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CHAPTER

6
The Algel)raic Brain

e

John R. Anderson
Carnegie Mellon University

My enduring intellectual interests were all formed in the 4 years of graduate edu-
cation with Gordon Bower. I basically imprinted on the things he was interested
in during the period 1968 to 1972. This included an interest in mathematical
psychology, artificial intelligence, learning and memory, and applications of psy-
chology to improving classroom performance. Whereas Gordon’s interests have
ranged far and wide over the decades, I have remained stuck on these topics. This
chapter describes current work in my laboratory bringing these various threads
together. I am going to describe a formal information-processing model of how
children learn to solve linear equations and test predictions of this model for acti-
vation patterns in five brain regions.

THE EXPERIMENT AND THE ACT-R MODEL

In the experiment modeled in detail (Qin, Anderson, Silk, Stenger, & Carter,
2004), 10 students aged 11 to 14 spent 6 days practicing solving simple linear
equations. The first day (Day 0) they were given private tutoring on how to solve
a restricted set of equations and practiced paper-and-pencil solutions of such
problems with a private human tutor. On the remaining 5 days, they practiced on
a computer the solution of three classes of equations:
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O-step:e.g., lx + 0 =4
I-stepreg,3x+0=12,lx + 8 = 12
2-stepre.g., Tx + 1 = 29

Each day they went through 10 computer-administered blocks of such equa-
tions. Each block consisted of 16 trials with four instances of the four possible
types of equations (there are two subtypes for the one-step equations). Figure 6-1
presents their latency and the predictions of a model implemented in the ACT-R
architecture (Anderson et al., 2004).

The ACT-R Architecture

According to the ACT-R theory, cognition emerges through the interaction of a
number of independent modules. Figure 6-2 illustrates the modules relevant to
algebra equation solving:

3000 o I
7000
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- &~ Zétep: baié :

--1 Ste“b: Data
1 =0 Step: Theory —~— 1 Step: Theory

1000 - --¢- 0 Step: Data

0

—— 2 Step: Theory

0 1 2 3 4 5
Days

Figure 6-1. Mean solution times (and predictions of the ACT-R model) for the
three types of equations as a function of delay. Although the data were not collect-
ed, the predicted times are presented for the practice session of the experiment
(Day 0).
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Figure 6~2.  The interconnections among modules in ACT-R 5.0.

I A visual module that might hold the representation of an equation such as

B —-5=7r

A problem state module (sometimes called an imaginal module) that holds a

current mental representation of the problem. For instance, the student might

have converted the original equation into “3x = 12.”

3. A control module (sometimes called a goal module) that keeps track of one’s
current intentions in solving the problem—for instance, one might be trying
to apply the unwind strategy described later.

4. A declarative module that retrieves critical information from declarative
memory such as that 7 + 5 = [2.

5. A manual module that programs the output such as “x = 4.

[

Each of these modules is capable of massively parallel computation to
achieve its objectives. For instance, the visual module is processing the entire
visual field and the declarative module searches through large databases.
However, each of these modules suffers a serial bottleneck such that only a little
information can be put into a buffer associated with the module—a single object
is perceived, a single problem state represented, a single control state maintained,
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a single fact retrieved, or a single program for hand movement executed. Fgrmally,
each buffer can only hold what is called a “chunk” in ACT-R, which is struc-
tured unit bundling a small amount of information. ACT-R does not have a for-
mal concept of a working memory, but the current state of the buffers_ constitutes
an effective working memory. Indeed, there is considerable similarity between
these buffers and Baddeley’s (1986) working memory “slave” systems. Com-
munication among these modules is achieved via a procedural module ( pr'odu.c-
tion system in Fig. 6-2). The procedural module can respond to information in
the buffers of other modules and put information into these buffers. The response
tendencies of the central procedural module are represented in ACT-R by pro-
duction rules.

The ACT-R Model

The ACT-R model begins with a set of declarative instructions, given in Table
61, that encode the unwind strategy. To illustrate how these instructions apply to
example equations, first consider a simple 0-step equation like:

1*x+0=2.
These instructions imply a sequence of operations that can be summarized:
[nstruction la: Create image *“ = 2.”
Instruction 2b: Unwind-right “1 * x + 0.”
Instruction 3a: Focus on “1 * x” and unwind it.
Instruction 2¢: Unwind-left “1 * x.”
Instruction 4a: Focus on “x” and unwind it.
Instruction 2a: The answer is 2.
Whereas for a two-step equation like
T*x+3=238
they imply a sequence of operations that can be summarized:
Instruction la: Create image “ = 387

Instruction 2b: Unwind-right “7 * x + 3
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Table 6-1

Englisln Rendition of Instructions Given to
ACT.R Model for Equation Solving

1) To solve an equation, encode it and

a). If the right side is a number then imagine that number as the result and focus on
the left side and unwind it.

b). If the left side is a number then imagine that number as the result and focus on
the right side and unwind it.

1) To unwind an expression
a). If the expression is the variable then the result is the answer.
b). If a number is on the right unwind-right

¢). If a number is on the left unwind-left

3) To unwind-right, encode the expression (of the form “subexpression operator
number”’) and

a). If the operator is + or -~ and the number is O then focus on the subexpression
and unwind it.

b). Otherwise invert the operator, imagine it as the operator in the result, imagine the
number of the expression as the second argument in the result, evaluate the result,
and then focus on the subexpression and unwind it.

4) To unwind-left encode the expression (of the form “number operator subexpression”)
and

a). If the operator is * and number 1 then focus on the subexpression and unwind it.

b). Otherwise check that the operator is symmetric, invert the operator, imagine it as
the operator in the result, imagine the number as the second argument in the
result, evaluate the result, and then focus on the subexpression and unwind it.

Instruction 3b: Change image to ** = 38 ~ 3™ this to * = 35”; and focus on “7 * v’
and unwind it.

Instruction 2¢: Unwind-left *“7 * x.”

[nstruction 4b: Change image to “ = 35/7” this to *“ = 5™ and focus on x and
unwind it.

Instruction 2a: The answer is 5.
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Figure 6—1 shows that ACT-R is able to reproduce the speed-up seen in the
participants. The key to understanding this speed-up in the ACT-R model is to
understand how the preceding instructions were interpreted. These instructions
are encoded as declarative structures and ACT-R has general interpretative pro-
ductions- for converting these instructions to behavior. For instance, there is a
production rule that retrieves the next step of an instruction:

iF onte has retrieved an instruction for achieving a goal
FHEN retrieve the first step of that instruction.

here are also productions for retrieving particular arithmetic facts such as

[F one is evaluating the expression “a operator 4"
THEN try to retrieve a fact of the form “a operator b = 7"

Using such general instruction-following productions is laborious and accounts
for the slow initial performance of the task.

Though multiple types of learning are occurring in this experiment, it is mainly
production compilation that is accounting for the speed-up (see Taatgen, 2005:
Taatgen & Anderson, 2002). This is a process by which new production rules are
learned that collapse what was originally done by muitiple production rules. In
this situation, the initial instruction-following productions are compiled over time
to produce productions to embody procedures that efficiently solve equations. For
instance, the following production rule is acquired: '

IF the goal is to unwind an expression
and the expression is of the form “‘subexpression = 0"
THEN focus on the subexpression.

Figure 6-3a illustrates a typical trial at the beginning of the Day 1 and Figure
6-3b illustrates a typical trial at the end of the Day 5. In both cases, the model is
solving the two-step equation 7 * x + 3 = 38. The figure illustrates when the var-
1ous modules were active during the solution of the equation and what they were
doing. The Day 1 trial (Fig. 6-3a) takes 6.1 seconds and the Day 5 trial (Fig. 6-3b)
takes 4.1 seconds. However, these do not reflect the extremes of the learning curve
according to ACT-R. The very first trial on Day 0 takes 8.4 seconds in the model.
With an infinite amount of practice, the model would take 1.7 seconds during
which it would only read the equation and type the answer, having compiled the
answer into production rules for that problem. Still, the contrast between parts a
and b of Figure 6-3 gives a sense for what is happening over the course of learn-
ing. It is worth emphasizing a number of general features of the activity in the fig-
ure before discussing the detail of what is happening in individual buffers:

L. Multiple modules can be active simultaneously. For instance, early on in the
figure there is a point where the goal module is noting that it is implementing
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(a) Day 1 (b) Day 5
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Figure 6~-3. Comparison of the module activity in ACT-R during the solution of
a two-step equation on Day | (part a) with a two-step equation on Day 5 (part b). In
both cases the equation being solved is 7 * x + 3 = 38,
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the unwind strategy, while an image of the right-hand side of the equation
(“ = 38”) is being encoded in the imaginal buffer, while the next step in the
unwind strategy is being retrieved, and while the visual system is encoding
the left-hand side of the equation. Certain of these activities tend to be on the
critical path because they are taking longer than the other processes and fur-
ther processing has to wait for them to complete. In these cases, the times of
the other operations have no effect on total time. For instance, often the visual
encoding of the equation is holding up other operations and the durations of
these other operations do not matter.

2. Much of the speed-up in processing is driven by collapsing multiple steps into
single steps. A particularly dramatic instance of this is noted in Figure 6-3
where five production firings, five retrievals, two control settings of the goal,
and two imaginal transformations are compressed into one production, one
retrieval, one control setting, and one imaginal transformation.! Production
compilation can compress these internal operations without limit. What it can-
not collapse are the external operations such as visual encodings or manual
operations. These external operations define the bounds of the compilation.
Whereas the example in Figure 6-3 shows multiple productions being col-
lapsed, the actual learning proceeds slowly in ACT-R and takes all 5 days to
achieve the transformation in Figure 6-3. Given enough practice, ACT-R
would collapse all equation solving simply into a series of visual encodings
and manual operations and there would be no effect of equation complexity
(nor any real thought occurring). However, to do so ACT-R would have to
essentially build into production rules the capacity to recognize each possible
equation and produce its solution. The combinatorics of this are so over-
whelming (so many different possible equations) that it would never happen
in the normal course of learning to solve equations.

3. A second, lesser source of speed-up is the reduction of retrieval times. This
reflects an increase in the base-level activation of the facts used in this exper-
iment and as such it is an example of subsymbolic activation learning. This
subsymbolic learning is a relatively minor contributor to the leaming in
Figure 61 for two reasons. First, the basic instructions get used over and over
again and are already strongly encoded during Day 0 and there is not that
much room for further speed-up. Second, the arithmetic facts do not repeat
very often over the course of the experiment and are getting little practice
over their baseline. In other situations, subsymbolic activation processes can
have a major effect on performance. However, over the period of time studied

' Although this is a particularly dramatic example of production compilation, there are many other
instances in Figure 6-3 that | have not noted to avoid overly cluttering the figure.
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in this experiment, the major learning is happening at the symbolic level in
terms of creating new production rules.

Comments on the Model

The model has some considerable virtues. It actually interacts with the same soft-
ware as the participants and so really does the task—there are no vague, unspec-
ified bridging assumptions in its predictions. The model is not handcrafted to do
the task but learns from instruction. Moreover, it is has the same model of instruc-
tion following that has been used in a number of other efforts in our lab
(Anderson et al., 2004, Anderson, Taatgen, & Byrne, 2005). Only two parameters
were estimated to fit the data. One was a scale factor that determines the length
of the retrieval episodes and the other was the time for encoding a fragment of an
equation from the screen (300 ms.). Although the fit to Figure 61 is pretty good,
the reader might well harbor some doubt about whether this really justifies all the
detail in the model in Figure 6-3. There are many unseen steps of processing. We

have been engaged in a program of brain imaging to try to bring some converg-
ing data to bear on these assumptions.

USING IMRI TO TEST ACT-R MODELS

We have now completed a large number of functional magnetic resonance imag-
ing (IMRI) studies of many aspects of higher level cognition (Anderson, Qin,
Sohn, Stenger, & Carter, 2003; Anderson, Qin, Stenger, & Carter, 2004; Qin
et al., 2003; Sohn, Goode, Stenger, Carter, & Anderson, 2003; Sohn, Goode,
Stenger, Jung, Carter, & Anderson, 2005) and based on the patterns over these
experiments we have made the following associations between a number of brain
regions and modules in ACT-R. In this chapter, we are concerned with five brain
regions and their ACT-R associations:

I. Caudate (Procedural): Centered at Talairach coordinates x = =5,y = 9,

z = 2. This is part of a set of subcorticial structures called the basal ganglia

that we associate with the procedural system.

Prefrontal (Retrieval): Centered at x = —40, y = 21, z = 21. This includes

parts of Brodmann Areas 45 and 46 around the inferior frontal sulcus.

3. Anterior Cingulate (Goal): Centered at x = —5, y = 10, z = 38. This
includes parts of Brodmann Areas 24 and 32.

4. Parietal (Problem State or Imaginal): Centered at x = —23, y = —64,
z = 34. This includes parts of Brodmann Areas 39 and 40 at the border of the
intraparietal sulcus.

[
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5. Motor (Manual): Centered at x = —37, y = —25, z = 47. This includes parts
of Brodmann Areas 3 and 4 at the central sulcus.

Predieting the BOLD Response

We have developed a methodology for relating the profile of activity in modules
like those in Figure 6-3 to Blood Oxygen Level Dependent (BOLD) responses
from the brain regions that correspond to these modules. Figure 64 illustrates the
proportion of time that a particular module was active at various points during a
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Figure 6-4. The. degree of engagement of the various modules during a trial on
Day 1 (part a) and Day 5 (part b).
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trial on Day 1 (Part a) and Day 5 (Part b) for the two-step equations. These num-
bers would be directly obtainable from Figure 63, except that Figure 6-4 reflects
the average engagement over the whole day not just at the beginning of Day 1
(Fig. 6-3a) and the end of Day 5 (Fig. 6-3b). The basic model we have developed
of the BOLD response claims that the while a module is engaged it is producing
a hemodynamic response in the corresponding region. We have adopted the stan-
dard gamma function that other researchers (e.g., Boyton, Engle, Glover, &
Heeger, 1996; Cohen, 1997; Dale & Buckner, 1997; Glover, 1999) have used for
the BOLD response. If the module is engaged it will produce a BOLD response
¢ time units later according to the function:

B(H=m (—E)u e T

where m governs the magnitude, s scales the time, and the exponent a determines
the shape of the BOLD response such that with larger a the function rises and falls
more steeply. The time to peak for the BOLD response is a * s and the magnitude
area under the curve is m * 5 * ['(a) where I" is the gamma function (I'(q) =
(@ — I)!) The BOLD response accumulates whenever the region is engaged.
Thus, if f{t) is an engagement function giving the probability that the region is
engaged at time ¢, then the cumulative BOLD response can be obtained by con-
volving the two functions together:

CB() = /J;) Fx) B(t = x)dx

This is the observed BOLD response. Its area is proportional to the total time
that the region is engaged. Thus, if a module is active for T seconds, then the area
under the BOLD response is T*m*s*I(a).

In summary, a model for the time course (Fig. 6-3) of this task yields engage-
ment functions f(t) like those in Figure 6—4. By convolving the engagement func-
tions with the BOLD function, one can obtain predictions for the BOLD response
in the regions associated with the modules. Most of the parameters of this model
are set according to prior values established for ACT-R, but fitting the latency in
Figure 6-1 did require estimating parameters for the time to encode the equation
and the duration of the retrievals. Having now committed to the time course of
cach module, predictions immediately follow for the time course of the BOLD
response. The exact height and shape of the BOLD response depends on the mag-
nitude (m), the scale (s), and the exponent (a) for the region that corresponds to
that module. However, the strong parameter-free prediction is that the relative
areas under the BOLD responses in two conditions for a region will reflect the
relative amounts of time this region is engaged in these two conditions. Thus, the
BOLD response provides a direct check on assumptions about the amount of time
various modules are engaged in doing a task.
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Figure 6-5. (continued) (d) Imaginal/Problem State module predicts parietal
region; (e) Procedural module predicts caudate region.

Table 6-2 gives the estimated parameters for the BOLD response and Figure
65 shows how well this model predicts the BOLD responses in the six condi-
tions achieved by crossing day and number of steps of transformation for each of
the five associated regions. To simplify matters and to make the functions more
comparable, the exponent of the BOLD response was set to 3 for all regions. To
keep the data presentation readable and get better estimates, Figure 6-5 averages
either over days or over conditions.>

“In fact, none of the regions showed a significant interaction between practice and number of steps
or between practice, number of steps, and scan.
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Table 6-2
Parameters Estimated and Fits to the Bold Response

Motor/ prefrontal/ Parietal/ Cingulste/ Caudate/

Manual Retrieval lmaginal Gonl Proeedural
Magn(m) 0.531 0.073 0.231 0.258 0.207
Exponent(a) 3 3 3 3 3
Scale(s) 1.241 1.545 1.645 1.590 1.230
Correlation 0.975 0.963 0.969 0.981 0.975
Chi-square o

(105 df) $8.93 82.60 95.21 123.27 81.03

Charaelerizing the Differences Among the Brain Regions

The first impression one probably gets from Figure 6-5 is that the BOLD
responses for the five regions look a lot alike. All show a characteristic hemody-
namic response that goes up and comes down with the trial structure. Further-
more, most regions show a stronger response for more transformations and a
stronger response on Day 1. This is quite characteristic of imaging results where
disparate regions of the brain give quite similar responses to the material. Without
a strong theory to guide one’s expectations, one is in danger of missing the dif-
ferences and concluding that the whole brain (or at least those regions that
respond—not all regions in the brain respond to the task structure in this experi-
ment) is reflecting a global response to the task. However, if one knows where to
look, there are characteristic differences. Although this one experiment does not
reveal all the differences in the behavior of all five regions, it does retlect many
of the important differences that we have identitied over our experiments. These
are enumerated next.

First, and most apparent, in Figure 6-5a the motor region is giving basically
the same hemodynamic response in all conditions. The effect of the slower con-
ditions is to delay when that hemodynamic response occurs. This is what would
be expected given a relatively strong understanding of what regions of the brain
control the hand. Although the motor region is transparently giving a different
response than the other regions (on both theoretical and observational grounds),
its correlation with the BOLD responses in other regions averages .66. Thus even
it might be confused with the other regions unless one had a theory to tell one
where to look to find the relevant differences.

Two of the other regions have distinct signatures. The prefrontal region (Fig.
6-5b) is distinguished by the very weak response it generates in the case of
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1} steps. According to the model, this case involves some brief retrievals of
mstructions but no retrieval of number facts. We have often modeled this condi-
tion by assuming no retrieval and predicted a flat function but a slight rise can be
discerned. The striking feature of the anterior cingulate (Fig. 6-5c¢) is that there is
almost no effect of learning whereas there is a robust effect of number of steps on
magnitude of the response. The goal component in ACT-R is engaged in main-
tatning state at points where the system is engaged in a retrieval of an arithmetic
fact (this 1s because the retrieval buffer cannot be used to hold the next step of
mstruction). Every time it engages in retrieval of an arithmetic task it must note
this so that it will wait for the fact before going on. Once the fact is retrieved it
must reset the state so that it can proceed with solving the equation. Thus, the
number of retrieval operations is one factor influencing the number of state-set-
ung operations in the goal buffer. The number of arithmetic retrievals changes in
this experiment with the number of steps in solving the equation since each step
requires retrieval of a fact. However, there is little reduction in these retrievals
with practice. In principle, with enough practice they would eventually drop out
but there are so many individual facts that they just do not repeat enough in equa-
tion solving.

The other two regions (the parietal in Fig. 6-5d and the caudate in Fig. 6-5e)
<an be distinguished from the other three regions because they lack the features
that identify the other three. However, there is little difference in the response that
we see in these two regions. They approximately reflect the average response of
all the areas, showing substantial effects of both number of steps of transforma-
tions and days of practice. The caudate is fit according to the number of rules that
fire, which naturally increases with steps and decreases with days. The parietal is
fit according to number of mental re-representations of the equation, which also
increases with steps and decreases with days. There is a subtle difference between
the two with the caudate showing a relatively larger effect of days and the pari-
ctal showing a relatively larger effect of steps. We find differences between these
two regions in experiments that vary modality of presentation from visual to aural
with the parietal responding less to auditory presentation than visual and the cau-
date responding more (Sohn et al., 2005). Note that in the comparisons of Figures
6-5d and 6-5e, the caudate gives a relatively weak response and has a poorer sig-
nal-to-noise ratio. This is unfortunate because according to the theory it should be
the one region that is involved in all cognitive tasks, retlecting number of pro-
duction rules fired.

Assessinﬁ Goodness of Fit

The figures contain measures of correlations between the predictions and
observed behavior. These are averaged over either days or operations but Table
6-2 gives correlations among all 108 points for each region. Although this is a
conventional measure of quality of fit, it has a number of problems. For instance,
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correlation is only sensitive to whether the shapes match up and not to whether
the actual predicted numbers match up.

The quantitative correspondence can be assessed by the chi-square statistics in
the table, which measure the degree of mismatch against the noise in the data.
They are calculated as

(X, - X,)°
x> = ;
Sy

where the denominator is estimated from the interaction between conditions and
participants. This has 105 degrees of freedom, calculated as 108 minus the 3
parameters estimated for the BOLD function. By this measure, all of the areas are
being modeled as well as can be expected because they all yield nonsignificant
chi-squares (it would have to be 130 or greater to be significant at the .05 level).

Table 6-3 reports the outcome of trying to fit each module to each region’s
activation profile and calculating a chi-square measure of misfit. With 105
degrees of freedom, the 5-percentile tails for the chi-square distribution are at 82
and 130. As we noted with respect to Table 6-2, all the modules give acceptable
fits (less than 130) to their ascribed regions. A few other modules give acceptable
fits to other regions although not as good. In particular, the modules other than
the manual module all give approximately equal fits to the parietal and caudate
regions. As noted, these regions approximately show the average response of all
the regions.

Table 6-3
Clli-Squnre Measure of Fits between Reﬁions and Modules

Motor Prefrontal  Cingulate Parietal Caudate
Manual 88.93 452.05 724.66 426.40 333.89
Retrieval 493.22 82.60 350.32 101.88 133.13
Goal 255.91 194.94 123.27 171.74 111.01
Imaginal 384.66 125.66 210.47 95.21 101.82
Procedural 347.05 163.76 286.28 114.93 81.03

CONCLUSIONS

We should note that there is no reason why such data and methodology should be
limited to testing the ACT-R theory. Many other information-processing theories
could be tested. The basic idea is that the BOLD response retlects the duration for
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which various cognitive modules are active. The typical additive-factors informa-
tion-processing methodology has studied how manipulations of various cognitive
components affect a single aggregate behavioral measure like total time. If we can
assign these different components to different brain regions, we have essentially
4 separate dependent measure to track each component. Therefore, this method-
ology promises to offer strong guidance in the development of any information-
processing theory.
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CHAPTER

7

Rememl)ering Images

av

Stephen M. Kosslyn
Harvard University

Gordon H. Bower had a profound influence on my eventual academic fate, well
before I actually met him. When [ arrived at Stanford in 1970, Gordon was on
sabbatical (teaching in Austria, as I recall). One of the other faculty members
gave me a preprint of an article he wrote, “Mental Imagery and Associative
Learning,” later to appear in the volume edited by Gregg (1972). In that paper, a
single line struck me right between the eyes (I vividly remember reading it, late
at night in the original Stanford coffee house). He said something to the effect that
“If images are like pictures, and can be scanned and otherwise inspected ... .”
This throwaway thought from Gordon (which he valued so little that he deleted it
from the final version) instantly led me to have two ideas. First, I realized that—
exactly analogous to the now-famous “mental rotation™ experiments of Lynn
Cooper, Jackie Metzler, and Roger Shepard (see Shepard & Cooper, 1982)—I
could measure how much time people required to respond when they had to scan
different distances across a drawing they were visualizing. If Gordon were cor-
rect, more time should be required to scan greater distances across an imaged
object. Second, I also realized that I could use such response times more gener-
ally, as a kind of “mental tape measure.” to assess structural properties of the
underlying representation. The thought was that if image representations (the
short-term memory representations, which somehow give rise to the experience
of “seeing with the mind’s eye”) were in some sense pictorial, then space in the
representation should embody actual space. If so, [ conjectured, then the time to



