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Abstract 

The ACT-R computational modeling architecture has 
demonstrated the ability to model both recency and frequency 
effects in memory with much success (e.g. Anderon & 
Lebiere, 1998); and through the incorporation of new decay 
parameters at each data point, has also been shown to capture 
the spacing effect (Pavlik & Anderson, 2003, 2005).  
Stemming from the aforementioned literature, the current 
research sought to build an equation capable of handling the 
prediction of performance at later, distributed points in time, 
thereby breaking from the tradition of post-fitting data.  As 
such, we integrated a single activation-based decay rate into 
the ACT-R General Performance Equation (Anderson & 
Schunn, 2000), and scaled predictions by amount of training 
history improvement.  We tested this algorithm by 
extrapolating learner knowledge states from initial points in 
data, and predicting performance at later points in time, across 
different intervals of time.  Implications are discussed. 

Introduction 
Although more than a century of published research in the 
learning and forgetting of knowledge and skill has been 
amassed (Ebbinghaus, 1885), consensus for the cognitive 
mechanisms responsible for a learners’ enhanced retention 
as a function of increased temporal spacing of practice 
sessions has yet to be reached (e.g. Crowder, 1976, 
Landauer, 1967, Madigan, 1969, Glenberg, 1979).  As 
theorists are not unified in how or where memory traces are 
stored to help explain the spacing effect, it is not surprising 
that computational cognitive process models have had 
difficulty implementing parameters to simulate and capture 
these complex human performance curves.  Only quite 
recently (Pavlik & Anderson, 2003; 2005) have strides been 
made to mathematically simulate and post-fit these effects. 

The approach to this research was to assess existing 
computational models of learning and forgetting, build upon 
existing strengths, and develop new techniques to 
circumvent existing weaknesses.   

Models 
In this portion, we lay out prior computational models that 
provided the basis for this work, and finally present the 
modified algorithm. 

ACT-R General Performance Equation (Anderson 
& Schunn, 2000) 
The following equation provides the basis for our 
prescriptive and predictive modifications.  On a basic level, 
it is a derivative of ACT-R equations and encapsulates the 
power law of practice, the power law of forgetting, and the 
multiplicative effect of practice and retention (relation 
between amount of practice and duration of time for which 
knowledge must be maintained).  This corresponds with 
traditional ACT-R theory which suggests that neural 
degradation chips away at existing memories over time.   
The General Performance Equation is formally expressed 
by: 
 
 
 
where A is a scalar, N is amount of practice, c is the rate of 
learning, T is time since learning, and d is the decay 
parameter.  The collective effect of this algorithm is that 
performance continues to improve as amount of practice 
increases, and continues to degrade as time between 
learning and retention increases.  Preservation of knowledge 
then depends upon leveraging the amount of practice against 
the time between repetitions. 
 To emphasize the reasons for utilizing its core 
components in our modified equation, we first demonstrate 
the strengths this model possesses. Indeed, this equation has 
fits many varieties of data sets quite well, including studies 
concerning knowledge retention, knowledge acquisition, 
skill retention, and skill acquisition (see Figures 1-4, 
respectively).   
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Figure 1:  Model fit to knowledge retention. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        
           

Figure 2:  Model fit to knowledge acquisition. 
 
 
 
 
 
 
 
 
          
 
 
 
 

 
     
 Figure 3:  Model fit to skill retention. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

       
 
 
 
 
 
 
 
 
 
                Figure 4:  Model fit to skill acquisition. 
 
 Clearly, these figures demonstrate the usefulness of the 
General Performance Equation for many types of data sets, 
and provide correlation coefficients of .89 to .97 for fits 
with human performance.  We now turn to a dimension of 
learning and forgetting that this equation does not handle 
well, namely, the spacing effect. 
 
Mathematical Weaknesses of the General Performance 
Equation for Handling the Spacing Effect Human 
performance studies have revealed that learning and 
forgetting do not continuously improve or degrade over 
extended periods of time, but rather they approach 
asymptote.  For example, an item presented at longer 
intervals of time will be retained better than an item 
crammed more tightly together in temporal space.  The 
practice function in its current form would assume a discrete 
increment to be added at each presentation time of the item, 
and would necessitate a greater decay rate to be 
incorporated for an item presented across greater intervals 
of time.  This would result in the equation modeling better 
performance for crammed study than distributed study, and 
thus deviates from what literature has shown human 
performance to be.  With regard to forgetting rates, 
Woodworth (1938) aptly described this scenario: “If two 
associations are now of equal strength but of different ages, 
the older one will lose strength more slowly with the further 
passage of time.”  Again, the General Performance Equation 
is not equipped to handle this type of phenomenon, and in 
its current form would instead produce the converse effect, 
such that greater passages of time would incur greater decay 
rates in the model.  Thus, as demonstrated in Figure 5 
below, the General Performance Equation clearly loses its 
ability to model human performance when distributed 
training regimens are a part of the procedure, and 
correlation between the model and the human drops to .49.   
 

R = .97  
RMSD = 4.4% 

Anderson & Fincham, 1994
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Figure 5:  General Performance Equation Model fits to data 
spaced at practice intervals of every 2 and every 8 trials. 

Activation-Based Model of the Spacing Effect 
(Pavlik & Anderson, 2003; 2005) 
The following equation incorporates some useful concepts 
that capture effects of distributed practice in human 
performance.  Namely, new rates of decay are computed 
based on current activation levels for each memory trace.  
This in effect, reflects the overall mass of practice, such that 
highly activated traces result in faster rates of decay than 
less highly activated traces.  Theoretical credence is given to 
this type of mechanism on a neurological level, such that 
very high synaptic stimulation (corresponding to high 
activation levels of a trace in the model) impedes 
information transfer due to limitations in biology (Scharf, 
Woo, Lattal, Young, Nguyen, & Abel, 2002).   Thus, at the 
neurological level, massed learning is not as effective as 
distributed learning.  This equation is formalized by the 
following: 
 
 
 
 
where parameters appearing in the General Performance 
Equation are defined the same in this equation; but 
additionally, this activation-based model incorporates an 
interference scalar, h, to decrease objective time since 
learning and produce better model fits, and modifies the 
decay rate such that m is the activation of the item i, tj is 
how long ago practice of the item occurred, and n is the 
number of trials provided to practice the item.  In essence, 
this results in a new decay rate being calculated at each data 
point, and provides the equation with great power and 
flexibility for fitting human data, as seen in Figure 6.  In 
contrast to the General Performance Equation which 
produced a correlation coefficient of .49, this activation-
based model increases the correlation coefficient to .98.   
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Figure 6:  Activation-Based Model fits to data spaced at 
practice intervals of every 2 and every 8 trials. 
 
Weakness of the Activation-Based Model of the Spacing 
Effect  Although this model has the ability to post-fit human 
performance with great accuracy, the question of over-
fitting the data set must be raised.  In order to predict 
performance at future points in time, one must have precise 
knowledge of activation levels amassed over training 
history up to that point.  As this model contributed greatly to 
the literature through its ability to account for the spacing 
effect mathematically, it lacks the capability to predict 
performance, and it may be less flexible in generalizing to 
other data sets without massive manipulation of each 
parameter. 

Proposed Predictive Model  
Building upon strengths of the previous equations, we 
sought to formalize an algorithm to capture recency, 
frequency, and spacing effects; while also providing 
flexibility and capability for predicting performance at later 
points in time.  This equation is formalized by the 
following: 
 
 
 
 
where S equals the original scalar (A in the General 
Performance Equation) multiplied by training history 
(known improvement rate between initial time of learning 
and last known retention session), and a equals an 
activation-based decay parameter that enfolds an 
exponential function into the decay rate, such that: 
 
  
 
 
 
To further elaborate the activation-based decay parameter a, 
m equals the activation level at the latest known data point, 
defined by ln T-d., so that this parameter is calculated from 
known training history and is based upon the original decay 
rate and activation level at the latest known point.    

R = .49 
RMSD = 4.1% 
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 This equation differs from the Activation-Based Model in 
two key ways.  First, this model does not include an 
interference scalar to modify the length of time passing 
between retention trials in order to produce better fits.  We 
believe the amount of time between trials should remain 
true to how much time actually goes by.  Second, we do not 
produce a new decay parameter for every point in the data 
set.  Rather, we formulate one modified decay rate at the 
end of known training history, and that new decay rate 
accounts for the amount of practice accrued under the initial 
decay rate, and bases future degradation of knowledge upon 
the last known level of activation.  Thus, rather than 
reformulating a new decay rate for each and every data 
point, we recalculate a new decay rate at the last point only, 
and make predictions for future performance rather than 
post-fitting the models’ data to match complex human 
performance curves. 
 
Ability to Account for Spacing Effect  In order to 
demonstrate the efficacy of our Predictive Model against 
both the General Performance Equation and the Activation-
Based Model, we plotted our model fits to the same data set.  
Figure 7 reveals correlations of .96 between our model and 
the data, showing a marked improvement over the General 
Performance Equation (.49) and competitiveness with the 
Activation-Based Model (.98) using fewer free parameters.   
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Method  We utilized existing data sets as a testbed, and 
divided the data into sections of varying length to test 
predictive value of the equation.  We sought to first trace 
knowledge and assess training history by optimizing the fit 
of our model to initial portions of the data set.  When that 
formula had been attained, we then multiplied the original 
scalar by the rate of improvement, and modified the decay 
parameter to account for the current activation level at the 
last known data point.  We then applied the Predictive 
Model to predict performance at different intervals down the 
line and compare those predictions with human data.     
 
Results  Firstly, we optimized the model fit for Missions 1-
5 using CERTT’s data set of team performance (Cooke, 
2005).  Missions 1-5 were practiced over the course of one 
day, and each mission lasted approximately 40 minutes 
long.  We then redefined our decay parameter using the 
activation level at Mission 5, and predicted performance for 

Missions 6, 7, and 8.  These final three missions were tested 
over the course of one day at an interval 10-14 weeks later.  
Again, each mission lasted 40 minutes long.  Correlation 
between model and actual performance over Missions 1-5 
was .97, and correlation between predicted performance and 
actual performance for Missions 6-8 was .96 (see Figure 7).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7:  Predictive Model fits optimized to Missions 1-5 
and predicted for Missions 6-8. 
 
Resolution of Data  As predictions are based upon the 
learner’s training history, the predictive ability of this 
equation becomes more and more refined with greater 
amounts of practice history.  In this sense, the equation has 
more of the learners’ knowledge states to trace, and can 
make better predictions for how that knowledge state will 
change across time or with repeated exposures.  To 
demonstrate the differences training history makes in 
predictive ability, refer to Figures 8 below for correlations 
between human and model predictions dependent upon the 
amount of data points available. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8:  Correlations of Predictive Model and human 
performance based on amount of training history. 
 

Discussion 
The main contribution of this equation over its predecessors 
is its ability to predict performance at later points in time, 
even when practice is distributed at different intervals.  This 
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diverges from ACT-R and ACT-R derivative models that 
have simply post-fit model data to simulate human 
performance curves.  Additionally, the equation itself was 
able to capture the spacing effect with optimized parameters 
more parsimoniously than prior work (Pavlik & Anderson, 
2003; 2005).     
 As laid out by Pitt, Myung, & Zhang (2002), criteria for 
evaluating or selecting one computational model over 
another include (a) plausibility (are assumptions 
biologically or psychologically plausible?); (b) explanatory 
adequacy (is the theoretical basis reasonable?); (c) 
interpretability (do parameters make sense?); (d) descriptive 
adequacy (does the model describe observed data well?); (e) 
generalizability (can the model predict future 
performance?); and (f) complexity (is the model written in 
the simplest way to adequately capture the data?).   As per 
these requirements, we believe that our model outperforms 
prior models with respect to plausibility (we removed the 
alteration of scaled time and interference scalars), 
generalizability (this model can make predictions for future 
performance), and complexity (model parameters are more 
parsimonious than prior work); while staying true to ACT-R 
neural, biological, and cognitive theoretical assumptions.    
 We do believe however, that further work will be needed 
to test the predictive capability of this equation across a 
greater number of data sets that encompass different 
variations of time intervals.  Additionally, we would like to 
investigate differences between mathematical regularities of 
aggregate versus individual level performance, and assess 
how well our equation can account for likelihood of success 
at different resolutions of the data.  Implications for this 
research could extend to predicting performance in 
educational or military domains for instance. 
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