In Jacko, J., Sears, A., Beaudouin-Lafon, M. and Jacob, R. (Eds.) Proceedings of ACM CHI’ 2001 Conference on Human Factors in Computing Systems,

245-252. New York: ACM Press.

Locus of Feedback Control in Computer-Based Tutoring:
Impact on Learning Rate, Achievement and Attitudes

Albert T. Corbett
Human Computer Interaction Institute
Carnegie Mellon University
Pittsburgh PA 15213
412-268-8808
corbett+@cmu.edu

ABSTRACT

The advent of second-generation intelligent computer tutors
raises an important instructional design question: when
should tutorial advice be presented in problem solving?
This paper examines four feedback conditions in the ACT
Programming Tutor. Three versions offer the student
different levels of control over error feedback and correction:
(a) immediate feedback and immediate error correction; (b)
immediate error flagging and student control of error
correction; (c) feedback on demand and student control of
error correction. A fourth, No-tutor condition offers no
step-by-step problem solving support. The immediate
feedback group with greatest tutor control of problem
solving yielded the most efficient learning. These students
completed the tutor problems fastest, and the three tutor-
supported groups performed equivalently on tests.
Questionnaires revealed little student preference among the
four conditions. These results suggest that students will
need explicit guidance to benefit from learning
opportunities that arise when they have greater control over
tutorial assistance.

Keywords
Intelligent Tutoring Systems, Instructional Interface
Design, Student Modeling, Feedback in Problem Solving

INTRODUCTION

In learning and problem solving, when should errors be
pointed out and advice offered? While human tutors have
always grappled with this issue [10,14]n, it only emerged as
a formal research topic early in the 20" century. A major
stimulus for this research was the advent of Pressey’s
“teaching machine” [16] which for the first time held out
the promise of prompt, individualized instruction on a wide
scale — a promise fulfilled in the second half of the century
by computer-based instruction.

Early automated instruction supported single-answer
problem solving, and under the influence of Thorndyke and
Skinner, most feedback research focused on timing,

John R. Anderson
Psychology & Computer Science Departments
Carnegie Mellon University
Pittsburgh PA 15213
412-268-2788
jat@cmu.edu

contrasting immediate and delayed feedback. This research
yielded mixed results. Overall, feedback timing has little
consistent impact on learning, although delayed feedback
can facilitate retention [5,11,12].

With the development of “second generation” intelligent
tutoring systems that can provide feedback and advice on
subgoals in complex problem solving tasks, a new issue
arises. Immediate feedback on component problem solving
actions runs the risk of interfering with overall task
performance and learning in several ways. It can disrupt
performance of real-time tasks, such as radar monitoring
[15] and may disrupt cognitive processes in task execution
more generally [17,19]. Immediate feedback prevents
students from learning error-detection skills and may
discourage metacognitive self-monitoring processes [9]
more generally. Finally, immediate feedback on problem
solving actions may have adverse affective and motivational
consequences [13].

We explored the issue of feedback timing and control in the
context of the ACT Programming Tutor (APT). As
described in the following section, APT is a computer-
based problem solving environment in which students learn
to write short programs. It is a cognitive tutor constructed
around a cognitive model of the programming knowledge
students are acquiring. This cognitive model enables the
tutor to follow the student’s step-by-step solution in
problem solving, providing help on each step as needed.
In this study we compare four versions of the tutor. Three
of these versions can offer symbol-by-symbol assistance in
problem solving, but vary in the degree of control students
have over the use of this assistance. An immediate
feedback version provides feedback on each symbol and
requires the student to fix errors immediately, so the
student always remains on a recognized solution path. An
error flagging version also signals errors immediately, but
the student has full control over code editing. A feedback-
on-demand version offers no assistance until the student
requests it. The fourth no tutor comparison version does
not provide any symbol-by-symbol level support and only
notifies the student whether or not each program works
correctly.

THE ACT PROGRAMMING
FEEDBACK VARIATIONS

APT is a cognitive tutor constructed around a cognitive
model of the programming knowledge the student is

TUTOR AND

acquiring. This cognitive model enables the tutor to trace
the student’s solution path through a complex problem
solving space in a process we call model tracing. The
tutor can provide feedback on each problem solving action
(each symbol the student adds to the program) and can
provide advice on steps that achieve problem solving goals.
APT has previously served as a useful research tool in
extensive studies of learning and problem solving [1],
student modeling [7] and feedback content [8]. See [1] for
related work on feedback control.

Figure 1 depicts the screen of the APT Lisp Module near
the beginning of a tutor problem. The screen is divided
into four windows. The problem description is displayed
in the top window and remains on the screen except when
the tutor is providing a feedback message. The student's
code appears in the second window. In this figure the
student has typed a left parenthesis and the operator defun,
which is used to define a new function in Lisp. The tutor
completes the template for a call to defun with three
symbols in angle brackets <NAME> <PARAMETERS>
and <BODY>. These symbols are placeholders
representing arguments of defun and the student will replace
each one with additional Lisp code. In the third window,
the student has access to a Lisp interpreter. Students can
execute Lisp code in this window at any time. In
particular, they can test their solutions in the Lisp window
by trying them out on sample values. The bottom window
contains a summary of the editing and help commands
available to the student. Figure 1 displays the minimal set
of commands employed in the immediate feedback version
of the tutor.

APT reflects the ACT-R theory of skill knowledge [4],
which assumes that goal-oriented problem solving
knowledge can be represented as a set of independent
production rules that associate problem states and goals
with problem solving actions and consequent state changes.
The tutor conventionally provides immediate feedback on
each production firing (each program symbol the student
codes) as described in the following section.

Immediate Feedback and Error Correction

The standard immediate feedback version of the
programming tutor advances the cursor on a top-down, left-
to-right, depth-first sequence through the placeholder
symbols. If the student types an incorrect symbol, the
tutor immediately provides feedback, deletes the symbol
and requires the student to try again. If the student makes
repeated errors, the tutor ultimately provides a correct
symbol along with an explanation. The student may also
request help at any editor node - either a description of the
current goal or an explanation of how to accomplish it. In
this mode, students always remain on a problem solving
path recognized by the tutor and always reach a successful
conclusion to problem solving.

This immediate feedback mode has been employed
successfully in cognitive programming and mathematics
tutors for 15 years. Both niversity programming students
and high school mathematics students score substantially
higher on tests (roughly a letter grade) than comparable

students who complete equivalent problems on their own
[2] and Schofield [18] has documented that high school

students find cognitive mathematics tutors highly
motivating.
Define a function called ends that takes one list as an argument and
returns a list containing the first and last items in the argument.
For example,
(ends*(abcd)) =(ad)
CODE WINEW
(defun <NAME> <PARAMETERS>
<BODY>)
THE LISP WINDOW
COMMANDS
D Delete G Goal Hint"E Explain AL Lisp Window
Figure 1. The APT Lisp Tutor interface (Immediate

Feedback version)

The ACT Programming Tutor offers an interesting
opportunity to examine the costs and benefits of relaxing
the tutor’s control over feedback and error correction for two
reasons. First, expert programming involves a variety of
code inspection, testing and debugging skills that are not
directly exercised in the tutor. Second, the university
students who work with the tutor represent a different
population than the high school students. To explore
feedback control we developed three new programming
tutor variations, as described in the following sections, in
which students have complete control over writing and
editing their code with a full structure editor. The editor
expands the function call templates just as in the
immediate feedback condition, and it is possible for
students in each of these conditions to follow exactly
the same solution path as is required by the immediate
feedback tutor. However, a set of cursor control and editing
commands allows students to deviate from the standard
coding order and to edit existing code.

Error-Flagging

In this condition, the tutor provides immediate feedback on
each coding step, displaying errors in bold on the screen,

but does not interrupt the student and require a correction.
Instead, students are free to edit errors or to continue
coding. At any time students can select any flagged node
and ask for advice and the same advice is available as in the
immediate feedback tutor. Students may also test their
code at any time in the Lisp Window. Since step-by-step
advice is available if needed, students are required to
complete a correct solution to each problem, but unlike the
immediate feedback condition, the student may turn in a
working solution that the tutor cannot generate and does
not recognize. The tutor evaluates such variant solutions
by applying them to test cases and accepts code that works
correctly even though some symbols may be flagged.

Demand-Feedback

In the demand-feedback condition, the tutor only provides
help upon request of the student. At any time students can
ask the tutor to check over the code for errors or can ask for
advice on any symbol. In either case, the same advice is
available as in the immediate feedback and error flagging
conditions. When students submit a problem solution, the
tutor tests the code and will accept any working solution.
If the program does not work correctly, the tutor checks
through the code and reports the first error it detects. Since
step-by-step help is available upon request, the student is
required to reach a correct solution to each problem.

No-Tutor

In this condition, students receive no advice on how to
write the programs. When the student signals that he or
she is done working, the tutor tests the code and indicates
whether or not the solution is correct. If not, the student
can continue working. Students are encouraged to keep
working until reaching a correct solution, but are not
required to, since it may not be possible without
assistance. This is an important contrast with the three
feedback conditions in which students are required to
achieve working solutions. If a student in the no-tutor
condition gives up with an incorrect answer, the tutor
presents a canonical solution to the problem. This
approximates a common homework situation in which
students can look up correct solutions in the back of the
book.

DESIGN OF THE STUDY

These four tutor versions were evaluated in a study in
which students worked through five chapters in a Lisp
programming curriculum, completing a fixed set of
programming problems. Three measures of tutor impact
were employed: (1) student performance in completing the
tutor problems, (2) performance in three different test
environments and (3) student attitude questionnaires.

Participants

Forty undergraduates participated in the study for pay.
Each participant was assigned to one of the four feedback
conditions. The students in this sample had an average
Mathematics SAT score of 693 and had taken an average of
1.9 programming courses prior to this experiment,
although none had prior experience with Lisp. These
variables were controlled in assigning students to the four
conditions.

Procedure

The students worked at their own pace through five
chapters of a Lisp programming text [3], and completed
accompanying exercises with the tutor. Following the
second lesson, subjects filled out a short attitude
questionnaire and completed a paper-and-pencil
programming test. Following the fifth lesson, students
again filled out a short questionnaire and completed three
programming posttests. The first of these tests was paper-
and-pencil, the second test required students to complete
exercises on-line with a text editor and Lisp interpreter, and
in the third posttest all students completed exercises with
an immediate-feedback version of the tutor.

Curriculum

Five lessons were selected to bring students to the most
challenging topic in the tutor curriculum, recursion, as
rapidly as possible. The five lessons cover function calls,
function definitions, conditionals, basic recursion and
advanced recursion. Students completed a total of 42 tutor
problems in completing these lessons.

Tutor Versions

All four tutor versions display four windows on the screen
as described in the introduction. All four versions provided
access to a Lisp interpreter in the third window. Students
could enter this Lisp environment as often as they wished
and at any time in the course of completing a problem.
When students enter the Lisp environment, their problem
code is automatically loaded into the environment. The
bottom window on each screen provides a reminder of the
editing and help commands available to the student.

Code Entry.

Students in the immediate-feedback condition are
constrained to enter their code top-down, left-to-right and
depth-first. They are required to enter a correct symbol at
each goal before proceeding to the next and they can not go
back and modify correct symbols. Students in the error-
flagging, the demand-feedback and no-tutor conditions can
freely enter and modify their code with a full structure
editor.

Help Facilities.

The immediate-feedback tutor interrupts students
immediately when a mistake is made. It provides a
feedback message, deletes the error and requires the student
to try again. If the students makes three errors that the
tutor cannot diagnose or if the student makes repeated errors
of the same type, the tutor provides an explanation of the
correct step and inserts the correct symbol into the code.
The error-flagging tutor immediately redisplays any
incorrect code in bold, but does not interrupt the student.
The feedback-on-demand tutor never volunteers
information. The no-feedback version provides no feedback
at the level of individual symbols in the student's code.

Two types of help are common to the immediate feedback,
error flagging and demand-feedback versions of the tutor.
Students can ask for a goal hint or an explanation. A goal
hint reminds the student of the pending goal, but does not
provide information on how to achieve that goal. An
explanation describes how to achieve the current goal and

inserts the correct symbol into the student's code. Students
in the error-flagging and feedback-on-demand versions can
each request one other type of help. In the error-flagging
condition, students can ask the tutor to comment on an
error the tutor has flagged. In response, the tutor displays
the error feedback message that is presented automatically
in the immediate-feedback condition. Students in the
feedback-on-demand condition can ask the tutor to verify
their code. In response, the tutor searches the code top-
down, left-to-right and depth-first, highlights the first error
that is found and provides the corresponding error feedback
message. If there are no errors, the tutor notifies the
student. If in executing either of these two commands the
tutor finds that a student has made three undiagnosed errors
at the same goal or is repeating the same type of error at a
goal, the tutor will provide an explanation of the correct
action and insert the correct symbol into the code.

Exercise Completion.

In the immediate-feedback version an exercise ends
automatically as soon as the student has completed a
correct solution. Students in the other three conditions
notify the tutor when they think they have finished an
exercise. If the code is complete and recognized as correct,
the tutor advances the student to the next exercise. If the
code is a syntactically complete program but not a
recognized solution, the tutor tests the code on sample
cases. If the code works, the tutor notifies the student that
the code works but is unrecognized. In this case, the tutor
displays a canonical solution to the exercise, then advances
the student to the next exercise. If the code does not work,
the tutor notifies the student. In the error-flagging
condition, the tutor points out that there are still errors
flagged on the screen. In the feedback-on-demand version
the tutor automatically executes a verification, as described
above, and points out the first error that is encountered.
Students in these two conditions cannot finish an exercise
until they have code that works correctly. In the no-
feedback condition, the program simply notifies the student
if the code does not work and encourages the student to
keep trying. Since no assistance on subgoals is available
in this condition there is no guarantee the student will
reach a correct solution and the program will allow the
student to complete an exercise even if the code is incorrect.
In this case, the program displays a canonical solution to
the exercise.

Programming Tests

The first paper-and-pencil test, following the second lesson,
contained ten exercises, three code evaluation questions,
three code debugging questions and four code generation
exercises. The code generation questions were similar to
the tutor exercises and required students to write short Lisp
programs. In the code evaluation questions students
determined the results of executing short Lisp programs
with sample values. The debugging questions presented
short programs with mistakes that the student was required
to fix. The posttests that followed the final lesson
consisted exclusively of code generation exercises. The
paper-and-pencil test contained eight questions, while each
on-line test required the student to complete six exercises.

In the on-line editor test, students entered their code with a
text editor and had access to a Lisp environment. They
could readily load their code into the Lisp environment for
testing. The final posttest employed an immediate-
feedback version of the tutor, but students did not have
access to a Lisp environment as they typed their code. All
tests were open book.

Questionnaires

Each questionnaire contained the first seven questions
displayed in Table 4 below. The first two questions were
intended to assess the students' self-knowledge of the
learning process. The next five questions asked their
opinions on the tutor. The eighth question, asking
whether students would like to learn more Lisp, only
appeared on the second questionnaire. Students responded
to all questions on a 7-point Likert scale.

RESULTS
Students required an average of 12.4 hours to complete the
experiment, distributed over an average of 7.4 sessions.

Tutor Performance — Learning Time

As displayed in Figure 2, average time to complete the
tutor problems is inversely related to the level of support
provided by the tutor. Students in the immediate feedback
condition finished the problems fastest, followed in order
by students in the error flagging, demand feedback and no-
tutor conditions. In a two-way analysis of variance (tutor
version x lesson) this main effect of tutor version is reliable
F(3,36) = 11.69, p < .01. The main effect of lesson is also
reliable F(4,144) = 41.98, p < .01, and the interaction of
feedback condition and lesson is marginally reliable,
F(12,144) = 1.74, p < .07. Note that learning time for the
immediate feedback, error flagging and demand-feedback
conditions is similar for the first two, (easiest) lessons and
substantially shorter than in the no-tutor condition. For

120
+. 4. NoTut
— .4 --Dmd Fdbk ,"-_~
100 | — 9 —-Err Flag "' Sl
—m_ Imm Fdbk ! A 'SEETRTERE 4
= 80 1 ;
E
-
=
=
5 60
-
E 40 H
=
20
0o
Fn Calls Fn Defns Conds Recur 1 Recur 2
Lesson
Figure 2. Mean time per lesson to complete the

programming problems in the five tutor lessons.

the final three harder lessons, the advantage of immediate
feedback over the other three conditions increases. It is
important to note that students in the no-tutor condition
gave up without generating a correct solution in 30% of the
problems across the lessons, so Figure 2 underestimates the
true learning time in this condition.

Tutor Performance — Use of Feedback

We examined the tutor protocol files for two lessons in
detail, to see how students made use of feedback in the
error-flagging and demand-feedback conditions. We
selected lesson 2, an easy lesson and lesson 9, with the
hardest exercises. Students in both conditions responded
passively to the available assistance. That is, students in
the error-flagging condition tended to edit errors almost
immediately. In lesson 2 they modified 66% of their errors
immediately and 79% after coding at most one additional
symbol (which may reflect type-ahead). By lesson 9, these
percentages rose to 78% and 87% respectively. Students in
the demand-feedback condition, however, tended to wait
until they had typed a complete solution before seeking
feedback. In lesson 2, only one student requested feedback
in an exercise prior to coding a complete solution. In
lesson 9, only three subjects asked for feedback prior to
completing a solution.

Test Performance

Students completed posttests in three environments, (1)
paper-and-pencil, (2) a text editor and Lisp environment
and (3) an immediate-feedback tutor. The accuracy measure
for paper-and-pencil and on-line editor posttests is the
number of errors at the level of individual code symbols in
the students' final answer to the exercises, corresponding to
the number of incorrect production firings. In the case of
the immediate-feedback tutor posttest, students necessarily
arrive at a correct answer for each exercise. The accuracy
measure for this test is the probability of making a mistake
at each goal in the course of completing the exercises.
Elapsed time was recorded for both the on-line editor and
tutor tests. Data was lost for two students in the no-tutor
condition for the two on-line tests due to disk failure.

Paper and Pencil Posttests.

Table 1 displays the mean number of errors per problem in
the two paper-and-pencil posttests. The first test, following
lesson 2, contained code evaluation problems, code
debugging problems and code writing problems. The
second test, following the fifth lesson contained code
writing exercises only. Students in the no-tutor condition
are making substantially more errors than students in the
other three conditions. The effect of tutor version was
marginally significant in a two-way analysis of variance,
F(3,36) = 2.48, p < .08. The effect of question type was
significant, F(3,108) = 27.99, p<.01 and the interaction
was marginally significant, F(9,108) = 1.77, p<.09.

To explore the effect of tutor version further, we performed a
two-way analysis of variance that collapsed across the three
feedback conditions, to contrast an overall “feedback”
condition with the no-tutor condition. In this analysis, the
effect of feedback was significant, F(1,38) = 6.81, p <.05.
Students in the no-tutor condition made reliably more

errors than students who had feedback available. The effect
of question type was again significant, F(3,114) = 28.73, p
< .01 as was the interaction of feedback and question type
F(3,114) = 4.39, p < .01. Finally, we performed an
analysis that excluded the no-tutor condition and compared
just the three feedback conditions. The effect of tutor
version in this analysis was not significant. The effect of
question type was again significant, F(3,81) = 14.84, p <
.01, but the interaction was not.

To explore the reliable interaction of tutor version and
question type, we performed an analysis of variance on each
of the four question types separately, collapsing across the
three feedback conditions to compare a “feedback”
condition with the no-tutor condition. The effect of
feedback was not significant for either the evaluation or
debugging questions. However, students who received
feedback conditions were reliably more successful than the
no-tutor students on the Test 1 coding problems, F(1,38) =
6.78, p < .05 and on the Test 2 coding questions F(1,38)
=5.21, p <.05. Finally, we performed an analysis of
variance on each of the four questions in which we excluded
the no-tutor condition and compared the three feedback
conditions. There were no reliable differences among the
feedback conditions on any of the four problem types.

Demand No
Feedbk Feedbk

Immed Error
Feedbk Flag

Test 1
Evaluation 0.33 0.40 0.40 0.60
Debugging 0.30 0.50 0.27 0.57

Coding 1.00 0.98 0.58 1.83

Test 2
Coding 4.16 2.76 2.44 6.58

Table 1: Mean number of errors per answer in the paper
and pencil tests.

On-Line Editor/Lisp Interpreter Test

Results of the on-line editor test are displayed in Table 2.
The mean number of coding errors per answer is reported,
along with mean elapsed time to complete each problem.
The difference in error rates in this comparison is non-
significant. However, a number of students exceeded the
time limit for this test and failed to even begin the final
exercise. This necessarily distorts estimates of error rates at
the level of individual symbols. As a result, we computed
the error count for just the first five exercises. The group
means are ordered identically and in this case, the effect of
tutor version was marginally significant F(3,34) = 2.55, p
<.09 Again, we performed an analysis that collapsed
across the three feedback conditions to contrast “feedback”
with the no-tutor condition. In this analysis the effect of
feedback was significant; students in the no-tutor condition
made reliably more errors, F(1,36) = 7.00, p < .05. Inan
analysis of variance that excluded the no-tutor condition,

the error rate differences among just the three feedback
conditions was not significant.

The effect of tutor version on elapsed time is reliable
F(3,34) = 3.13, p < .05. Students in the immediate
feedback and no feedback conditions are about 21% slower
finishing the exercises than students in the two student-
controlled feedback conditions. Four pairwise T-tests
comparing each of the error flagging and demand-feedback
conditions to each of the immediate-feedback and no-
feedback conditions were all at least marginally significant.
Note, however, that the difference between the two student-
controlled conditions and the immediate feedback condition
represents a speed-accuracy tradeoff. While students in the
immediate feedback conditions are finishing more slowly
than students in the error flagging and demand feedback
conditions, the immediate-feedback students have almost
40% fewer errors in their answers.

Immed Error Demand No
Fdbk Flag Fdbk Fdbk

Errors 2.63 3.61 3.68 5.25
ElapsedTime 8.2 6.9 6.6 8.1

Table 2: Mean number of errors and mean elapsed time per
problem (min) for the on-line editor/Lisp interpreter test.

Immediate Feedback Tutor Posttest.

Finally, all students completed six “test" exercises with
the immediate feedback tutor. This environment offers the
purest assessment of students’ coding skills, distinct from
their code inspection and debugging skills. Table 3
displays the probability that the students’ first coding
action is correct at each problem solving step, and displays
students’ mean elapsed time to complete each problem.
There is little difference among the four groups in the
probability of a correct coding action, but students in the
no-tutor group are taking substantially longer overall to
complete these exercises. The effect of tutor version on
elapsed time is significant in an analysis of variance,
F(3,34) = 3.14, p<.05. An analysis contrasting the three
feedback conditions with the no-tutor condition was also
significant, F(1,36) = 9.62, p < .01. An analysis that
excluded the no-tutor condition to compare elapsed time in
the three feedback conditions was non-significant.

Demand No
Feedbk Feedbk

Immed Error
Feedbk Flag

p(Correct) 0.93 0.91 0.94 0.90
Elapsed Time| 3.0 3.0 3.2 4.2

Table 3: Probability of a correct response at each coding
step and elapsed time per problem (min) in completing the
immediate feedback test problems.

In summary, the students in the three feedback conditions
achieve equivalent accuracy levels in all tests. They
perform more accurately than the no-tutor group in the
paper and pencil coding exercises and in the on-line editor
test. All four groups are equally accurate in the immediate
feedback posttest, although the no-tutor group took longer
to complete that posttest.

Questionnaires.

Students completed attitude questionnaires after lessons 2
and 5. The results are displayed in Table 4. A separate
two-way analysis of variance was performed on each one of
the first seven questions with feedback condition and
questionnaire (first vs. second) as factors. A one-way
analysis of variance was performed on the eighth question,
which only appeared in the second questionnaire. The
most striking pattern in these results is the overall
similarity of the ratings across the four feedback groups.

Self-monitoring of Learning

The first two questions were designed to assess students'
monitoring of the learning process. The questionnaire
factor was significant in both analyses. The first question
asked students to judge exercise difficulty and students
accurately perceived that the exercises were more difficult in
the final three lessons, F(1,36) = 69.04, p < .01. Question
2 asked how well students learned the material and students
were less confident they had learned the material well in the
final three lessons, F(1,36)=27.10, p <.01. There was a
marginal effect of tutor version in the first question.
Students who received more feedback from the tutor (the
immediate feedback and error flagging conditions) generally
perceived the exercises as easier, F(3,36)=2.41, p<.09.
There was no effect of tutor version on the second question,
and no interaction in either analysis.

Feedback Opinions

Questions 3-7 asked students' opinion of the tutor. The
surprising result is that there was no reliable main effect of
tutor version on how much students liked the tutor
(question 3), and more specifically, how much they liked
the tutor's assistance (question 6), whether or not they
would like more assistance (question 7) and whether they
thought the tutor helped them understand better (question
5). There is a reliable interaction of questionnaire and tutor
version for question 3, however, F(3,36)=3.12, p<.05.
Students' overall rating of how much they like the tutor
declined from the first to second questionnaire, but the
decline was smaller for the immediate feedback and error
flagging groups who received more assistance. In fact, this
rating actually went up slightly from the first to second
questionnaire for the immediate feedback group.

There was only one significant main effect of tutor version
among questions 3-7. In question 4 students’ perception of
whether the tutor helped them finish more quickly was
directly related to the level of feedback control exercised by
the tutor, F(3,36)=3.32, p<.05. The more help the tutor
provided, the more students believed the tutor helped them
finish faster. Note that these beliefs are consistent with the
learning time data displayed in Figure 2. There was also a
significant interaction in this question. The difference

Questionnaire 1

Questionnaire 2

Questions

Imm Err Dmd No
Fdbk Flag Fdbk Fdbk

Imm Err Dmd No
Fdbk Flag Fdbk Fdbk

1. How Difficult were the exercises? 3.3
(1=Easy, 7=challenging)

2. How well did you learn the material? 5.8
(1=Not Well, 7=Well)

3. How much did you like the tutor? 5.1
(1=Disliked, 7=Liked)

4. Did the tutor help you finish more quickly?| 5.3
(1=Slower, 7=Faster)

5. Did the tutor help you understand better? 55
(1=Interferred,7=Helped)

6. Did you like the tutor's assistance? 5.3
(1=Disliked, 7=Liked)

7. Would you like more or less assistance? 3.8
(1=Less, 7=More)

8.Would you like to learn more Lisp? -
(1=No, 7=Yes)

2.9 3.8 4.1 5.2 4.9 5.7 5.7

5.4 5.7 53 4.8 5.3 5.1 4.5

4.9 5.7 4.9 5.5 4.6 4.3 4.5

4.3 4.7 4.2 6.5 5.7 4.3 4.5

4.8 5.3 50 4.5 4.2 4.8 4.5

4.6 55 4.8 5.2 4.7 4.3 4.5

4.0 45 4.8 4.1 4.5 44 51

- - - 6.5 5.0 4.9 59

Table 4. Mean responses to the attitude questionnaire of the students in each of the four feedback conditions.

between the high feedback groups (immediate and error
flagging) and low feedback groups (demand and no-
feedback) was more pronounced in the second questionnaire
F(3,36)=3.11, p<.05.

The main effect of the first vs. second questionnaire was at
least marginally reliable for four of the five tutor feedback
questions. In the second questionnaire, students liked the
tutor less (question 3) F(1,36)=4.11, p<.06, liked the
tutor's assistance less (question 6) F(1,36)=3.68, p<.07,
were less convinced that it helped them understand the
material (question 5) F(1,36)=6.19, p<.05, but were more
convinced that the tutor helped them finish faster (question
4) F(1,36)=3.11, p = .10.

The final question in questionnaire 2 asked students
whether they would like to learn more Lisp. The effect of
tutor version is marginally significant for this question,
F(3.36) = 2.82, p < 06. Students in the immediate
feedback and no-tutor conditions were more eager to
continue than in the error flagging or feedback-on-demand
conditions. This pattern of results is surprising, since the
immediate-feedback and no-tutor conditions are quite
dissimilar. The only quality these two conditions have in
common is that students have no control over the tutorial
assistance.

DISCUSSION
There are three principal conclusions concerning the impact
of the four feedback conditions. First, time to complete the

fixed set of tutor problems was inversely related to the
control exerted by the tutor in problem solving. Students
in the immediate feedback condition finished fastest,
followed in order by students in the error flagging, demand-
feedback and no-tutor conditions. Second, students in the
three tutor-supported conditions, all of whom were required
to obtain correct solutions to the tutor problems, performed
equivalently across three test environments, while students
in the no-tutor condition who failed to solve 30% of the
tutor problems also scored about 25% worse across test
environments. Thus, test achievement is strongly related
to the set of problems students successfully solved, while
the solution paths students followed in reaching those
solutions had little or no impact. Finally, students did not
show any strong preferences among the four feedback
conditions. There could hardly be a wider range of tutor
support and feedback control across conditions, but there
were no differences among the four groups in how much
they liked the tutor, how much they liked the tutor’s
assistance and whether they wanted more assistance. The
performance of the error flagging students and demand-
feedback students on the tutor problems provides
converging evidence for this conclusion. When immediate
feedback was provided in the error flagging condition,
students were largely content to fix the errors immediately,
and when no feedback was offered in the demand feedback
condition, students were content to wait until they had
entered a complete program before requesting help.

This pattern of results is particularly surprising, because the
students in this study are high-achieving and well-prepared
to learn a new computer language. These students, on the
whole, might be expected to prefer more control over
learning and should be well-prepared to take advantage of
learning opportunities afforded when tutor control is
relaxed.

Two instructional design principles follow from these
results. First, immediate feedback on individual problem
solving steps can be an efficient and effective form of tutorial
support for students learning a complex problem solving
skill such as programming. Students in the immediate
feedback condition worked through the tutor problems
fastest, while there was little difference among the three
step-by-step feedback conditions in test performance. The
decision about when to deploy immediate feedback is
essentially a curriculum decision. Immediate feedback on
each symbol is efficient when students are focused on
writing programs, but would have to be relaxed if we want
students to focus on debugging the code they write.

Second, these results demonstrate that relaxing immediate
feedback on coding performance may be necessary, but is
not sufficient to promote error detection and other process-
monitoring skills. Instead, it is important to provide direct
training and support for such skills. Bielaczyc, Pirolli and
Brown [6], for example, have demonstrated that
metacognitive skills in programming can be directly
trained. When such skills are targeted in intelligent
computer tutors, immediate feedback on those skills
should be a useful pedagogical tool.

ACKNOWLEDGMENTS

This research was supported by NSF grant number
9720359 to CIRCLE: Center for Interdisciplinary Research
on Constructive Learning Environments.

REFERENCES

1. Anderson, J.R., Conrad, F.G. and Corbett, A.T.
(1989). Skill acquisition and the LISP Tutor. Cognitive
Science, 13, 467-505.

2. Anderson, J.R., Corbett, A.T., Koedinger, K.R. and
Pelletier, R. (1995). Cognitive tutors: Lessons learned.
Journal of the Learning Sciences, 4, 167-207.

3. Anderson, J.R., Corbett, A.T. and Reiser, B.J. (1987)
Essential Lisp. Reading, MA: Addison-Wesley.

4. Anderson, J.R. and Lebiere, C. (1998). The atomic
components of thought. Mahwah, NJ: Erlbaum.

5. Bangert-Drowns, R.L., Kulik, C.C., Kulik, JA. &
Morgan, M. (1991). The instructional effect of feedback
in test-like events. Review of Educational Research, 61,
213-238.

6. Bielaczyc, K., Pirolli, P.L., and Brown, A.L. (1995).
Training in self-regulation strategies: Investigating the

effects of knowledge acquisition activities on problem
solving. Cognition and Instruction, 13, 221-252.

7. Corbett, A.T. and Anderson, J.R. (1995). Knowledge
tracing: Modeling the acquisition of procedural
knowledge. User Modeling and User-Adapted
Interaction, 4, 253-278.

8. Corbett, A.T. and Trask, H. (2000). Instructional
interventions in computer-based tutoring: Differential
impact on learning time and accuracy. CHI 2000
Conference Proceedings: The Future is Here, 97-104.

9. Chi, M.T.H., Bassok, M., Lewis, M, Reimann, P.,
Glaser, R. (1989). Self-explanations: How students
study and use examples in learning to solve problems.
Cognitive Science, 13, 145-182.

10. Fox, B. (1991). Cognitive and interactional aspects of
correction in tutoring. In P. Goodyear (ed.) Teaching
knowledge and intelligent tutoring. Norwood, NJ:
Ablex.

11. Kulhavy, R.W. (1977). Feedback in written instruction.
Review of Educational Research, 47, 211-232.

12.Kulik, J.A. and Kulik, C.C. (1988). Timing of
feedback and verbal learning. Review of Educational
Research, 58, 79-97.

13.Lepper, M.R., Woolverton, M., Mume, D.L. and
Gurtner, J. (1993). Motivational techniques of expert
human tutors: Lessons for the design of computer-based
tutors. In S. Lajoie & S. Derry (eds.) Computers a
cognitive tools. Hillsdale, NJ: Erlbaum.

14.Merrill, D.C., Reiser, B.J., Ranney, M. and Trafton,
J.G. (1992). Effective tutoring techniques: A
comparison of human tutors and intelligent tutoring
systems. Journal of the Learning Sciences, 2, 277-305.

15.Munro, A. Fehling, M.R. and Towne, D.M. (1985).
Instruction intrusiveness in dynamic simulation
training. Journal of Computer-Based Instruction, 12,
50-53.

16.Pressey, S.L. (1926). A simple apparatus which gives
tests and scores - and teaches. School and Society, 23
(586), 373-376.

17.Schmidt, R.A., Young, D.E., Swinnen, S. and
Shapiro, D.C. (1989). Summary knowledge results for
skill acquisition: Support for the guidance hypothesis.
Journal of Experimental Psychology: Learning,
Memory and Cognition, 15, 352-359.

18. Schofield, J.W. (1995). Computers and classroom
culture. Cambridge, England: Cambridge University
Press.

19.Schooler, L.J. and Anderson, J.R. (1990). The
disruptive potential of immediate feedback. The
Proceedings of the Twelfth Annual Conference of the
Cognitive Science Society, Cambridge, MA.

