.

Applying Marr to memory

Keith Stenning

Centre for Cognitive Science, Edinburgh University, Edinburgh EH8 9LW,
Scotland

Can we apply Marr’s distinction between computational, al-
gorithmic/representational, and implementational questions to
the analysis of “central” processes such as memory, learning,
and reasoning as usefully as Marr applied it to the analysis of
perceptual domains?

Let us take memory as a generic area and ask how Marr’s
distinction can be applied. It is at the computational level that
the differences between perception and central processes
emerge most clearly. One approach that suggests itself immedi-
ately trivializes the computational level: The function any mem-
ory system computes during errorless performance is the identi-
ty function. Layving aside the difficulties of specifying the cueing
conditions under which retrieval takes place, this is still a



curious picture. One of the main functions of any memory
system is to forget “irrelevant” information, and specifying just
what is relevant and what is irrelevant would be the main task in
pursuing a computation-level description of memory. But mem-
ory “failure” is normally thought of as the paradigmatic perfor-
mance limitation. It is an open question whether we can ade-
quately distinguish the abstractive properties that are the
computational purpose of such system from their performance
failure due to overload.

Anderson’s research interests have moved in the direction of
the study of learners’ cognitive skill acquisition and away from
the study of “pure” memory tasks. He now mounts a series of
arguments which purport to show that the old mine is worked
out and that the new mine is more promising. His arguments
suppose that the relation between these two areas is that
between the implementational and the algorithmic /representa-
tional in Marr’s hierarchy of distinctions. He supposes that the
two areas are in this relation because, according to his theory,
the accessibility of facts in immediate declarative memory is one
of the main constraints on the operation of the production
system with which he models procedural knowledge. Thus, in
this particular theory, one narrow class of characteristics of
memory constitutes part of a theory of the implementation of
procedural-knowledge deployment.

This particular theory also leads Anderson to suppose that
memory is studied using measures of error probability and
reaction time. whereas complex learning tasks are studied using
protocol techniques. Yet, from his own definition of protocol
techniques (“the essence of a protocol is that it provides a
running series of responses that can be used to infer the se-
quence of mental states” sect. 1.4, para. 5), it is clear that free
recall, self-paced reading time, eye movements, and most other
measurement techniques can be used as protocol techniques.

I would not wish to argue against anyone adopting this new
field of study, but I believe Anderson has not given us an
acceptably worked-out application of Marr’s distinctions. If he
were to give us such an application worked out for the subsystem
that accomplishes the learning of complex cognitive skills, there
would still be every reason to suppose that the distinctions
would have to be reworked to apply to the subsystem(s) that
accomplish(es) factual memory. This would be true even if there
were overlap between the operation of the two systems. Ander-
son himself acknowledges that “what is algorithm and what is
implementation can vary from theory to theory” (sect. 2, para.
4), and however good the arguments are for a particular inter-
face between algorithm and implementation in the study of skill
learning, they are not arguments that it has to be the same
boundary between algorithm and implementation in studying
factual memory. The main reason for skepticism about the
applicability of Marr’s distinctions to central abilities is the
requirement that it places on the isolation of subsystems respon-
sible for these abilities. This is difficult enough in the visual
system, in which components really are dedicated processors.
In memory systems in which there are several ways of accom-
plishing tasks, the problem is much more acute. Much of the
debate in memory has always been about how to divide up the
systems.

The substance of the specification of memory systems consists
of determinations of their abstractive properties and their cue-
ing characteristics over time. The AcT* system, developed as it
has been chiefly to study the interaction between the applica-
tion of procedures and the availability of premises for them,
specifies only a small part of what would have to be specified to
capture a computation level specification of memory. That
seems wholly appropriate. But it should not be allowed to
obscure the omissions that are other researchers’ main topics.

To take just one example, Rumelhart and McClelland’s (1985)
PDP (parallel distributed processing) simulations of memory are
mainly concerned with abstraction and cueing. They quite
rightly believe that, inasmuch as Marr’s distinctions are applica-
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ble to central abilities, their work primarily concerns the al-
gorithmic/representational level and, to some extent, a some-
what abstract level of implementation. I think they are quite
right in doubting the possibility of specifying the computational
level first, as Marr advocated in perception. The algorithms they
are chiefly concerned with are ones giving rise to phenomena
with which acT* does not concern itself.

Some of the confusion in Anderson’s uses of these distinctions
is brought out well by juxtaposing two quotes:

The level [Marr] calls representational and algorithmic corresponds

approximately to what I am calling the algorithmic level. (sect. 1.1,

para. 1)
and

So it may seem surprising to find Rumelhart and McClelland (1985),
in their response to Broadbent (1985), arguing that their connectionist
models correspond to Marr's representational and algorithmic level
and not to his hardware implementational level. As noted earlier,
however, these two levels of Marr’s framework do not correspond to
the algorithmic and implementational level as they are defined in this
paper. (sect. 4.4, para. 1, my italics)

Although PDP systems can look as if they are concerned with
hardware, their implementational concerns are better con-
strued as abstract implementations, just as Anderson’s are. At
their algorithmic/representational level, they focus heavily on
the degree of distribution of representations, an issue that has
been neglected by acT* and by most of the rather ill-defined
argument that has surrounded issues of representation. When
focus is on the issue of distribution and redundancy of represen-
tations, rather immediate evidence is forthcoming that this
dimension is both important and empirically resolvable (e.g.,
see Stenning et al. 1987).

What is the algorithmic level?

M. M. Taylor and R. A. Pigeau

Defence and Civil Institute of Environmental Medicine, Downsview, Ontario,
Canada M3M 389

One must assume that Anderson is making a coherent statement
about a program of research into cognition. Such coherence can
be attributed to the paper only if everything is interpreted
according to the computer metaphor of cognition. A consistent
interpretation is very difficult if one proceeds from considera-
tion of the human rather than from consideration of the comput-
er. We do not, for example, see any contradiction at all between
the three beliefs that Anderson introduces as having misled
psychologists and the three beliefs that he proposes to sub-
stitute, except in the context of the computer metaphor.

Anderson uses the terms algorithmic level and algorithm in
more than one way. Is the algorithmic level in the scientist, or is
it in the cognitive machine being observed? Sometimes it seems
as if algorithms are procedures carried on at a defined al-
gorithmic level in the cognitive machine, and sometimes as if
algorithms are performed in the cognitive machine but the
algorithmic level is the appropriate way to think about the
cognitive machine. In the latter sense, the algorithmic level
could well refer to the algorithms that determine how a synapse
changes its chemistry in response to neural events. But we are
sure Anderson would consider this to be at the implementa-
tional level (or lower). On the other hand, if the algorithmic
level is taken to be where algorithms are performed in the
cognitive machine, we do not believe it to represent a valid
concept for biological systems. We exemplify this assertion by
reference to a model of cognitive performance (reading) that has
a wide range of application.

The Bilateral Cooperative Model (BLC; Taylor 1984; Taylor
& Taylor 1983) has been elaborated for the case of reading, but it
is intended as a general model for cognitive processing of
symbolic data. In it there are algorithmic modules at all levels of
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data abstraction, but under most circumstances they are little
used in mapping input to behaviour. Only when exact in-
terpretations are required, or when the input is ambiguous or
novel, is there much recourse to the algorithmic modules as a
primary means of controlling perception or behaviour. Nor-
mally, algorithmic modules serve only as an occasional check on
the progress of operations that are performed in a more connec-
tionist (analogic) way.

In the BLC model, analogic functions form one of two tracks
of processes that produce successively higher levels of abstrac-
tion. Algorithmic processes form the other track. The develop-
ment of levels is one aspect of learning; the development of
categories within a level is another. Algorithmic processes are
important in both aspects of learning, which is taken to occur in
three phases: Phase 1, gross pattern recognition, culminating in
Phase 2, the identification of elements that recur in patterns of
interest, and rules that link them; in Phase 3 these elements are
used as input for a more refined pattern-recognition stage. Only
operations related to Phase 2 are presumed to be available to
overt instruction. Phase 3 corresponds to Anderson’s compila-
tion but is not identical because it does not use most of the rules
developed in Phase 2.

If we invoke the four criteria proposed by Anderson for
distinguishing the implementational level from the algorithmic
level, we find that in the BLC model (1) the operations of the
lowest level are not unaffected by the organism’s goals and
beliefs; (2) the operations of the low-level units are affected by
the context in which they are invoked, and the time they take to
execute is strongly affected both by the context and by the data;
(3) learning takes place throughout the system; and (4) cognitive
steps in algorithmic modules are reportable, although they may
not correspond to changes in working memory, because that is
only onevof the levels at which algorithmic modules operate.
Hence, according to the four criteria, the BLC model cannot be
segmented into algorithm and implementation.

Itis, however, a viable model of reading, one that accounts for
experimentally observable effects in the early stages of learning
to read, the effects of brain damage, lexical decisions, semantic
priming, visual masking, and so forth; some of these effects are a
priori surprising, such as the sparing of speed-reading in a brain-
damaged man who cannot read slowly. Furthermore, some-
thing like the BLC model seems to be required to solve the
problem that there is a mathematically inevitable tension be-
tween error reduction and rapid response in any symbolic
communication system, whether biologic or artificial (Taylor, in
press). The two tracks allow context-plausible interpretations to
be processed rapidly, with later correction if necessary, and
permit accurate but slow interpretation of other items.

The BLC model leads us to agree with Anderson’s final
assertion that “the best way to study [algorithms] is through
pedagogical experiments,” because it is only during the learning
phase that algorithms are important for behaviour. Moreover,
overt teaching can have the greatest effect on learning in Phase
(2), the development of pattern elements and the rules that link
them. This assertion appears to be true for reading, and we have
no doubt that it is equally valid in other areas of cognitive
endeavour.

Algorithm cannot be separated from implementation. Biolog-
ical organisms exist in a world of critical timing requirements. A
Von Neumann computer can execute any algorithm, and (as
Anderson says) changes in algorithm can make significant
changes in speed. But a massively parallel computer can per-
form some algorithms several orders of magnitude faster than
any Von Neumann computer that is limited by the speed of light
and the atomic size of its computing elements. Implementation
is very much tied up with what algorithms are permissible to the
biological machine that must survive in a world that will not wait.
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Connectionist models are also algorithmic

David S. Touretzky

Computer Science Department, Carnegie Mellon University, Pittsburgh, Pa.
15213

Most proponents of the connectionist view undoubtedly appre-
ciate that sequential problem-solving behavior may be profita-
bly described at an algorithmic level such as the one Anderson
has developed in Act*. A theory of LISP programming or
geometry theorem proving could conceivably be expressed in
several million weighted connections between perceptron-like
units, but it would be silly and uninformative to do so. For his
part, Anderson rightly concedes the inappropriateness of mod-
eling ultra-low-level neural phenomena, such as the computa-
tions the retina performs, using production systems (personal
communication). Thus, at the high and low ends of the complex-
ity scale, the target article gives no cause for disagreement.
Intermediate-level cognitive phenomena are the battleground
on which controversial connectionist claims have been made
and must be defended.

I will define an intermediate-level phenomenon, such as
understanding an ambiguous sentence or recognizing a figure
from a collection of separate cues, as one that results in a
conscious change of mental state but that is not decomposable
into consciously accessible transition states. Anderson’s second
criterion for identifying what he calls the algorithmic level
eliminates nondecomposable phenomena by definition. But
because he presents AcT* as having implications for connec-
tionist models, which operate almost exclusively at this level, 1
will ignore the restriction. The principal connectionist claim is
that intermediate-level phenomena are best described as mas-
sively parallel subsymbolic computations, rather than sequen-
tial rule-based ones. ACT*’s success as a model of sequential
high-level problem-solving behavior has little bearing on claims
about the intermediate level of cognition.

As Anderson points out, ACT* shares important features with
PDP theories: spreading activation, large numbers of units,
graded activity levels, computation by parallel relaxation, and
learning that involves weight modification. It is the sort of high-
level theory a connectionist can feel comfortable with, because
in modeling high-level phenomena, one needn’t be concerned
that spreading activation across localist “grandmother cells” is
semantically vague and anatomically implausible, or that the
tricode theory of representation appears suspiciously Lisp-like
and unmotivated by neurological considerations. A certain de-
gree of abstraction is necessary when discussing high-level
reasoning.

It does not follow that PDP models, which in part address
these concerns, may be dismissed as “implementational.” PDP
models involve much more than the speed and reliability of
computations (Anderson’s definition of the implementational
level). They include a commitment to an alternative, distributed
representation for knowledge (Derthick & Plaut 1986; Hinton et
al. 1986) that is decidedly not rule based. Distributed represen-.
tations give rise to useful automatic generalization phenomena
(McClelland & Rumelhart 1986a; Sejnowski & Rosenberg
1986). This allows some behaviors that appear to be rule-based
to be reproduced in PDP networks without resorting to rules.
Anderson views this as an attempt to exclude the algorithmic
level from psychological theories. But this presupposes that
algorithmic descriptions require rules. The significance of rules
for learning in cognitive tasks at the intermediate level (as
defined here) is not as well established as for high-level tasks.

Another interesting property of distributed representations is
their ability to represent different shades of meaning of a
concept, as determined by context, using slight variations on the
concept’s canonical activity pattern (McClelland & Kawamoto
1986). One reason ACT* is not viewed as a PDP model, despite
its “connectionist” flavor, is that it represents declarative mem-
ory structures and the components of patterns appearing on the



left-hand sides of rules in the classical Lisp way, as atomic objects
rather than as distributed patterns of activation.

The target article dredges up an early attempt at dismissing
PDP models as implementational, the old “PascaL is better
than assembly language” argument, and misapplies it to the
domain of problem-solving skills. Rumelhart and McClelland
(1985; 1986a) prefer a different analogy for contrasting the
classical and connectionist models: Newtonian versus quantum
mechanics. They contend that macro-level Newtonian theories
expressed in terms of rules and symbols can only approximate
what really takes place in the mind, and that there will be
psychological phenomena observable at the macro level that
have no explanation except that they are the result of subsym-
bolic “quantum” effects. Although it may be possible to describe
the very highest levels of cognition in purely Newtonian terms,
these aren’t the levels today’s PDP models are primarily con-
cerned with. (They are, however, the ones to which AcT* has
been principally applied.)

The representational theories and architectural ideas being
explored in the PDP school promise a fundamentally different
notion of “symbol” than is in use today (Touretzky & Derthick
1987). Our notions of inference are also likely to change. For
example, it is presently unclear how AcT*’s spreading activation
metaphor could be realized in a system that represents concepts
in a distributed fashion. Suppose the spreading activation meta-
phor is not such a good approximation of what really goes on in
the brain? If this turns out to be the case, then some other
mechanism, based perhaps on shared microfeatures or chaotic
attractors, will eventually replace it. [See Skarda & Freeman:
“Brains Make Chaos in Order to Make Sense of the World” BBS
10(2) 1987.]

Because we don’t yet know how the brain works, we can’t say
what the best high-level approximations of cognition will look
like. acT*’s primitives are as good as any that have been
proposed for modeling sequential problem solving. PDP mod-
els generally aren’t concerned with this level. For the level of
processing they do address, PDP models are evidence for the
appropriateness of a radically different language for algorithmic
descriptions.

Learning is critical, not implementation
versus algorithm

James T. Townsend

Psychological Sciences Department, Purdue University, West Lafayette,
Ind. 47907

Anderson puts forward the distinction between “implementa-
tional” and “algorithmic” levels and argues that, for a number of
specified reasons, there should be a shift of research priority
toward the algorithmic level.

The status of metatheory about psychological modeling is not
well enough developed currently to provide any definitive
answer to this question; perhaps it never will be. Thus, the
matter becomes an issue of persuasion. Anderson writes quite
cogently, but, in my opinion, fails to win the case for the general
utility of the distinction, at least in a cross-theoretic fashion. On
the other hand, several of his supporting points effectively argue
for increased attention to experiments on learning and to related
theory.

The distinction between algorithm and implementation is
most cogent in the field of computer science, probably because
of the inseparable historical link with digital computers. The
latter evolved, of course, as a class of automata in which the state
changes depend primarily on a program, or software. This clear-
cut distinction is not always so compelling, as Anderson admits.
In fact, when one approaches models based on the concept of
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neural nets or soup-like holographic storage systems, what is
“program” and what is “hardware” depend greatly on the
predilections of the theorist.

I do not even believe that this distinction needs to be very
closely attached to the importance of learning. Thus, learning
may modify a program or the hardware; we certainly haven't
gotten the final answer from the neurophysiologists. Further-
more, the most interesting thing about the early Perceptron
work (Rosenblatt 1959) was the purported ability to adapt or
learn. The efforts (skirting the well-known pitfalls) of that group,
flowing as they did out of the pioneering work of Rashevsky
(1931), McCulloch and Pitts (1943), Ashby (1952), and others,
seem independent of the present distinction. Similar points can
be made, I suspect, about more recent neuralistic and dis-
tributed models, such as Grossberg’s (e.g., 1980), J. A. Ander-
son’s (e.g., 1973), Willshaw’s (e.g., 1981), Murdock’s (e.g.,
1982), and Hopfield’s (e.g., 1982), among many others.

Theorists have and will continue to emphasize, usually im-
plicitly, more static or more adaptive aspects of their systems’
architecture and behavior, depending on their unique perspec-
tives. And, these aspects will be more or less “divied up” into
implementational versus algorithmic, again depending on per-
spective.

Even some of the relatively simple instances of implementa-
tion the author mentions may fall into the algorithm as opposed
to the implementation hopper, depending on one’s outlook and
the degree of detail provided by the theorist. For instance, in
our own work (e.g., Townsend & Ashby 1983), four major issues
— parallel versus serial processing, self-terminating versus ex-
haustive processing, limited versus unlimited capacity, and
different types of stochastic independence versus dependence —
may be interpreted under algorithmic or implementational
formats, depending on the way the theorist considers them.
One or more might be taken at a descriptive level with little or
no “micro” interpretation, or they might be generated through
finer-grained mechanisms.

All this being said, there is little doubt that learning has been
sorely neglected in a cognitive science, especially in theory. I
would maintain that motivation has been given even less atten-
tion. Providing our cognitive machines with a propelling moti-
vation would partly ameliorate some of the complaints of Drey-
fus (e.g., 1979) and others.

Underestimating the importance of the
implementational level

Michael Van Kleeck
Department of Psychology, Harvard University, Cambridge, Mass. 02138

Although research at the algorithmic level defined by Anderson
is undoubtedly worthwhile, in arguing for an increase in such
research, he tends to underestimate the importance, theoretical
tractability, and research prospects of the implementational
level relative to the algorithmic level. In addition, it seems to
me that he unfairly charges psychologists with using unmoti-
vated postulates and neglecting the functional role of human
cognition.

Relative importance of the two levels. Comparing the al-
gorithmic and implementational levels, Anderson claims that
the algorithmic level is more interesting, important, and funda-
mental. One of his arguments is that the algorithmic level
accounts for most of the variation in human behavior. However,
this is true only in certain areas of cognition, such as the
acquisition and use of skills in symbol manipulation. In other
equally important areas such as visual cognition and musical
ability, the algorithmic level plays a much smaller role, whereas
implementation-level factors such as attentional resources and
memory capacity take on greater importance.
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As a further argument for the importance of the algorithmic
level, Anderson states that in computer science, algorithms and
data structures have powerful effects on performance that are
largely independent of hardware implementation. Implementa-
tion, however, plays a critical role in determining which al-
gorithms are appropriate for real-world applications; silicon
chips, for example, have made possible the use of algorithms
that would have been prohibitively slow in the days of vacuum-
tube computers. Similarly powerful implementational con-
straints on algorithmic appropriateness apply in human cogni-
tion. For example, the slowness of neural response rates implies
that strictly serial algorithms could not account for the rapidity
of visual processing (Feldman 1981).

Anderson also believes that the algorithmic level is more
important and interesting than the implementational level be-
cause the former bears upon epistemological questions and
essential human qualities. The implementational level, howev-
er, is equally relevant to these issues and has special advantages
in dealing with some of them. For example, fundamental issues
concerning knowledge representation and functional specializa-
tion have been clarified by PET (Positron-Emission Tomogra-
phy) data. These data reveal striking differences in the meta-
bolic activity of various brain areas according to stimulus
modality (e.g., visual versus auditory), stimulus class in a given
modality (e.g., musical versus linguistic stimuli in the auditory
modality), and task strategy in a given stimulus class (e.g., visual
imagery versus nonimagery strategies in a musical task)
(Mazziotta et al. 1982; Phelps & Mazziotta 1985). The acquisi-
tion of new skills, cited by Anderson as a quintessentially human
capacity particularly suited for study at the algorithmic level,
can also be examined at the implementational level. Indeed, if
we turn from symbolic skills to motor skills, the implementa-
tional level is probably the more appropriate one, as suggested
by the success of explanations of invertebrate motor learning in
terms of changes in the effectiveness of chemical synaptic
connections (Kandel 1985). Furthermore, one can argue that
even though cognitive capacities such as memory and visual
cognition — capacities perhaps best studied at the implementa-
tional level — are more equally shared with other species than is
skill acquisition, they are no less essential to being human.

Ratio of data to theoretical detail. Anderson claims that the
ratio of data to theoretical detail is greater at the algorithmic
level than at the implementational level. He argues that al-
though phenomena at the algorithmic level are more complex,
this greater complexity is offset by the greater abstraction of
algorithm-level theory and by the availability of richer sources of
data, especially protocols. Although these judgments of phe-
nomenal complexity and theoretical abstraction are necessarily
somewhat subjective, Anderson has probably underestimated
the tremendous increase in complexity of the phenomena stud-
ied at the algorithmic level. In pedagogical experiments, for
example, not only are the tasks more difficult and complex, but
the subject’s previous knowledge and experience also have a
much greater potential impact on performance than in a typical
implementation-level task such as a test of short-term memory
for digits. Anderson also slights the potential richness of data at
the implementational level. Behavioral data at that level, how-
ever, need not be limited to binary responses and reaction
times, but instead can include, for example, multiple response
alternatives. confidence ratings, and measures of the strength
and speed with which response keys are depressed. Nor is one
confined to behavioral data; Anderson states that protocol data
are available only at the algorithmic level, but if we accept his
definition of a protocol as providing “a running series of re-
sponses that can be used to infer the sequence of mental states,”
then informationally rich protocols are certainly available at the
implementational level in the form of electrophysiological mea-
sures such as GSRs (galvanic skin responses; e.g., Dawson &
Schell 1982), ERPs (event-related potentials; e.g., Desmedt
1977), and PET scans (e.g., Phelps & Mazziotta 1985).
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Progress in research. According to Anderson, research on the
implementational level is reaching a point of diminishing re-
turns: The basic facts are already known, so there is not as much
“ore left in the mine” at the implementational level as at the
algorithmic level, and there is little progress in resolving such
theoretical dichotomies as serial versus parallel processing. The
establishment of basic facts, however, has by no means signaled
the slowing of productive research. On the contrary, it has
provided the foundation for a proliferation of fruitful investiga-
tions drawing on new methodologies, such as those using the
physiological measures of brain activity mentioned above, and
new theoretical orientations, such as connectionism (Mec-
Clelland & Rumelhart 1986; Rumelhart & McClelland 1986).
For example, ERP data have clarified the relation between
attention and the parallel processing of visual inputs (Hillyard et
al. 1985).

Cognition as a functional tool. In recommending increased
empbhasis on pedagogical experiments as a way of exploring the
important issues found at the algorithmic level, Anderson claims
that psychologists have ignored the evolution of human cogni-
tion as a functional tool and have instead wished to “construct
the human mind out of unmotivated postulates.” There may be
psychologists who are guilty on these counts, but Anderson’s
charges are too sweeping. Visual cognition, for example, is a
functional tool par excellence and has been insightfully analyzed
in terms of the problems for whose solution it evolved (e.g.,
Kosslyn 1987; Marr 1982). Connectionist modelers draw on
physiological plausibility as well as computational adequacy to
motivate their postulates (McClelland & Rumelhart 1986;
Rumelhart & McClelland 1986).

More ore. Research at the algorithmic level is undoubtedly
valuable, but there is an abundance of interesting, important
ore left in the implementation-level mine, and we have well-
motivated theories and highly efficient techniques for the ex-
traction of that ore. Many mother lodes still await prospectors
who know where and how to look.
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Implementations, algorithms, and more
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With some notable exceptions, I found myself largely
nodding as I read through these commentaries, wishing I
had made some of the points the commentators made and
regretting that I had left enough ambiguities in my target
article to allow the commentators to make the misin-
terpretations they did. (Often when the commentators
provided corrections, they were asserting interpretations
I had originally intended.) So, from the point of view of a
reader trying to extract some useful knowledge from both
the article and the commentaries, this should be a nice,



complementary package. There are, however, a few re-
marks I wish to make here just to set the record straight
and to add a few points of embellishment. This will, one
hopes, add to the informativeness of the package.

Contrary to Rosenbloom’s reading, it seems that most
commentators found the conclusions of my article accept-
able but were bothered by apparent holes in the argu-
ments. Let us review the three conclusions in reverse
order:

I was genuinely surprised that no one took issue with
the third conclusion about the value of applied research in
the science of cognition or about the value of pedagogical
research in particular. In fact, Glaser and Larkin have
even added to my assertion that pedagogical experiments
are a good test bed for ideas with their observation that
such experiments are a good source of theoretical ideas. I
wholeheartedly agree — an omission on my part. It would
be nice if we could consider this issue settled, and I would
not have to deal with reviewers’ assertions to the contrary
the next time I submit an article or research proposal.
Seifert & Norman’s obvious frustration has been my
constant experience.

As to the second conclusion - that there is important
research to be done at the algorithmic level — there seems
to be a general consensus, although some (Rosenbloom,
Seifert & Norman, Townsend, Van Kleeck) have ques-
tioned my judgment that it is more important than that at
the implementational level. As conceded in the target
article, this is ultimately a matter of taste, and I can do no
more than try to convey the basis for my judgment. I
would be quite happy to see research on the two levels
proceed on equal footing. I have every intention of
continuing to do research on processes at the implemen-
tational level.

With respect to the first conclusion — that there is an
algorithm—implementation distinction — most commen-
tators seem to accept some form of this distinction, but it
is clear that there are a lot of questions about whether I
have really gotten it right. It is to these questions that the
major portion of this response will be addressed.

The algorithm—implementation distinction. I would like
to start out by setting some points straight. First, the
reference to the computer-science distinction was given
as an analogy, and no analogy is perfect (Arbib, Clark,
Hendler, Reed). As those who study analogies know,
there is always the danger of pursuing them too literally.
Once one has extracted from the analogy what it has to
offer, one would do best to focus on the target domain and
ignore the source domain. However, as I hope will
become apparent in this response, I do not think the
analogy has outlived its usefulness yet, and I will continue
to use it in attempting to communicate. The many exposi-
tions of this distinction in the commentaries are en-
lightening. The various interpretations offered just illus-
trate the richness of the concept in computer science.
One hopes that my communication goals will not rest on
resolving the definition of the distinction in computer
science. However, to help specify the mapping I have in
mind in using this analogy, let us equate “algorithm” with
Lisp code and “implementation” with the final realization
of the code that runs on the machine.

Second, I did not intend the algorithm—implementa-
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tion distinction, as I was developing it, to extend to vision
(Arbib, Clark, Larkin, Mortensen, Seifert & Norman,
Van Kleeck). I even have questions about whether it
extends to language (Larkin). It is clearly applicable in
those domains that might be called reasoning and prob-
lem solving. For this reason, Marr’s development of his
levels is not totally appropriate for my purposes. I actually
included a discussion of Marr only because a BBS referee
had criticized me for lack of scholarship in not relating my
distinction to such a thoughtful and influential analysis. I
was surprised at how many commentators took it as the
reference point for my development of levels. Apparently
my paper does not read the same way to others as it does
to me. Pylyshyn’s (1984) development is much closer to
mine and more appropriate to the area of reasoning and
problem solving. Pylyshyn should also be consulted for a
discussion of the binary distinction between algorithm
and implementation (or functional architecture) in the
human system in contrast to the many steps of a decom-
position in a computer system (Arbib, Hendler).

The only way to be fully precise (Arbib, Clark, Gold-
man, Reilly) about the algorithm-implementation dis-
tinction is to point to its manifestation in a well-defined
theory, as I did with respect to act*. For those (such as
Clark) who are uneasy with this, three points were noted
that ought to line up with the algorithmic level in any
theory that makes the distinction — Pylyshyn’s cognitive
penetrability, my reportable working-memory changes,
and my learning transitions. The last is most critical to the
argument because it ties the algorithmic level to funda-
mental epistemological issues. It is undoubtedly the case
that these criteria do not pick out a unique level in some
psychological theories (e.g., those of Taylor & Pigeau and
of Hendler, apparently). It is not logically necessary that
the criteria should apply to all theories — some theories
may not make the distinction.

Independence of levels. It is also true that even in the
acTt* theory, the levels are not independent, although
they are distinct. The clear point of nonindependence is
the penetration of implementation-level properties into
conflict resolution, which is part of the definition of the
algorithmic level (Clark, Larkin). Without the conflict
resolution specified, we have what amounts to a non-
deterministic algorithm (not a nonalgorithm as Clark
suggests) in that we cannot specify which of the applica-
ble rules will be executed. If we consider the activation
computation that underlies conflict resolution in act*
(an implementation-level matter), we still have a non-
deterministic algorithm, but we can now specify the
probabilities of various paths being followed. However,
the penetration of activation computation into the al-
gorithmic level does not deny the reality of that level any
more than the penetration of memory-size limitations
denies the reality of a LisP program that is running on
the computer.

When Seifert & Norman assert that the two levels are
“fundamentally intertwined,” I am not sure whether they
are asserting that there are interactions or that the two
levels are inextricably intertwined. If they mean the
latter, I must simply reject their assertion. The success
that scientists have had in pursuing one level and ignoring
the other supports my view. Moreover, if the levels were
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inextricably intertwined, we would see little progress in
cognitive science. We would simply be unable to analyze
a maze of interactions between two levels. In other
words, “near decomposibility” (Simon 1969) is a precon-
dition for scientific analysis and, as Simon further argues,
it may also be a precondition for a functioning system. I
particularly think that the near independence of the
algorithmic level from the implementational level is a
prerequisite for successful learning. If low-level interac-
tions were going to blunt the attempt to acquire knowl-
edge, there would be no hope of organizing a system that
could solve complex problems. It would be a disaster if it
were calculated at the algorithmic level that some piece of
knowledge was needed but the implementational level
could turn the manifestation of that knowledge into some-
thing entirely unintended. Just such a disaster has been
the experience in machine learning when people have
tried to intertwine functions such as activation computa-
tion into their rule-learning system (Rosenbloom 1983).

The psychological reality of the levels. In response to
questions raised by Arbib and by Taylor & Pigeau, I
really am committed to the reality of the algorithmic
level. It is a reality in the subject’s head, not just a
convenient fiction used by the theorist. The level is real
because it is the one at which the significant learning
takes place. This is not to deny that ultimately every-
thing, including the algorithmic learning, must be imple-
mented in neural computations. In terms of the Lisp
analogy again, we can have a LIsP program that writes
LISP code (i.e., a self-programming system at the sym-
bolic level). This Lisp program may be compiled into
machine code, and the code it writes may be compiled
into machine code. However, the fact that everything is
taking place in compiled machine code does not deny the
reality that the learning transitions are defined at the
symbolic level (i.e., Lisp).

The machine code does not simply “implement” the
algorithm without adding anything to behavior (Arbib,
Goldman). In computers, the machine realization im-
poses certain temporal properties and memory limita-
tions that were not present in the algorithm when it was
first specified in the higher-level language. So, too, the
implementational level in acT* adds properties not pre-
sent at the algorithmic level, namely, timing information
and probability of failure.

I'am less confident that the implementational level as it
exists in ACT* or in the typical connectionist theory has
the same psychological reality (Hendler) as the algorith-
mic level. The first reality of that sort below the al-
gorithmic level might be something like Marr’s level of
hardware implementation. Because we know so little
about such neural details, the implementational aspects
of the typical cognitive theories may be just approximate
descriptions to help us predict the details of our data.
Thus, if there is an approximation (Touretzky), it may
well exist at the implementational level and not at the
algorithmic level.

Of course, all this is scientific hypothesis, and there
may be no algorithmic level, either real or approximate.
The hypothesis has to be judged by its empirical fruit-
fulness. I am no doubt biased, but it seems to me that the
judgment will prove to be extremely positive. It would be
a glorious discovery for science if the mind operates in
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terms of symbols — Newell and Simon’s (1972) physical
symbol hypothesis — that turned out to be true. As Newell
(1980) has argued, this would rank with the greatest of
scientific discoveries. It is far from obvious that such a
symbol level should exist.

I am not sure how unique symbolic processing is to
humans; hence I am unsure-how to react to the sug-
gestions of Ewert. Theorizing about the evolution of
human cognition can be as perilous as theorizing about
the origins of language, and for the same reason: There
are no records of the cognitive activities of our ancestors.
If symbol processing is to some degree unique to humans,
Ewert’s question about whether it depends on language is
a good one. Mathematical problem solving is not ex-
clusively linguistic (although it may well be based on the
same symbol-manipulation capabilities that underlie lan-
guage). Many of the production rules in our geometry
tutor involve components that can be construed as verbal
tests only in the most distorted sense, as Mortensen
suggests. For example, our geometry tutor uses tests of
whether points are in the same half plane, which is surely
a visual pattern.

Stabler raises the issue of whether there may be some
level of analysis like Marr’s computational level or Chom-
sky’s competence level and whether our inquiry into
cognition ought to begin there. He may be right, and he is
certainly right that the formal mathematical theories of
the domains I study do not provide that level. If there isa
higher level, I suspect it will prove to be something like
Newell’s (1981) principle of rationality: The behavior is in
some sense a rational solution to the information-process-
ing demands imposed on it. Such a principle implies that
behavior is largely a function of the computational prob-
lems posed to the information-processing system, as
Stenning emphasizes. Note that this is really a metalevel
constraining our theory of the other levels and not a
description of something in the head. Marr’s computa-
tional level is really a metalevel in this sense.

Where is the science? It is apparent even to me that I was
unclear about where the science is at the algorithmic
level. Goldman is right in pointing out that identifying an
algorithm for a particular domain cannot be the ultimate
goal of basic research, although it may be so for applied
research (see my remarks on human—computer interac-
tion). The most we can hope for at this level is what
Clancey describes, namely, a taxonomy of the charac-
teristics of algorithms that have been uncovered. Gold-
man and Larkin are right too in asserting that the science
is in the learning principles determining how the mind
encodes the structure of the domain. In these learning
principles, we all hope there is across-domain generality.
Of course, one has to study algorithms in some domain to
study their acquisition. Thus, the study of a domain
algorithm per se is an important subgoal of the higher
goal, and it is proper for scientists to publish their
conclusions about domain-specific algorithms so that
other scientists can have the benefit of their analyses.
This is just to say that research does not have to achieve its
ultimate goals to be important.

My point about generalities was really two points. First,
if we look at the structure of particular algorithms, we are
not going to see much in the way of generalities, because
these algorithms reflect the idiosyncratic structure of the



domains to which they apply. Second, although gener-
alities are present at the algorithmic level in the learning
principles that relate the structure of the domain to the
algorithms, the methodology for uncovering these learn-
ing generalities is different from the methodology for
uncovering generalities at the implementational level. In
studying generalities at the implementational level, we
can repeat over and over again the same, or nearly the
same, situation in a subject, and we can measure the
phenomena precisely. When we are studying the learning
of an algorithm, we focus on what is of necessity a moving
target, and we cannot repeat an observation. The first
episode will cause learning and, hence, we will have a
different person for the second episode. It is also unlikely
that two individuals will follow the same trajectory, so we
cannot simply aggregate over individuals. Thus, in study-
ing learning at the algorithmic level, the generalizations
we are looking for are relationships among our observa-
tions, not the same pattern appearing over and over again
in all the observations.

Protocols. As Seifert & Norman note, I am a recent
convert to protocols, at least as measured in terms of the
length of my career. Seven years ago I would have had no
difficulty in writing a commentary very similar to theirs. I
am hardly an expert in the use of protocols, but if serious
methodological discussion is needed, I again point the
reader to Ericsson and Simon (1984). The interpretation
of protocols does not have to be any more subjective than
our interpretation of what word a subject scribbled in a
free-recall test. Ultimately, any data source has to be
filtered through a theory, and protocols are no exception.
To repeat a point made in the target article, tutoring is
one means of objectivizing protocol analysis. Seifert &
Norman are right in stressing that the implementational
levelis not always restricted to a binary response and that
a multi-valued response is certainly more informative.
However, these are still single measures at the end of the
process of interest. Think how much more informative it
is to get a running trace consisting of hundreds of such
responses through the use of protocols! The other items
Seifert & Norman list in their “rich range of data” are just
analytic techniques for squeezing the most out of what is a
rather impoverished set of data. Van Kleeck points out
that we may discover some methodology permitting us to
increase the information gain in implementation-level
experiments and even to have running traces of the
processes. Unfortunately the candidates he lists have
largely proven unsatisfactory, but this does not imply that
we should not explore new methodologies or try to
perfect the ones Van Kleeck lists.

I share some of Seifert & Norman’s concern about
statistical tests, not so much with respect to the falsifica-
tion issue but with respect to the overall difficulty of
testing the generality of conclusions drawn from a pro-
tocol. With a few notable exceptions (e.g., Larkin 1981)
there have not been real efforts to assess the generality of
one’s conclusions from protocols. The reason for this
generalizability problem is not something inherent in the
methodology of protocols per se. It is just that it takes a
great effort to collect and analyze one protocol, let alone
to do this for many protocols and then analyze the
relationship among them. This is a point Seifert & Nor-
man make, and they really hit the nail on the head here. It
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represents a fourth factor I failed to mention, one that
reduces the advantage of protocol analysis over “imple-
mentation methodology.” Our tutors have eliminated
that roadblock, however, by automating the process. We
collect automatically analyzed protocols in the way we
have been used to collecting response and timing data in
our implementation-level experiments.

I have little to say in response to Ericsson’s comments
except to reinforce them. My one point would be that, in
contrast to his research on memory expertise, it is not
possible to repeat an observation in studying the acquisi-
tion of a rapidly changing skill such as computer program-
ming. Rosenbloom’s point — that in studying learning one
is two steps of induction from the protocols — is well
taken. The first step of induction is to infer from the
protocols the rules that define the transitions. The second
step is to infer the learning principles that determine the
changes in the rules.

While we are on the subject of protocols, I should stress
two points from the target article. First, the function of
protocols is to get a running record of correlates of the
states of working memory. One does not require that the
student report his algorithm (Reilly) — that is left as an
induction task for the scientist. Second, protocols are not
restricted to verbal reports; methodologies such as eye
movements allow one to study nonverbal problem solving
(Mortensen). I also appreciate Stenning’s pointing out
that free recall is a type of protocol. It allowed me to
understand what I was doing in large part with my early
FRAN theory (Anderson 1972) — building a theory of one
algorithm that students use for performing free recall.
This work had few implications for implementational
issues concerned with human memory.

Connectionism. The level of commentary generated on
the subject of connectionism versus symbol processing
(Smolensky, Touretzky) is very encouraging and provides
a hopeful sign that psychology has finally matured and
that we are not going to play out another fruitless dichoto-
my such as serial versus parallel processing, propositional
versus imaginal representations and so forth. The only
matter on which I have to take issue with Smolensky and
Touretzky concerns their suggestion that act* does not
use distributed representations. These commentators
should know better. It is perfectly possible to implement
the nodes in acT* as distributed patterns of activation
over sets of elements and the associations in ACcT* as
associations among these patterns.

Individual differences. I am sympathetic with Glaser’s
concerns about making contact with individual dif-
ferences. Indeed, it is my major misgiving about al-
gorithm-level theories such as act* that they do not give
a good account of individual differences in learning. It is
easy to explain performance differences in terms of vari-
ous implementation-level parameters that specify the
capacity of the system. Differences in learning algorithms
may not be so simply explained.

Narrowness of topics. Finally, there are the comments
about the narrowness of my theoretical vision. Levine
and Townsend complain about the short shrift given to
emotions and motivation. Clancey, Glaser, and Stabler
all comment that the topics I have studied (mathematical
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problem solving and computer programming) are rather
narrow and that other domains would raise issues that I
have ignored. In response to such comments, I can only
say, “Yes, and I am glad you are studying these topics.”
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