
Modeling Navigation in Degree-of-Interest Trees

Raluca Budiu (budiu@parc.com)
Peter Pirolli (pirolli@parc.com))

Palo Alto Research Center,
3333 Coyote Hill Dr., Palo Alto, CA 94304

Abstract

We present an ACT-R (Anderson & Lebiere, 1998) compu-
tational model of how people navigate in a degree-of-interest
(DOI) tree. The model incorporates a visual salience func-
tion that determines which part of the display to attend to next.
The salience function uses visual features of the display (e.g.,
distances) and semantic features of labels (e.g., information
scent). The model was compared against data from partici-
pants and provided medium to strong fits to latencies and the
number of nodes visited by the participants. The model shows
that it is useful to distinguish between category-based versus
similarity-based information scent. It also suggests that visual
distance and scent may interact with one another, with scent
playing a greater role at distances close to the current node in
the visual focus.

Keywords: Degree-of-interest trees, information scent, infor-
mation visualization, computational modeling, ACT-R.

Introduction and Motivation
One of the most prevalent tasks of contemporary society is
information search and information browsing. According to
Pew Internet Survey(2006), as of December 2006, out of the
141 million of Internet users in the US, 91% of them engage
in information search activities (and they do it as often as
they read email). Web pages often contain many links, and
people are relatively good at finding their way through the in-
formation maze. Due to their limited information processing
resources, people rarely perform an exhaustive search in the
whole space of alternative paths; rather they rely on heuristics
to reach their information goal. These heuristics involve both
visual cues taken from the display and semantic cues offered
by the words on the page.

In this paper, we study the nature of the search heuristics
that people use when they interact with a complex, dynamic
and information-rich display that changes at every click. Our
work builds on two research areas: visual search and web
navigation. There is a rich literature in psychology on visual
search (see Wolfe, 1998 for a review), but most of it addresses
simple visual displays and ignores the semantic content of the
items on the screen. Since the emergence of the Web, several
models of menu/web navigation have been proposed (Miller
& Remington, 2004; Fu & Pirolli, in press; Blackmon, Kita-
jima, & Polson, 2005), but they deal with simple navigation
tasks and predict only few navigation choices (e.g., given that
the user and the model have clicked on the same sequence of
choices, they strive to predict the next user choice, rather than
the entire sequence leading to the solution).

The task that we study involves searching for a target in
a particular search interface called degree-of-interest (DOI)
tree (Card & Nation, 2002). The questions that we ask are:
Does it matter where you place objects on the screen? What

influences visual search most? Do people get distracted by
irrelevant, but visually salient items? What is more impor-
tant: the visual organization of the display or the words that
are used? How do people decide what items are relevant?
How can we estimate the relevance of words? Answers to
this questions could have practical implication for interface
designers, as well as for systems that leverage on user models
to make relevant information more available to users.

We propose DOI-ACT, a cognitive model of navigation in
DOI trees. The model is implemented in ACT-R (Anderson
& Lebiere, 1998) and can make a successful sequence of nav-
igation choices and reach the solution of the search problem
in time (and number of clicks) comparable to humans.

Degree of Interest (DOI) Trees
Degree of interest trees (Card & Nation, 2002) are a form of
focus+context visualization (Card, Mackinlay, & Schneider-
man, 1999), intended to help with displaying large amounts
of data. They compromise between a ”panoramic” and a
”zoom” view of the information, by using degree-of-interest
calculations to decide which nodes should be visible. Fig-
ure 1 shows a degree-of-interest tree that represents an onto-
logical hierarchy of concepts. The ontology was taken from
the Great CHI’97 Browse-Off (Mullet, Fry, & Schiano, 1997)
and has about 7000 nodes. In Figure 1 the node that has been
just clicked by the user isArtificial. Only nodes that are close
to the node in focus are visible.Whereas the areas of the tree
around the point of interest are shown in great detail, there is
also some sense of the overall structure of the tree. Because
more information than actually requested by the click is dis-
played on the screen, the DOI trees may facilitate learning
about the information hierarchy. Thus, tasks that make re-
peated use of the same hierarchy may benefit most from this
kind of visualization.

Information Scent
One big component of the search heuristics used by people
is information scent: when looking for a particular piece of
information (target), a variety of semantic clues tell us how
likely it is that the target be hidden under a particular label.
These clues are referred to as ”information scent” (Pirolli &
Card, 1999): when the information scent is high, people can
find the target easily (e.g., Pirolli, Card, & Van Der Wege,
2000). Often it has been assumed that information scent re-
flects semantic similarity. Word similarity measures based on
word co-occurrence statistics — such as Pointwise Mutual In-
formation (PMI) (Turney, 2001) or Latent Semantic Analysis
(LSA) (Landauer & Dumais, 1997) — have been used suc-
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Figure 1: DOI Tree Visualization.

cessfully to predict information scent (Pirolli, 2005). How-
ever, such co-occurrence based metrics may not always be
the best measures for information scent, especially when the
information is organized taxonomically. For instance, when
looking for the starAlpha Centauriin the structure in Fig-
ure 1, a node labeledWarsis not relevant, althoughwarsand
star have very high co-occurrence. In this case, a more ap-
propriate measure for information organized taxonomically
is degree of category membership: how much the target is
a member of the class denoted by the label (Budiu, Pirolli,
Fleetwood, & Heiser, 2006).

Previous work
The extensive literature on menu (or Web) navigation has fo-
cused on tree-like navigation spaces of limitted breadth and
depth (e.g., Miller & Remington, 2004). Although some of
these models have addressed the role of information scent
(Miller & Remington, 2004; Fu & Pirolli, in press; Black-
mon et al., 2005), they have not taken into account the role
of the visual display and did not attempt to explain how in-
formation scent and visual organization interact to each other.
Rather, they assumed a simple model of sequencing of atten-
tion to links on a display. Recent models of visual search of
displays (e.g., Hornof, 2004; Tamborello & Byrne, 2005) ad-
dress participant behavior on a single display, but do not deal
with tasks that involve iterations of visually scanning a dis-
play, making a navigation choice, then repeating everything
again over several more displays until the task is done. We fill
the gap in the literature by presenting a model that (1) makes a
sequence of navigation choices and solves a real search task;
(2) takes into account both visual and semantic factors that
affect navigation.

Experiment
Budiu et al. (2006) present an experiment in which people
performed searches in DOI trees. Participants had to find 16
targets in a DOI tree visualization of the hierarchy in Figure 1.

Half of the targets had high information scent (easy) and half
had low scent (hard). In the high scent tasks, all the nodes on
the path to the solution had highly salient labels. For the low
scent tasks, some of the nodes on the solution path were less
salient. For instance, the task to find the nodeBananawas
high scent: the path to that node included highly salient items
(Categories; Things; Natural; Vegetable; Fruits; Tropical;
Banana); the task to find the nodeLibrary of Congresswas
low scent, because the path to that node (Categories; Peo-
ple; Organizations; Governmental; United States; Legisla-
tive Branch; Library of Congress) contained at least one less
salient label (People). Budiu et al. (2006) report that people
were faster in the high scent tasks (29.02s on average) than in
the low scent tasks (63.27s on average). Participants tended to
visit more nodes (85 nodes per task on average) and to wan-
der farther away from the solution path (4.83 nodes away) in
the low scent cases than in the high scent, where they visited
only 47 nodes on average and departed from the solution path
at a distance of 3.62 nodes on average.

The DOI-ACT Model
The DOI-ACT model is built within the ACT-R framework
(Anderson & Lebiere, 1998). ACT-R is a cognitive archi-
tecture based on production systems; it has been used to
model numerous experiments from various areas of psychol-
ogy (problem solving, memory, language, etc.

The model has two main components that interact with
each other: (1) a visual search component that parses the
screen into visual groups and selects the most salient one to
attend next, and (2) a semantic component that examines the
nodes in the most salient visual group and decides on which
one to click. Both these components use information scent to
decide visual salience and semantic relevancy, respectively.

Measures of Information Scent

In our ACT-R model, information scent is ultimately mapped
onto chunk activation: the more salient a node is to the
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current target, the higher its activation and the more eas-
ily it is retrieved from memory. The DOI-ACT model uses
two measures of information scent (matched on two separate
components of ACT-R activation): category-based scent and
similarity-based scent. Category-based scent captures the de-
gree to which a node is member of a category. The name of
the category is called ”hypernym” (e.g.,fruits is a hypernym
of banana). Although category scent plays the more central
role in the model, occasionally similarity-based scent can be
important, too. Indeed, nodes at higher levels in the ontologi-
cal taxonomy (e.g.,Things, Fruits) may be hypernyms of the
target concept, rather than words semantically similar to that
concept. However, the scent of the leaf nodes (e.g.,Pineap-
ple, Banana, Mango) with respect to a target such asBanana
is better captured by similarity.

ACT-R activation has two components (Anderson &
Lebiere, 1998): base-level activation, that corresponds to how
often and how recently the chunk has been accessed, and a
spreading activation, that indicates how much the chunk is
associated with other chunks that are currently in the focus
of attention (for instance, in the context). Category scent in-
fluences the base-level activation and similarity scent impacts
spreading activation.

Category Scent. To estimate category scent, we use hu-
man category ratings for 1760 word pairs, collected via a web
questionnaire. Seventy-one self-selected participants rated,
on a scale from 1 to 5, how likely it is for a node (e.g.,ba-
nana) to be member of a class (e.g.,fruits). For a given search
target, the category scent is used to set the ACT-R base-level
activation of a special category chunk. For instance, to rep-
resent thatbananais a fruit, we create a category chunk that
links those two items and we assign to that chunk a base-level
activation proportional to the average category rating for that
pair.

Similarity Scent. To estimate similarity scent we used
PMI (Turney, 2001) scores between the target (e.g.,banana)
and the nodes in the DOI tree. We computed PMI scores be-
tween all the nodes in the DOI tree and all the targets; how-
ever, for our model we only kept the top 100 PMI values (the
others were so low that they could be considered zero). The
PMI scores were used to set the ACT-R strengths of associ-
ationSi j : the higher the strength of association betweenba-
nanaandmango, the greater the activation spread received
by mangofrom the target, and the higher the activation of
mango. If mangohad high activation when searching forba-
nana, the model would infer that it was relevant for the cur-
rent search goal.

Visual Search
There is a large literature in psychology that is devoted to
visual search (see Wolfe, 1998 for a review). Many exper-
iments studied how people search for a target when distrac-
tor items are present, and several theories of visual attention
were proposed. DOI-ACT uses elements of CODE (Logan,
1996), a theory of visual attention that accounts for many phe-
nomena in the literature. According to the CODE theory of

,

Figure 2: Different proximity-based groups as defined by our
model.

visual search (Logan, 1996), people partition the display in
several regions that are characterized by similar visual fea-
tures, and then they select one of these regions. One such
feature is proximity: items close together on the screen form
groups. Figure 2 shows part of a DOI tree and the associated
proximity-based groups.

Given a partitioning of the screen in visual groups, our
model selects the most salient group and makes it the cur-
rent group. Items in the current group are next examined in
detail. There are many possible factors that can contribute to
group salience (e.g., density, average information scent). To
find out which of these factors really have an effect, we use
a logit model. Logit models (and, more generally, discrete
choice models) (Train, 2002) are a class of statistical tech-
niques used primarily in economics to understand and predict
how people select among several alternatives. We assume that
visual groups are the alternatives (since people need to choose
which one to attend next). We define a utility function (that
corresponds to visual salience) for each alternative. The util-
ity U (or salience) of a groupg is a linear function of the
variablesX1 . . .Xk considered:

U(g) = b1X1g +b2X2g + . . .+bkXkg (1)

whereb1 . . .bk are some unknown coefficients.
According to the logit model, the probability of choosing

one particular group depends on the salience of that group as
in the following equation:

P(g) =
eU(g)

∑all groupsk eU(k) (2)

We need to determine the coefficientsb1 . . .bk. Given that
we know the choices made by the users (corresponding to
the groups in which they clicked), we can determine these
coefficients by using a maximum likelihood estimate (that is,
we find the values for which the likelihood of the observed
choices is maximum).

We considered several variables in the salience equation:

• horizontal distance between the center of the group and the
current node1; that distance can be positive or negative,
depending on whether the group is to the right or to the left
of the current node;

1The current node is the node last clicked.
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• Euclidean distance from the group center to the current
node;

• number of descendants of the current node that are within
the group;

• number of nodes in the group that were previously visited;
• number of nodes in the group that were previously clicked;
• density of the group (inverse of the number of nodes in the

group);
• similarity-based scent (defined as the maximum similarity

scent of all the nodes in the group);
• category-based scent (defined as the maximum category

scent over all the nodes in the group);
• estimated category scent, defined as either an average of all

category scents of previously visited nodes in the group, or,
if no nodes were visited, the maximum category scent of all
the parents for all the nodes in the group;

• estimated similarity scent: an average of all similarity
scents for all the nodes in the group that were visited be-
fore;

• lag clicked: how long ago the model has already clicked an
item in this group;

• lag visited: similar to lag clicked for visited nodes.

The estimated scent measures for a group reflect an expec-
tation of the user that the group may be relevant, based on the
scent of the nodes already observed and that are connected to
it (e.g., parents of nodes in the group).

When we used the logit model, we obtained that most vari-
ables had close to zero coefficients in the utility equation.
The only variables that had coefficients at least greater than
0.01 were horizontal distance (b = 0.44), Euclidean distance
(b = 0.1), number of descendants (b = 0.01) in the visual
group, category scent (b = 0.034).

However, when we tried a salience function that depended
only on these variables we noted that (1) if we used both the
Euclidean and the horizontal distance in the salience function,
the distance would basically be the only variable that had an
impact, (2) the model would tend to select the same groups
over and over again, because no knowledge of what had been
already visited was built in the salience function. Therefore,
we updated the salience function to include the following fac-
tors:

• horizontal distance (D,)
• number of descendants (N) in the visual group,
• category scent (S),
• inhibition factor (I = −100e1−c, wherec is equal with the

lag clicked) for the items that had been clicked recently.

Including the other variables with coefficients smaller than
0.01 did not affect the salience function2. Beside these vari-
ables, we added a normal noise component to the salience
function. The normal noise injected randomness and non-
determinism in the system.

2None of the variables had value ranges so big that even small
coefficients could have led to them impacting the salience function.

Each time a new visual group must be selected by the
model, this salience function is used. A parallel process cal-
culates the salience of each visual group and the group with
the highest salience is chosen. This salience function is fed
into ACT-R’s visual module and used each time a request for
a visual group was made.

Note that, for groups placed to the left of the last node
clicked (i.e., nodes upper in the tree), the distance is negative
(and there are no descendants of the current node that belong
to those groups), so category scent is really what makes the
group salient. For nodes to the right of the last clicked node,
the distance is positive and, together with the number of de-
scendants, drives salience. Thus, people use category scent
more in the upper levels of the tree, when they backtrack from
the current node. They rely less on category scent as they ad-
vance deeper in the tree, by moving to the right of the current
node. In fact, once they are on the right path, using distance
as the main factor is a strategy that optimizes the time to the
solution (the farthest away descendants of the current node
would need to be clicked to get to the solution most quickly).
It is when they made a mistake and needed to backtrack that
users have to take scent into account more.3

Semantic Component of the Model

The model starts by selecting a group to examine. Once a
group was chosen, the model scans the elements in the group
one by one, top to bottom. In the original experiment, there
was evidence that the participants preferred this sequential
way of scanning. For each item processed, the model checks
whether the node is a hypernym and marks it as such if so.
When the model reaches the end of the group, it retrieves the
best hypernym and clicks on it. For each group, the model
starts with a high probabilityp of continuing and a small
probability q of stopping. Each time an item of low rele-
vance is encountered in the current group (i.e., an item with
low category or similarity scent), the probability to continue
p is decreased by a fixed value. When the probability of con-
tinuing becomes comparable with that of stopping, the model
stops reading new items from that visual group.

Goodness of a hypernym translates into ACT-R activation.
A category chunk such as “banana is a fruit” has an activa-
tion that corresponds to the degree to whichbananais in the
categoryfruits. Similarity-based scent is useful on leaf nodes
of the tree, to decide whether a particular region in the space
should be explored or abandoned (that is, if you are looking
for Bananaand encounter items such asJupiter and Mars,
you can safely guess that you are in the wrong region of the
screen).

3Note also, that category scent is more available for the nodes
to the left, because those nodes are “older” information that was
semantically processed in the past, whereas the nodes to the right
are newer nodes, whose semantic features may be less accessible on
visual inspection.
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Figure 3: Model results (x axis) against data (y axis): (a) search times; (b) clicks.

Results and Discussion

The most important accomplishment of the DOI-ACT model
is that it can successfully complete most of the tasks. The
tasks in this model have an average solution path length of 8
nodes, with some of the tasks reaching 16. Even if the prob-
ability of making a mistake at one step were small, the over-
all probability of getting to the solution is low for such long
solution paths. The fact that DOI-ACT is able to complete
the tasks in reasonable time (less than 300 simulated ACT-
R seconds) implies that we did capture a fair amount of the
heuristics that people use to perform these tasks, and that the
backtracking strategy that the model uses is fairly similar with
that of humans.

DOI-ACT failed to complete two of the low scent tasks in
less than 300s. However, these two tasks were the hardest
for people as well (one participant failed to find the answer
and all the others took very long time to complete these tasks,
when compared to the other tasks).

The model fits the average behavior of the participants and
the qualitative distinction between low and high scent: it took
119.15s (12.72 clicks) for low scent and 37.07s (5.52 clicks)
for high scent, on average; people took 63.27s (10.19 clicks)
for low scent and 29.02s (6.49 clicks) for high scent. DOI-
ACT took longer than humans on low scent tasks, indicating
that the backtracking heuristics used by people is not fully
captured by the model.

Figure 3 shows how the model and the participants per-
formed on the individual tasks. The model does a fairly good
job on the high scent tasks, but captures less well some of the
low scent tasks. There are at least two reasons for that. First,
the low scent data has highly variable: there are 5 observa-
tions per task, and the search times for these observations vary
widely between subjects. Second, although we used human
ratings to estimate category scent, for some low scent tasks,
this measure was not good enough, suggesting that people

may pick up very quickly site-specific scent. For instance, the
human participants in our rating study considered thatCeles-
tial is among the best hypernym forgod Ishtar, much better
thanPeople. However, participants in the experiment never
clicked onCelestialwhen searching forgod Isthar. It is pos-
sible that they learned thatCelestialin this taxonomy refers
only to celestial objects, and not to deities. When we ex-
cluded the two low scent tasks where the category scent based
on human ratings did not match our ontology, we obtained
that the correlation between data and model wasR= 0.75 for
clicks andR= 0.77 for search times.

The results from the model indicate that, although the
model is able to complete the task in reasonable time, it still
takes longer than people on the low scent tasks, especially
if these have a poor estimate of category scent. To improve
the fit, there are several refinements that could be done to the
search heuristics. One is to have a mechanism for learning
site-specific category scent incorporated into DOI-ACT. An-
other avenue of future research is to further refine our visual
search strategy with a theory of eye movements, to explain
the actual fixations corresponding to the items processed by
the model. In the future, we plan to use EMMA (Salvucci,
2001), a model of eye movements that works with ACT-R, to
make that step.

Conclusions
We have presented DOI-ACT, an ACT-R computational
model of how people navigate in a DOI tree. DOI-ACT has a
visual component based on a discrete choice logit model, and
a semantic component that uses information scent as ACT-
R activation. It fits moderately well (in terms of clicks and
search times) the data collected from human participants, sug-
gesting that it can capture to a good degree the heuristics that
people use in performing search in a large collection of in-
formation. However, the model tends to overestimate the
time for search that people needed, indicating that some more
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work is needed to fully understand the strategies used by par-
ticipants to backtrack from a wrong path.

One of the main contributions of this paper is in present-
ing a model that completes a complex, realistic search task
on an interface that typically displays dozens of choices, in
many different visual arrangements, dozens of times in a typ-
ical task. Moreover, the possible structure of behavior in this
task is complex: an abstract representation of all the possible
moves (in both attention space and navigation space), which
could be made by either the users or the model, would reveal
a state-space lattice of much greater complexity than that con-
sidered by previous navigation models (Miller & Remington,
2004; Blackmon et al., 2005; Fu & Pirolli, in press). Fur-
thermore, in modeling any given DOI task, there are an ex-
traordinary number of opportunities for the model to diverge
from the user data when contrasted with previous models and
approaches. In other words, there is a huge amount of items
available on the screen and many bad choices to be made, and,
if we want to do it in a cognitively plausible way, with cog-
nitive operators (like those stipulated by ACT-R), not much
time available. The combination of category scent and visual
search strategy are really essential to capturing human data.

Another important contribution of this work refers to the
discrete choice model of visual search in complex displays.
We believe that this paradigm can be applied to study visual
search in other complex interfaces, as well, and that it sets the
basis of a microeconomics of the visual interface, placing us
one step closer to the goal of building a science of complex
visual interfaces.

Last, but not least, the DOI-ACT model brings forth a
new understanding of information scent by distinguishing be-
tween category- and similarity-based scent. In terms of ACT-
R modeling, in the past, information scent was mapped on
production utility (Pirolli et al., 2000); we diverted from that
tradition and incorporated scent more naturally in the declar-
ative memory module, as chunk activation.

In conclusion, we believe we are in a better position to
give some guidance to interface designers. One principle
that seems to come out of this work is that the effect of in-
formation scent cannot be overestimated. Our model did a
good job of capturing high scent items and had a harder time
with low scent items, and so did people. Well chosen labels,
that truly reflect what is hidden behind them and do not side-
track users, are essential for rapid search. Moreover, our re-
search shows that labels with strong categorical scent are bet-
ter placed close to the root of the hierarchy.

Another principle, that comes out directly from Equation 2,
is that the more visual groups on the screen, the harder they
have to work to become salient: too many groups on a display
will just dissipate users’ attention, irrespective of how clever
the display is.
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