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Abstract 

Understanding the impact of fatigue on human cognition 
represents an important challenge in applying research in 
cognitive science to real-world situations. In this study, we 
explored the cognitive mechanisms responsible for 
performance decrements in people doing the Walter Reed 
Serial Addition/Subtraction Task (SAST) periodically during 
88 hrs of total sleep deprivation. In our model, performance 
on the SAST relies heavily on declarative knowledge of 
mathematical facts, allowing us to extend fatigue mechanisms 
associated with procedural knowledge from previous research 
to include analogous parameters and mechanisms in 
declarative knowledge in the Adaptive Control of Thought-
Rational (ACT-R) cognitive architecture. This research 
contributes to a comprehensive theory of how the human 
arousal system impacts cognition and performance. 

Keywords: Fatigue; Memory; Arithmetic; Sleep Deprivation; 
Cognitive Model; ACT-R; Alertness. 

Introduction 
Across a variety of tasks and situations, human performance 
varies as a consequence of dynamic changes in general 
alertness. In addition to progressive declines associated with 
time awake, alertness varies throughout the day as a 
function of circadian rhythms (Borbély & Achermann, 
1999; Van Dongen & Dinges, 2005a). This is important 
because modern society places increasing pressure on 
people to operate on inadequate sleep and at times of the 
day when the circadian system is at its low point (e.g., shift 
work & long-haul airline flights). Working under such 
conditions of reduced alertness has been identified as a 
contributing factor in a number of industrial and commercial 
disasters (e.g., Caldwell, 2003; Dinges, 1995). 

Research on fatigue has been targeted at developing 
strategies for managing alertness levels to maximize 
performance and minimize the likelihood of fatigue-related 
errors. This research has taken a variety of forms, including 
the evaluation of a variety of psychopharmacological agents 

to offset the negative effects of fatigue (e.g., Åkerstedt & 
Ficca, 1997, Bonnet et al., 2005), and the development of 
biomathematical models to predict general alertness as a 
function of circadian rhythms and sleep history (e.g., Hursh 
et al., 2004, Jewett & Kronauer, 1999). 

Our research draws heavily on advances being made in 
these areas and provides a means of extending those efforts. 
The goal is to identify mechanisms within a cognitive 
architecture to represent the impact of general alertness on 
the cognitive system. In this research, we are using the 
Adaptive Control of Thought-Rational architecture (ACT-R; 
Anderson et al., 2004). Our approach is to use existing 
biomathematical models of fatigue to drive parameter 
changes in ACT-R, to produce decrements in the model’s 
performance like those observed in human participants. 

In previous papers (Gross, Gunzelmann, Gluck, Van 
Dongen, & Dinges, 2006; Gunzelmann, Gluck, Van 
Dongen, O’Connor, & Dinges, 2005), we presented a model 
that captured the deleterious effects of fatigue on a highly 
procedural task testing sustained attention – the 
psychomotor vigilance test (PVT; Dinges & Powell, 1985). 
Although that work allowed us to identify important 
mechanisms within ACT-R that appear to be impacted by 
fatigue, it was only the first step in a more ambitious 
research agenda. The goal is to develop a general account of 
fatigue that addresses performance changes across different 
components of the human cognitive system.  

In this paper, we present efforts at extending our account 
of fatigue to tasks involving a more substantial declarative 
memory component. Specifically, we model changes in 
performance on the Walter Reed Serial 
Addition/Subtraction Task (SAST) (Thorne et al., 1985). 
This task and the experimental data we are using for 
validation are described next. 

The Serial Addition/Subtraction Task 
The SAST involves solving one-digit addition and 
subtraction problems. However, if the result of an addition 
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is greater than 10, the participant is asked to subtract 10 and 
respond with that result. Alternatively, if the result of a 
subtraction is less than 0, then the participant is instructed to 
respond with the result of adding 10 to that number. Thus, 
the SAST is a mod task, where the correct response is the 
result of the operation, mod 10. 

The difficulty of the task is increased by presenting the 
components of the problem only briefly. For every trial, 
each element of the problem is presented for 200 ms, spaced 
by 200 ms with nothing on the screen. The first number is 
presented, followed by the second number, followed by the 
operator. The correct operation is N1 <operator> N2. 
Participants are instructed to respond as quickly and as 
accurately as possible. Participants were instructed to guess 
at the answer if for some reason the stimuli were not 
observed or the calculation could not be completed. 

Empirical Data 
Dinges and colleagues conducted a controlled laboratory 
study in which participants were kept awake for 88 
continuous hrs (Van Dongen et al., 2001; Van Dongen & 
Dinges, 2005b). This sleep deprivation period followed 3 
days of acclimation, where participants were given 8 hrs in 
bed (11:30 PM – 7:30 AM) per night for sleep. The 
acclimation period helped both to reduce any existing sleep 
debt and to stabilize the circadian rhythm. Subjects were 
awakened after the third night at 7:30 AM, and were kept 
awake for 88 hrs until 11:30 PM three days later (after 
missing 3 nights’ sleep). 
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Figure 1: Human performance (accuracy and response 
times) on the SAST (N=8) across 88 hrs of total sleep 

deprivation (TSD). 

While the participants were awake, they completed a set 
of neurobehavioral performance tasks, including the SAST, 
at 2 hr intervals. The full set of tasks required approximately 
30 minutes to complete. In each session of this study, the 
SAST required participants to respond to 50 trials as quickly 
and accurately as possible. Participants received feedback 
on their responses to the first 10 trials in each of these 
sessions (either ‘C’ or ‘E’ was flashed for 200 ms following 
the response). Average response time and overall accuracy 
were recorded and are presented in Figure 1, averaged 
across 8 subjects. As is shown, accuracy decreased over the 

course of the 88 hr period while response times increased. In 
addition, there was a daily rise and fall in these measures 
due to circadian rhythmicity interacting with homeostatic 
sleep drive. 

A Theory and Model of Fatigue 
Our approach to explaining the effects of fatigue on 
cognitive performance is to link predictions of general 
alertness, which can be obtained from existing 
biomathematical models of alertness, to specific 
mechanisms and parameters within the ACT-R cognitive 
architecture. Biomathematical models embody mechanisms 
that capture the influence of time awake and circadian 
rhythms on overall cognitive functioning (e.g., Hursh et al., 
2004; Jewett & Kronauer, 1999). Although they have 
limitations, they perform well under conditions of total 
sleep deprivation (see Van Dongen, 2004). However, these 
models lack mechanisms for predicting in situ cognitive 
performance; predictions about performance must be scaled 
post hoc to dependent measures in particular tasks (e.g., Van 
Dongen, 2004). 

We can enhance the predictive power of biomathematical 
models by linking them to a general theory of human 
cognition. ACT-R contains mechanisms for perception, 
cognition, and action, with a number of parameters 
influencing the speed and effectiveness of those processes 
(Anderson et al., 2004). We view the primary impact of 
fatigue as influencing the values of those parameters. In the 
next section, we describe the ACT-R architecture, focusing 
on the mechanisms in the architecture that are critical for 
our model of the SAST. Then, we illustrate how the 
negative impact of fatigue on human performance can be 
captured in a computational model by systematically 
varying the parameter values influencing those mechanisms. 

ACT-R 
ACT-R is a cognitive architecture that instantiates a general 
theory of human cognition. The theory posits a division 
between declarative and procedural knowledge, the 
existence of specialized information processing modules, 
and a serial bottleneck in central cognition, which in ACT-R 
is a serial production system (Anderson et al., 2004). Within 
the constraints of the architecture, accounts of human 
performance have been developed for tasks in a variety of 
domains of psychological research (see Anderson & 
Lebiere, 1998). 

Performance on mathematics tasks is a central part of the 
history of the development of ACT-R, including accounts of 
how individuals solve simple addition and subtraction 
problems like those involved in the SAST (e.g., Anderson & 
Lebiere, 1998; Lebiere, 1999; Terao, Koedinger, Sohn, 
Anderson, & Carter, 2004). Thus, the SAST provides a 
useful context for exploring an understanding of how 
fatigue may impact mechanisms in the architecture.  

Model Description 
Models of mathematics performance in ACT-R focus on the 
acquisition and strengthening of declarative knowledge 
representing particular mathematical facts and problems. 
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The conceptualization of mathematics expertise in ACT-R 
is typically that, over a lifetime, these facts are rehearsed in 
a variety of situations and settings, resulting in fast and 
accurate access (Lebiere, 1999). The data presented in 
Figure 1 illustrate this. In the baseline period of the study, 
overall accuracy was 89.8%, and response times were 1.11 s 
on average. In contrast, by the third day of the 88 hrs of 
total sleep deprivation (TSD), accuracy was reduced to 
83.7% overall, and response times had risen to 1.78 s. This 
is a substantial increase in both errors and response latency 
compared to performance during the baseline period. 

As noted above, the SAST involves rapid presentation of 
two digits, followed by an operator. To do the task, the 
model encodes each of these elements of the problem as 
they are presented, generating a representation of the entire 
problem. The model then uses this information to probe 
memory for a chunk of declarative knowledge that encodes 
the solution. Because all of the participants in the study 
were adults with at least high school education, we did not 
include knowledge for more time-intensive alternative 
strategies, like counting, which may be used to compute, 
rather than retrieve, an answer (Siegler & Schrager, 1984). 
The model uses the answer to the math fact retrieved from 
memory to identify the solution to the problem. If it is 
greater than 10, the model retrieves the ones-digit of the 
solution and uses that to respond. If the answer is negative, 
the model probes memory a second time for a solution to 
the problem of the initial result plus 10. When the answer is 
determined, the model responds by making a virtual key 
press. The response and the response latency are recorded 
for each trial. 

Sources of Errors The data in Figure 1 clearly illustrate 
that human performance is not perfect. Even during the 
baseline period, participants make errors on approximately 
10% of the trials. This is probably due to the speeded 
presentation of the problem elements combined with an 
emphasis on responding quickly. There are multiple 
opportunities for errors in the model’s performance, 
including encoding errors/omissions and retrieval errors. 
The first opportunities are when the elements of the problem 
are presented. The model may fall behind in encoding them, 
resulting in missing elements in the problem to be solved. In 
these cases, the model is forced to probe memory using an 
incomplete representation of the problem, which essentially 
means guessing at the correct answer. 

In addition to failures to encode, the model can make 
errors as a result of retrieving inaccurate information from 
memory. This can occur when encoding problem elements 
from the screen (misidentifying what number is presented), 
when retrieving math facts from memory, and when 
retrieving the representation of the response digit from 
memory. This is possible because of a similarity-based 
partial matching mechanism in ACT-R (Anderson et al., 
2004), which allows items in memory that are similar to the 
requested chunk to be retrieved. Due to Gaussian noise 
added to the calculations of the activation of declarative 
chunks in the retrieval process, the activation of partially 
matching chunks may exceed the activation of the 
appropriate chunk of knowledge. Following Lebiere (1999), 

similarity values between numbers in our model are 
proportional to the ratio between them. Thus, numbers 
closer in value are more easily confused, as seen in 
empirical research (e.g., Siegler & Schrager, 1984).  

Fatigue Mechanisms In addition to errors, there is 
variability in the response latencies to problems across the 
experimental protocol. In Gunzelmann et al. (2005), we 
presented a model of the psychomotor vigilance test (PVT), 
which tests sustained attention by having participants 
monitor a known location and respond to the onset of 
stimuli appearing at random intervals, for the duration of a 
10-minute session,. In the model for the PVT, response 
latencies increased under conditions of fatigue as a 
consequence of ‘micro-lapses’ in the functioning of the 
production system resulting from changes in numerical 
procedural parameters. We have evaluated using the same 
mechanism in the model for the SAST, and determined that, 
by itself, the occurrence of micro-lapses is unable to 
produce decrements in both accuracy and response times 
that mirror the effects observed in the human data.1

Because the mechanisms we identified in earlier research 
are not adequate to account for performance changes in the 
SAST, we extended the set of mechanisms producing 
fatigue-related declines in the model’s performance. 
Specifically, we incorporated parameters in ACT-R’s 
declarative memory module, which are analogous to the 
parameters we have already identified as being influential in 
procedural knowledge. To ensure that this research is 
cumulative in the sense of generating a comprehensive and 
general account of fatigue, we vary the previously identified 
procedural parameters in this model as well, under the 
assumption that fatigue has global, task-independent effects 
on human information processing mechanisms. 

The parameters we identified in Gross et al. (2006) 
included the parameter G, which is involved in selecting and 
executing a single production on each cognitive cycle, and 
the utility threshold, Tu, which impacts the likelihood of any 
cognitive action being performed at all on a cognitive cycle. 
In our account, we associated G with alertness within the 
procedural system, and we manipulated Tu to represent 
attempts by individuals to compensate for the deleterious 
effects of fatigue on attentional vigilance. Manipulations to 
both parameters were tied to predicted levels of general 
alertness stemming from existing biomathematical models 
(Gross et al., 2006). 

The additional parameters we now manipulate in 
declarative memory to produce the model predictions 
presented below are the base-level activation, Ai, of 
declarative knowledge (particularly of numbers and math 
facts), combined with the retrieval threshold, Tr. The 
activation of knowledge plays a role for declarative 
knowledge similar to the role G plays in procedural 
knowledge. In addition, there is a direct correspondence in 
                                                           
1 In fact, by the time the frequency of micro-lapses increases 
sufficiently to produce latencies like those seen in the human data, 
the model is reduced to near-chance levels of performance in terms 
of accuracy, because it almost always fails to accurately encode the 
elements of the problem. 
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function between Tr and Tu in ACT-R, in that both 
parameters control how ‘active’ or ‘useful’ information in 
memory must be in order to be accessed. 

To represent decreased arousal within the declarative 
memory system, Ai is decremented. This has an immediate 
impact on the speed with which information is retrieved 
from memory because retrieval time in ACT-R is explicitly 
dependent on activation: 

 
iA

i eFT −= *  
 

In this equation, the time to retrieve chunk i from memory 
decreases as its activation, Ai, increases. F is a scaling 
parameter, which we leave at its default value of 1. 

When retrievals are slowed there are two observable 
consequences in the model. First, failure to fully encode the 
problem elements becomes more likely, because retrieving 
the propositional representation of the visual information 
takes longer, leading to delays that can interfere with 
encoding subsequent items in the problem. Second, 
latencies increase directly due to longer retrieval times after 
the problem has been encoded. 

In addition to decrementing Ai in the fits presented below, 
we also raise the retrieval threshold, Tr, as a consequence of 
fatigue. This suggests that additional effort is required to 
access declarative memory under conditions of fatigue, in 
addition to the decreased availability of that knowledge 
reflected in lower activation values. This role for Tr 
contrasts with the theoretical role of Tu in our model of the 
PVT described in Gross et al. (2006), where Tu was 
decreased under conditions of fatigue to represent explicit 
attempts at compensating for the negative consequences of 
reduced alertness. This is an issue to be addressed in future 
research. 

In the next section, we evaluate the ability of these 
parameters to influence the model’s performance in a 
manner that is consistent with the declines associated with 
sleep deprivation in humans. To constrain this effort, we 
relate changes in ACT-R parameter values to predictions of 
general alertness in a biomathematical model of fatigue.  

Evaluating the Model 
Not surprisingly, manipulations to the overall activation of 
declarative knowledge and retrieval threshold, combined 
with the previously investigated parameters influencing 
procedural knowledge in central cognition, can capture the 
full range of human performance shown in Figure 1, in 
terms of both accuracy and response times. More important 
than fitting the data, however, is to understand the impact of 
fatigue on performance by assessing what is changing in the 
model’s information processing that is responsible for the 
changes in overall performance. This is a key issue for 
understanding the impact of fatigue that cannot be addressed 
with biomathematical models of alertness, illustrating an 
important contribution of using a cognitive architecture in 
this area. 

In the case of the SAST, the activation level (Ai) appears 
to be the main driver of performance changes in the model. 
Decreasing activation reduces the availability of knowledge 
in declarative memory. This has complex effects on the 

performance of the model. First, slower retrievals lead to 
increased response times by increasing the latency between 
when the problem is encoded and when the response is 
retrieved from memory. In addition, slower retrievals have 
the potential to impact the model’s encoding of the problem, 
as noted above. If encoding one element of the problem 
takes too long, then the model will fail to encode the next 
element, forcing the model to guess when responding. 

Besides increasing retrieval latencies, decreased 
activation levels can lead to failures to retrieve knowledge 
from declarative memory, when chunks fail to exceed the 
retrieval threshold, Tr. A retrieval failure in this model leads 
to a need to guess about the correct response. When a 
retrieval failure occurs, another retrieval is attempted, but 
the context of the original request is lost, meaning that the 
chunk retrieved from memory is essentially random. 
However, because the information in this task is well-
learned, retrieval failures rarely occur, except at the most 
extreme parameter values, which typically are not 
appropriate even under conditions of lowest general 
alertness as predicted by the biomathematical model. In 
contrast, for less well-learned information, the impact of 
retrieval failures could be critical, and exploring this issue is 
one direction of our current research. 

Relating Parameters to General Alertness 
One of the goals in this research is to develop a set of 
mechanisms to systematically map levels of general 
alertness to parameter values in the architecture, thereby 
reducing or eliminating the need to do unstructured searches 
through parameter spaces to fit the data. At this stage of our 
research, we are exploring the potential for such a 
systematic mapping by using biomathematical models of 
alertness to control how parameter values in ACT-R change 
as a consequence of fatigue. This limits the degrees of 
freedom and significantly constrains the model’s behavior. 

Since we have no previous research to use as a basis for 
estimating the relationship between general alertness and 
model parameter values for declarative tasks, we used best-
fitting parameter values for each session of the human data 
to infer a function mapping between alertness predictions 
from the biomathematical model and ACT-R parameter 
values. In this initial model evaluation, we limited our 
search to linear functions. Thus, using best-fitting 
parameters for each session, we estimated a function of the 
form: 

 
bmaV xx +=  

 
Where Vx is the value for the parameter at session x. We 
estimated the values for m and b for each of the four 
parameters in the model using the least squares method. To 
produce predicted parameter values for each session, then, 
the equation was solved using the predicted value of 
alertness for that session (ax) to drive the prediction. 
Whereas we manipulated all four parameters in the model, it 
should be noted that the model is relatively insensitive to the 
values for G and Tu, because the effects are driven more by 
changes in the availability of knowledge, rather than the use 
of that knowledge in central cognition, as described above. 
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In this paper, we present the predictions based on this 
method for a single biomathematical model, namely the 
Circadian Neurobehavioral Performance and Alertness 
(CNPA) model developed by Jewett and Kronauer (1999). 
The CNPA model is typical of a class of biomathematical 
models of fatigue in that it incorporates processes to account 
for (a) circadian rhythms and (b) progressive declines in 
alertness as time awake increases (see Van Dongen, 2004, 
for a comparison of 7 such models). It is distinct in that it 
also includes components to account for sleep inertia (low 
alertness immediately upon awakening) and for the impact 
of light on the circadian component. See Jewett and 
Kronauer (1999) for a more detailed discussion of this 
model and how it is applied in understanding fatigue. Figure 
2 presents the average performance of the model over 250 
iterations using parameter values estimated using the 
alertness predictions from the CNPA model as described 
above. The resulting model performance roughly 
corresponds with the overall average pattern of the human 
data (r=.62, RMSD=.071 for accuracy; r=.69, RMSD=278 
ms for response times). 
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Figure 2: Model performance and human data, with model 
parameters estimated using a linear transformation of the 
biomathematical model (CNPA) predictions of general 

alertness. 

The discrepancies between the model and the human data 
in Figure 2 illustrate several aspects of this modeling work. 
Since we are using predictions of alertness from an existing 
biomathematical model, we are tied to those predictions 
about the temporal dynamics of general alertness, including 
the high- and low-points in human performance over the 
course of the day. It appears in this case that those 
predictions from the biomathematical model are slightly 
misaligned relative to the performance dips found in the 
human data, particularly in the morning following the 
second day without sleep. 

In addition to the misalignment between the predicted and 
observed performance low-points, the biomathematical 
model also predicts that the most severe decrements in 
performance will occur in the morning of the last day of the 
sleep deprivation period. Consequently, the ACT-R model 
does not fully capture the drop in human performance in the 
morning following the second night without sleep, which is 

as severe as the decrements observed on the last morning of 
the study for the human participants. It is likely that using a 
non-linear function to map general alertness to model 
parameters could improve this prediction somewhat, and we 
intend to evaluate other potential functions as this research 
progresses. Although these discrepancies between the model 
and the data exist, we find the overall correspondence 
between the model and the data to be encouraging evidence 
for the utility of our approach. We sum up the important 
contributions of this research in the conclusion, and also 
identify some additional avenues for future research. 

Conclusions 
In this paper, we have demonstrated how parameters within 
a cognitive architecture can be manipulated to account for 
the impact of fatigue on cognitive performance. The 
research is an extension of previous efforts (e.g., Gross et 
al., 2006; Gunzelmann et al., 2005), increasing the breadth 
of our account to include the impact of fatigue on 
mechanisms in declarative knowledge. There is evidence 
that fatigue has global effects on cognitive functioning, and 
thus it is not surprising that we have identified mechanisms 
and parameters in multiple processing systems that are 
needed to account for the negative consequences of 
decrements in alertness across multiple tasks. As this 
research progresses, we anticipate that additional 
information processing mechanisms in ACT-R may be 
implicated in accounting for how fatigue changes cognitive 
performance. 

The mechanisms implicated in performance impairment 
on the SAST relate to the availability of declarative 
knowledge, in conjunction with mechanisms associated with 
the selection and execution of procedural knowledge that we 
identified previously in our research on the PVT. The 
declarative parameters we manipulated are analogous to 
those manipulated in ACT-R’s procedural system, providing 
a consistent account of the impact of fatigue across these 
two information processing systems, though we need to 
evaluate the contrasting roles of the threshold parameters. 

As our research on how fatigue impacts human 
information processing progresses, we will continue to 
extend our account to include additional components of the 
cognitive system and seek to identify theoretically 
motivated parameters that reflect changes in cognitive 
functioning. A challenge of this research is to create a 
parsimonious, globally coherent account of the impact of 
fatigue that produces accurate predictions of performance 
across tasks. Specifically, manipulating new mechanisms in 
developing an account for performance in a new task can 
only be considered progress if the entire set of mechanisms 
and parameters can provide an account of performance 
across the full set of tasks. Such coherence is a focus of 
validation efforts. For instance, we plan to re-run our PVT 
model while including manipulations to the declarative 
parameters identified here to demonstrate that the account 
still holds.2

                                                           
2 It can be shown that manipulations of the declarative parameters 
will not impact the PVT model, since no information is retrieved 
from declarative knowledge while the model performs the task. 
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Our further research and validation efforts will ensure that 
the mechanisms we develop provide a robust and general 
account of how increased levels of fatigue degrade cognitive 
functioning. This will establish a foundation for making 
performance predictions in complex, dynamic tasks where 
empirical data regarding human performance may be 
unavailable. As noted above, the ultimate value of 
understanding fatigue using a cognitive architecture is in 
making predictions in applied settings, to avoid situations 
where errors stemming from fatigue have consequences that 
may be dramatic and catastrophic. 
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