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Abstract 

The paper presents an ACT-R model of task switching, which 
implements flexible mechanism of control over task rules, 
that adapts to the level of task change predictability. In 
predictable task switching situations, the model loads relevant 
task rules into an easily accessible focus of attention 
(simulated with an ACT-R goal buffer). However, when tasks 
change randomly, such strategy would lead to long recovery 
from incorrect rules already loaded into the focus. So, during 
unpredictable task changes the model always retrieves 
relevant task rules from its declarative memory. Two 
experiments were administered to test assumptions of the 
model: one required predictable switching while the other 
imposed some level of unpredictability. The model aptly 
simulated the pattern of switch trial RTs from both studies, 
and it also replicated constant RTs of repeat trials in fully 
predictable conditions, as well as decreasing RTs of repeat 
trials in less predictable conditions.  

Introduction 
Due to the processes of cognitive control humans are able to 
behave in a goal-driven and not in stimulus-driven way. 
When the control fails, as in some neuropsychological 
deficits, people produce numerous lapses and errors 
(Shallice, 1988). Especially, mechanisms of control seem to 
be crucial for correct processing in new or highly distracting 
situations. Several experimental paradigms are used for 
examination of the nature of executive control processes. 
For example, task switching is believed to strongly engage 
cognitive control (Monsell, 2003). 

Most of psychological research on task switching is 
focused on factors influencing switch costs: longer latencies 
(and, often, higher error rates) in trials following changes of 
a task (switch trials) in comparision to trials when a task 
was repeated (repeat trials). Although some researchers 
(Allport & Wylie, 2000) believe that switch costs do not 
reflect involvement of cognitive control, and some others 
even doubt if the control is needed for switching at all 
(Logan & Bundesen, 2003), analysis of patterns of task 
switching costs remains one of the main methods for 
examination of control processes. Thus, the proper 
estimation of switch cost values seems to be crucial. 

However, such an estimation depends strongly on whether 
a switch was completed during switch trial (i.e., after switch 
trial a subject is fully prepared for executing a new task) or 
was not completed (i.e., a subject requires one or more 
repeat trials to complete the preparation process). In the 
former case, a difference in RT between a switch trial and a 
first repeat trial should capture all latency of a switching 

process and thus RTs of all the consecutive repeat trials 
should reflect only time (constant on average) needed to 
execute the very task. In the latter case, the first repeat trial 
RT reflects in some part a switching process latency as well, 
so responses in consecutive repeat trials may get shorter. 
Then, the switch cost may not reflect the full duration of 
control process.  

Closer examination of task switching studies shows that 
there are significant differences between some studies in 
respect to how complete a switching process is. These 
differences strongly depend on experimental paradigms 
used. When a sequence of tasks is predictable (for example, 
AABB or AAAABBBB; as in alternating-runs paradigm, 
Rogers & Monsell, 1995) reactions for all repeat trials 
following the switch trial usually do not differ in latency. In 
random task sequences, when each stimulus is cued with 
information indicating the proper task, second repeat trial is 
usually faster than the first repeat trial (Milán, Sanabria, 
Tornay, & González, 2005). This indicates that when tasks 
change on random, the involvement of control processes in 
switching may not be limited to switch trials only.  

Monsell, Sumner, and Waters (2002), in order to compare 
task switching paradigms, used in a single experiment both 
predictable and random task sequences. RTs in consecutive 
repeat trials were constant in predictable task sequence 
condition, but they were decreasing in random sequences. 
Authors explained the observed effect in terms of 
attenuation of cognitive control in random switching. 
According to them, “if the next switch is likely, participants 
to some degree voluntarily attenuate or restrain the 
increment in readiness that would otherwise result from one 
performance of a task” (ibidem, p. 340). The attenuation of 
control is fragile: after two or three task repeat trials in 
random sequence, even if a subjective probability of switch 
is high, subjects’ endogenous control of readiness is 
overwhelmed and they quickly reach its maximal level. 

Above mentioned explanation sounds reasonable, but it 
does not propose any precise mechanism of cognitive 
control responsible for changing the level of readiness. The 
aim of this paper is to describe a computational model of 
task switching, which specifies in detail the operation of 
cognitive processes in both low and highly predictable task 
switching situations. The model will be successfully fitted 
to data gathered from two experiments. 

Computational Models of Task Switching 
Several mathematical models of task switching have been 
proposed in literature (e.g., De Jong, 2000; Logan & 
Bundesen, 2003; Meiran, 2000; Yeung & Monsell, 2003). 



Among computational models, which seem to be an 
especially promising method for understanding cognitive 
processes involved in task switching (Monsell, 2003), there 
exist both connectionist (Gilbert & Shallice, 2002) and 
symbolic models. The latter are mainly implemented within 
two leading cognitive architectures (EPIC: Kieras, Meyer, 
Ballas, & Lauber, 2000; ACT-R: Altmann & Gray, 1999; 
Sohn & Anderson, 2001).  

EPIC architecture (Kieras et. al., 2000) is a modular 
production system that simulates cognition in parallel 
process of matching productions (representing well-learned 
knowledge about a task) with contents of working memory 
(WM, representing knowledge on a current state of the 
task). Productions change contents of WM, so in a next 
cycle new productions can be matched to WM. When more 
than one production may be fired, cognitive control has to 
be involved: executive productions are run to schedule task-
specific productions and/or resolve conflicts among them. 

Based on EPIC assumptions, Rubinstein, Meyer, and 
Evans (2001) proposed two-stage executive control process 
that appropriately configures contents of WM for an 
incoming task. First stage consists on goal shifting, i.e. 
putting into WM the information which task is the proper 
one. Usually, when a cue precisely indicates the task, the 
goal shifting process may be fully completed before 
stimulus identification. Switch costs can be significantly 
reduced with long cue-stimulus intervals (CSI), because 
with more time it is easier to switch to the proper goal. 
Second stage – rule activation process – can be run 
exogenously only, i.e. after stimulus appearance. It is 
assumed, that in order to avoid interference caused by the 
same stimuli used for all tasks, subjects activate proper rules 
by adding or activating them in WM, while deleting or 
deactivating incorrect ones. In the first trial of a task, after 
stimulus identification, adequate rule is activated in time 
reflected in additional latency of this switch trial. In repeat 
trials, as there is no change in a task, no rule activation is 
needed. Therefore, latency of all repeat trials is similar, 
reflecting only time needed for rule application and 
movement production. The rule activation process may be 
responsible for a common observation that although with 
long CSIs the switch cost is reduced, it is not eliminated (the 
cost that cannot be further reduced is called residual).  

Following Rubinstein at al.’s (2001) theoretical proposal, 
Kieras et al. (2000) implemented an EPIC model of task 
switching that removed irrelevant and loaded relevant goals 
and rules from/into WM. Although authors do not present 
simulation data on repeat trials beyond the first one, it can 
be deduced that simulated response latencies would be 
constant for succesive task repetitions, as task rules are 
loaded into WM and can be accessed in constant time. 

ACT-R cognitive architecture is also implemented as a 
production system (Anderson et al., 2004). It differs from 
EPIC in two major attributes. First, resolution of conflicts is 
not based on strategic productions, but on built-in rule 
selection mechanism, that runs only one (usually optimal) 
production at a time. Second, ACT-R includes numerical 
parameters assigned to all symbolic structures, which 
modulate cognitive processing. For example, in ACT-R 
declarative memory, an activation level is assigned to each 

memory chunk. The higher chunk’s activation value is, the 
greater probability and shorter latency of its retrieval are.  

Sohn and Anderson (2001) proposed an ACT-R model of 
task switching. The model can prepare for the task (if it is 
known in advance) by loading into system’s focus of 
attention (the goal buffer) a representation indicating the 
task. This is a similar operation to goal shifting in EPIC 
model. The main difference between both proposals is that 
ACT-R model does not load any task rules into the goal 
buffer. At each trial, the proper rule is retrieved from 
declarative memory. After each retrieval, a level of a rule’s 
activation rises and on the next trial this rule can be 
retrieved faster. Although the autors did not present data on 
repeat trials beyond the first one, it may be deduced that 
latencies would be shorter for successive task repetitions. 

A Model of Flexible Control in Task Switching 
The model proposed in this paper integrates both presented 
mechanisms of task rules activation. We assume that, when 
a task sequence is predictable, it is optimal to load task rules 
into the focus of attention of WM, i.e. the most active and 
easily accessible part of WM (Cowan, 1995; Oberauer, 
2002). If rules are already in the focus, they become the 
most active representations within cognitive system and 
they can be applied very fast. No effects of facilitation will 
be observed, as their activation is at ceiling. So, if task 
switches are predictable, the model loads proper rules into 
its focus of attention, like the model by Kieras et al. (2000). 

However, in random task sequence situation, loading 
rules into the focus of attention may not be the optimal 
strategy. If the task suddenly changed while inproper rules 
are in the focus, the cognitive system would not be prepared 
for a new task. Highly active but inproper rules would 
probably lead to a slower access to less activated proper 
rules. So, during unpredictable task changes it is probably 
better to hold in the focus only information that identifies 
which task to perform, while keeping all task rules in 
working memory area outside the focus, at similar activation 
levels (Meiran, 2000). Although access to these rules will be 
slower, and they will be subject to decay and interference to 
a greater extend, the cognitive system will not suffer from 
unpredictable task changes so much as when focusing on 
inproper rules. So, if task switches are unpredictable, the 
model keeps all rules in active part of memory outside a 
focus, like model by Sohn and Anderson (2001). 

Thus, our model, which is implemented in ACT-R 
architecture, assumes that the control mechanism over task 
rules may be flexibly adapted to the level of predictability of 
a task switching situation by changing the mode of access to 
task rules. This novel assumption is implemented with two 
mechanisms: 

 
(1) a monitoring process estimating the level of task change 

predictability on a basis of both cues and stimuli, 
 
(2) a rule loading process which, if the monitoring process 

allows (i.e. when the task to come has been identified), 
loads the proper task rule into the goal buffer and turns 
off the monitoring process.  



Description of the Model 
The model is able to switch between two tasks, one that 
requires responding to two-digit numbers greater than 50 
(and witholding responses to numbers less than 50), and the 
other that requires responding to even numbers (and 
withholding responses to odd numbers). We used go/no-go 
methodology in order to keep the model very simple. For 
example, we did not have to model response choice process. 

The representation of both tasks in declarative memory 
consists of four chunks: two reflecting task names: (task 
even) and (task greater), and two reflecting the pattern of 
stimuli that requires manual reaction: (even X0 X2 X4 X6 
X8) and (greater 5X 6X 7X 8X 9X), where X stands for any 
digit. Task names and task rules for the same task are 
mutually associated (this association is probably acquired by 
subjects during training). When a task name chunk is loaded 
into the goal buffer, ACT-R propagates some source 
activation from the goal to a respective task rule chunk. In a 
foreknowledge condition (when a cue that identifies an 
incoming task is being presented before presentation of a 
first stimulus in a new task), the proper task name chunk 
may be loaded into the goal buffer, and all source activation 
is being spread to the associated rule. In a no-foreknowledge 
condition (when there is no cue), both task names are loaded 
into the goal buffer, as both tasks are equally probable. 
Source activation is divided between both task rules. Due to 
activation decay and noise, in a proportion of trials task 
rules may not be properly retrieved, causing errors of 
omission. The model includes also eight productions: 

 
(1) Encode Stimulus: if a stimulus is being presented this 

production makes a memory trace for each of its digits. 
 
(2) Retrieve Rules: if the task name(s) is(are) in the goal 

buffer, it retrieves associated task rule(s). If monitoring 
production (6) allows, it loads the task rule into the goal 
buffer and blocks production (6). So, after loading, 
production (2) does not need to access declarative 
memory. When the rule is loaded, production (4) is run 
in a next ACT-R cycle.  

 
(3) Retrieval Failure: if no rule can be retrieved it hands 

control over to the production (1). 
 
(4) Categorize: it applies currently retrieved task rule to a 

stimulus chunk and runs production (5). 
 
(5) Compare: it compares in parallel all patterns in task 

rule to a stimulus chunk, and runs production (7), if a 
stimulus fills any pattern. 

 
(6) Monitor: on a stimulus categorization, it checks 

whether any task rule may be loaded into the goal 
buffer and may replace a task name. To allow for 
loading the proper rule into the goal buffer, it requires 
any stimulus if there is one task name in the buffer (i.e., 
in a foreknowledge condition), and it requires a target if 
there are two task names (i.e., no-foreknowledge).  

 
(7) Press Button: it just stores reaction time for a trial. 

 
(8) Wait: if there is no stimulus on a screen or a stimulus is 

already categorized, the model waits for 100 ms. 
 
Productions (2) and (6) are control processes regulating in 

a feedback loop access to task rules, and blocking each other 
depending on a perceived level of predictability. Switch cost 
values generated with the model depend on whether and for 
how long production (2) accesses declarative memory. 

Experiment 1 
Experiment was designed to test whether subjects’ behavior 
in predictable task switching situation would be consistent 
with the model’s predictions. Three hypotheses were tested. 
Most important, a position of a repeat trial in a sequence 
was manipulated (1 to 3). We expected that RTs in repeat 
trials on all positions should not differ significantly. Of 
course, we expected longer RTs for switch trials. 

Second, we tested if the switch cost can be reduced or 
even eliminated. In Gonzáles, Milán, Pereda, and Hochel 
(2005) if subjects emitted an extra response just before a 
switch trial the residual switch costs were eliminated. We 
expected similar effect when presenting to subjects, just 
before a switch trial, a neutral stimulus that does not require 
any response, but requires a categorization process. In such 
a case the model assumes a boost in task rules activation, 
which should lead to reduction in relevant chunk retrieval 
latency, and in consequence, in reduced RT. 

Third, we manipulated foreknowledge on an incoming 
task. In a foreknowledge condition, a cue indicated the 
proper task. In a no-foreknowledge condition there was no 
cue and the first target stimulus indicated the proper task. 
The model predicts that in the latter condition switch costs 
will be higher, as subjects will not load the goal of 
processing (‘task name’) before the first target  presentation. 

Method 
 
Subjects 35 college students (25 men, one excluded due to 
low accuracy) were examined (subjects were 18-31 yrs old).  
 
Tasks Two-digit numbers were used as stimuli for both 
tasks. Two tasks were used: “greater  than 50” and “even”. 
Odd numbers above 52 were used as targets for the former, 
while even numbers below 50 were used as targets for the 
latter. Odd numbers below 50 were non-targets for both 
tasks. Even numbers above 50 were not used at all. In a 
single sequence of stimuli, all targets belonged to the same 
category. Subjects were to press a button if they identified a 
target, and withhold it when a non-target was presented.  
 
Design A position of a target in the sequence was the first 
manipulated variable: always four targets were presented in 
the sequence. The first target trial was considered as a 
switch trial, next target trials were repeat trials. In one half 
of the trials, fifth target was also shown, but responses to it 
were not analysed. It was only aimed to keep subjects 
vigilant during the fourth target trial. Between each pair of 
targets, one or two (on random) non-targets were presented. 



Priming with a neutral stimulus constituted the second 
independent variable: in one half of sequences a non-target 
number was presented before the first target. The non-target 
did not carry any information on the proper task, and thus 
served as a neutral prime. 

A foreknowledge on an incoming task was the third 
manipulated variable. In one half of sequences a cue 
informed which task is the proper one for an incoming 
sequence of stimuli (“EVEN” or “GREATER”, in Polish). 
In the other half of sequences (i.e., in no-foreknowledge 
condition), the cue just reminded that one of two tasks may 
occur (“EVEN or GREATER” or “GREATER or EVEN”, 
on random, in Polish). Subjects were informed that in no-
foreknowledge condition the first target indicates the proper 
task to be performed (i.e., three or four targets following the 
first one would belong to the same number category). 

 
Apparatus and Stimuli Stimuli (37 × 50 mm in size) were 
presented on a screen of a laptop computer. Each sequence 
started with a cue presented for 500 ms. After the cue, “**” 
stimulus was presented for 2000 ms in no-priming 
condition. In the priming condition, “**” was presented for 
1000 ms, and then a non-target prime was presented for 900 
ms, followed by the mask (“##”) shown for 100 ms. Then 
the first target was presented, followed by non-targets and 
repeat trial targets, each one presented for 900 ms + 100 ms 
for the mask (see Fig.1). Subjects switched on random to 
one of two tasks from another task: “greater than 50 and 
even”, that inluded even numbers above 50 as targets.  
 
 
 
 
 
 
 
 
 
 
Figure 1: Sample sequences of stimuli in both priming and 
no-priming conditions. Targets underlined, prime in gray. 
 
Procedure Subjects were examined in groups of two or 
three. Several training and 80 experimental sequences were 
presented to each subject (conditions randomly intermixed). 
 
Data Collection Subjects responded with an index finger, 
pressing a mouse button. Not pressing the button during a 
target or a mask presentation was recorded as an error of 
omission. Responding during non-target presentation was 
taken as a false alarm error and signaled with a beep. We 
were mainly interested in mean latency of correct responses 
dependent variable. With task requirement to respond within 
presentation time of a target and a mask (1000 ms on total) 
very long responses (outliers) were naturally eliminated.  

Results and Discussion 
Foreknowledge and priming influenced accuracy only for 
switch trials: F(3,32) = 20.74, p < 0.001; F(3,32) = 6.95,  

p < 0.001, respectively (Figure 2, dashed lines). Mean false 
alarms rate was low (6.92%) and is not analysed here. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Observed (black dashed lines) and simulated (grey 
solid lines) error rates (%) in four experimental conditions 
(P stands for priming, F – for foreknowledge, N- for “no-“). 
 

Response latency data are presented in Figure 3 (dashed 
lines). There is switch versus repeat trial main effect, 
F(3,31) = 69.19, p < 0.001, but no significant difference in 
latency of consecutive repetitions (p > 0.1; 453, 451, 457 
ms, respectively). Thus, at least within the paradigm used 
here, no effect of speeding up repeat trials was observed. 

 
 
 
 
 
 
 
 
 
 

 
 
Figure 3: Observed (black dashed lines) and simulated (grey 
solid lines) latencies (ms) in four experimental conditions. 

 
Both factors of foreknowledge and priming interacted 

with target position: informative cues as well as primes 
decreased response latency exclusively in the first trial, 
F(3,32) = 20.74, p < 0.001; F(3,32) = 6.95, p < 0.001, 
respectively. These two factors additively influenced switch 
cost: no significant three-way interaction was observed (p = 
0.090). Priming facilitated cognitive processing, no matter 
whether subjects did or did not know which task to perform. 
In foreknowledge-priming condition, the switch cost was 
practically eliminated (9 ms), switch and repeat trial 
latencies did not differ significantly (p > 0.1). Lack of 
priming added ~100 ms to the switch cost, lack of 
foreknowledge added another ~50 ms. Mean latencies in 
each experimental condition, compared to average repeat 
trial RT (each compared difference constitutes a respective 
switch cost), are presented in Figure 4. 

All hypotheses were confirmed: we observed switch cost, 
but limited only to the first trial in a sequence. This cost was 
eliminated with priming, but only in foreknowledge 
condition. Lack of foreknowledge on an incoming task 
made switch costs significantly longer. 



 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Response latency (ms) in switch trials in four 
experimental conditions compared to repeat trials. 

Data Simulation 
To test the model, data from the experiment presented above 
were simulated in 2000 Monte Carlo runs for each 
condition. Five parameters influencing model’s simulated 
accuracy were set. Two were optimized to get the best fit: 
declarative memory activation noise (0.12) and chunk 
retrieval threshold (0.15). Three parameters were set to 
arbitrary but reasonable values: strength of associations 
between task names and task rules (0.5), probability of 
failed loading of a task rule into the goal buffer (0.12), and a 
probability of failed categorization of a stimulus (0.12). The 
fit (presented in Figure 2) was good, R2 equaled to 0.897. 

The crucial test of the model was fitting of response 
latencies. Values of two additional parameters that are used 
by ACT-R to translate chunk activation units into latency of 
chunk retrieval were optimized: latency factor (0.38) and 
latency exponent (2.8). Standard ACT-R value of 
productions latency was used (50 ms). Summary duration of 
perception processes and motor response, not influencing 
R2, was set to a reasonable value of 300 ms. The fit of 
observed and simulated latency patterns was very good (R2 
= 0.983). The model replicated non-trivial effect of error-
latency asymmetry in no-priming-foreknowledge, and 
priming-no-foreknowledge conditions: error rate in switch 
trials was higher in the former than in the latter condition, 
but the reverse is true for latencies (see: Fig. 3). 

Experiment 2 
In the simulation presented above, the model always 
produced answers for repeat trials with the proper task rule 
loaded into the goal buffer, as always task sequence became 
predictable after presentation of the first target. It is 
interesting to test the model against data acquired in less 
predictable conditions, when we may expect faster 
consecutive repeat trials. The computerized switching test 
from Experiment 1 was used, but only in the no-
foreknowledge condition, and with several alterations. The 
main change consisted on not informing subjects that the 
first target indicated the task in the whole sequence 
(although the first and consecutive targets indeed belonged 
to the same task). As the change made the test more 
difficult, both stimulus’ and mask’s presentation times were 
prolonged, as well as a cue presentation time. In 

consequence of longer stimulus presentation time, the cue-
stimulus interval was made longer. Trial’s length was 
shortened, now each trial included three targets. All other 
experimental conditions were the same as in Experiment 1. 

Method  
Subjects 73 college students were examined (their 
demographic data are lost, unfortunately).  
 
Tasks The same tasks and response rules were used as in 
Experiment 1. 
 
Design A position of the target in a sequence was the first 
manipulated variable: this time three targets were presented 
in each sequence. Priming was the second independent 
variable: in one half of sequences a non-target stimulus was 
presented before the first target.  

 
Apparatus and Stimuli They were identical as in 
Experiment 1, except for the following. Each sequence 
started with a cue (“EVEN or GREATER”/“GREATER or 
EVEN”, in Polish) presented for 3000 ms. After the cue, 
stimulus “**” was presented for 2400 ms in no-priming 
condition, and for 1200 ms in priming condition. Stimuli 
were presented in 1000 ms pace (and each one was followed 
by a 200 ms mask). 
 
Procedure and Data Collection They were indentical as in 
Experiment 1.  

Results and Discussion 
Due to very low error rates, only latency data are presented. 
Again, an interactive effect of priming and target position 
occured: a non-target reduced a mean latency only for the 
switch trial, F(2,71) = 167.97; p < 0.001, but it did not 
eliminate residual switch cost. The main hypothesis was 
confirmed: response latency for the third target position in a 
sequence was significantly shorter (22 ms) than for the 
second one, F(1,72) = 47.92; p < 0.001.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Latencies (ms) observed in Experiment 2 (black 
dashed lines) and simulated (grey solid lines). 

Data Simulation 
Because neither cues nor targets yielded any information on 
a task, the monitoring process never allowed for loading 
task rules into the goal buffer. In comparision to  



Experiment 1 data simulation, we changed two parameters: 
latency factor (0.55) and the intercept value (480 ms). This 
was nessesary due to longer cue and stimuli presentation 
times used in Experiment 2. The simulated data fitted 
observed data very well (R2 = 0.982). Most important, an 
effect of repetition facilitation was replicated, as shown in 
solid lines in Figure 5. 

Summary and Conclusions 
The presented model is a preliminary proposal of the 
cognitive control mechanism responsible for different 
behavior in task switching situations with low and high 
levels of task changes predictability. The model integrates 
assumptions of two leading (ACT-R and EPIC) task 
switching models. It is based on the hypothesis, that the 
control mechanism over task rules may be flexibly adapted 
to the level of predictability of a task switching situation by 
changing the mode of access to task rules. If the task 
changes are predictable, the model loads relevant task rules 
into its easily accessible focus of attention. When the 
changes are less predictable, it always retrieves these rules 
from declarative memory outside the focus. Although such 
an access mode is slower, it grants that rules for all (equally 
possible) tasks are available to the same extend. With nine 
free parameters set, the model aptly predicted 38 data points 
(16 for accuracy + 22 for latency), that were gathered in two 
experiments, which probably differed in subjects’ 
perception of task changes predictability level (in case of 
latency R2 = .982 and .983, respectively). 

The hypothesis on flexible nature of cognitive control 
engaged in task switching allows for integration of data 
observed in two most popular task switching experimental 
paradigms (namely, alternating-runs and explicit cueing), 
and sheds light on cognitive mechanisms of control 
processes involved in switching. However, the model is still 
very simple, and it certainly has to be developed and tested 
in more complex task switching situations than those 
presented in this paper, especially in the experimental 
situations involving two or more possible reactions, 
univalent stimuli, and tasks more mutually differing than the 
ones exploited in this research. 
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