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the current ACT-R theory. In this chapter, we will first review the ACT-R architecture and its application

We have begun to use functional magnetic resonance
bmaging (MRI) brain imaging as a way to test and
&xtend the adaptive control of thought-rational, or
" ACTR theory (Anderson & Lebiere, 1998). In this
chapter, 1 will briefly review where we are in these
efforts, describe a new modeling effort that illustrates
the potential of our approach, and then end with some
general remarks about the potential of such data to
guide modeling efforts and the development of a cogni-
tive architecture generally. Brain imaging has grown
hand in hand with the movement to 3 module-based
representation of knowledge in the current ACT.R the-
ory (Anderson et al., 2005). In this chapter, we will first
review the ACT-R architecture and its application to
brain imaging. ACTR is a general system, and it is pos-
sible to take a model developed for one domain and
apply that same model to a second domain. We will
describe an instance of this in the second section of the
chapter. Then, in the third section of the chapter, we
will try to draw some lessons from this work about the
connections between such a modeling framework and
brain imaging,

ACT-R and Brain Imaging

The ACT-R Architecture

According to the ACT-R theory, cognition emerges
through the interaction of a number of independent
modules. Figure 4.1 illustrates the modules relevant to
solving algebraic equations:

1. A visual module that might hold the representa-
tion of an equation such as “3x — 5 = 7.7

2. A problem state module (sometimes called an
imaginal module) that holds a current mental
representation of the problem. For instance, the
student might have converted the original equa-
tion into “3x =12~

3. A control module (sometimes called a goal mod-
ule) that keeps track of one's current intentions
in solving the problem — for instance, the model
described in Anderson (2005) alternated between
unwinding an equation and retrieving arithmetic
facts.
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FGURE 4.1 The interconnections among modules in ACT-R 5.0.

4. A declarative module that retrieves critical infor-
mation from declarative memory such as that
“T+5=127

5. A manual module that programs manual
responses such as the key presses to give the
Tesponse “x =4

Each of these modules is capable of massively paral-
lel computation to achieve its objectives. For instance,
the visual module is processing the entire visual field
and the declarative module searches through large data-
bases. However, each of these modules suffers a serial
bottleneck such that only a small amount of information
can be put into a buffer associated with the module —
a single object is perceived, a single problem state rep-
resented, a single contro] state maintained, a single fact
retrieved, or a single program for hand movement exe-
cuted. Formally, each buffer can only hold what is called
a chunk in ACT-R, which is a structured unit bundling
a small amount of information. ACT-R does not have a
formal concept of a working memory, but the current
state of the buffers constitutes an effective working
memory. Indeed, there is considerable similarity
between these buffers and Baddeley's (1986) working
memory “slave” systems,

Communication among these modules is achieved
via a procedural module (production system in
Figure 4.1). The procedural module can respond to
information in the buffers of other modules and put
information into these buffers. The response tendencies

of the central procedural module are represented in
ACT-R by production rules. For instance, the following
might be a production rule for transforming an equation:

IF the goal is to solve the equation

and the equation is of the form Expression -
number! = number2

and number] + number2 = number3 has been
retrieved,

THEN transform the equation to Expression =

number3

This production responds when the control chunk
encodes the goal to solve an equation (first line), when
the problem state chunk represents an equation of the
appropriate form (second line, for example, 3{x — 2] —
4=5), when a chunk encoding an arithmetic fact has

been retrieved from memory (third line —in this case, -

4+5=9), and appropriately changes the problem
representation chunk (fourth line—in this case to
x =21 =9).

The procedural module is also capable of massive
parallelism in sorting out which of its many competing
rules to fire, but as with the other modules, it has a
serial bottleneck in that it can only fire a single rule at
a time. Since it is responsible for communication among
the other modules, the production systern comprises the

central bottleneck (Pashler, 1994) in the ACT.R theory.
Therefore, cognition can be slowed when there are

#imultaneous demands to process information in dis-
Bnet modules. As already noted, the other modules

Wwmselves also have bottlenecks. All of the bottlenecks

#n in the communication among modules; within mod-
whes things are massively parallel. (Figure 4.4, later in
the chapter, illustrates in some considerable detail
Mow this parallelism and seriality mix.) Documenting
e accuracy of this characterization of human cogni-
#on has been one of the preoccupations of research on
ACTR (e.g., Anderson, Taatgen, & Byme, 2005).
Until recently, the problem state and the contro] state
were merged into a single goal system. There have
been 2 number of developments to improve ACT-R’s
gos! system (Altmann & Trafton, 2002; Anderson &
Douglass, 2001), and the splitting of the goal system
Into a control module and a problem state module is
another development. There were two reasons for
thoosing to separate control state (goal module) and
problem state knowledge (imaginal module). First
(and this was the source of the idea to separate the two
mpects), our imaging data indicated that the parietal
region of the brain reflected changes to problem state
nformation, while the anterior cingulate reflected con-
tol state changes. Later, the chapter will elaborate on
the neural basis for this distinction. Second, the dis-
tinction offered a solution to a number of nagging prob-
fems we had with the existing system that merged the
two types of knowledge. One problem was that our
ol chunks often seemed too large, violating the spirit
of the claim that chunks were supposed to only contain
alittle information. This is because they contained both
problem-state information and control-state informa-
Hon, which both could involve a number of elements.
Also, the control information was getting in the way of
storing useful information about the problem solution
in declarative memory. For instance, arithmetic facts
wich as 3+4 =7 might represent the outcome of a
ecounting process or of an effort to comprehend a sen-
tence. Because the control information would be dif-
ferent for these two sources for the same arithmetic
fact, we effectively were creating parallel memories
storing the same essential information. Now, with con-
trol and problem state separated, the differences
between the counting and comprehension can be rep-
resented in different control chunks, while the com-
mon result would be represented identically in single
problem solution chunk. By factoring control informa-
tion away (in what we are now calling the goal mod-
ule), one can accumulate abstract memories of the
information achieved in the problem state.
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Use of Brain Imaging to Provide
Converging Data

We have associated these modules with specific brain
regions, and fMRI allows us to track these modules
individually and provide converging evidence for
assumptions of the ACT-R theory. We have now com-
pleted a large number of fMRI studies of many aspects
of higherlevel cognition (Anderson, Qin, Sohn,
Stenger, & Carter, 2003; Anderson, Qin, Stenger, &
Carter, 2004; Qin et al., 2003; Sohn, Goode, Stenger,
Carter, & Anderson, 2003; Sohn et al., 2005) and
based on the patterns over these experiments we have
made the following associations between a number of
brain regions and modules in ACT-R. In this chapter,
we will be concerned with five brain regions and their
ACT-R associations:

1. Caudate (procedural): Centered at Talairach
coordinates x = — 15,y =9, z=2. This is a sub-
cortical structure.

2. Prefrontal (retrieval): Centered at x = —40,
y =21, z=21. This includes parts of Brodmann
Areas 45 and 46 around the inferior frontal sulcus.

3. Anterior cingulate (goal): Centered at x= —5,
y =10, z = 38. This includes parts of Brodmann
Areas 24 and 32.

4. Parietal (problem state or imaginal): Centered
atx= —23,y= —064, z= 34. This includes parts
of Brodmann Areas 7, 39, and 40 at the border
of the intraparietal suleus.

5. Motor (manual): Centered at x = ~37, y = - 25,
z=47. This includes parts of Brodmann Areas 2
and 4 at the central sulcus.

We have defined these regions once and for all and
use them over and over again in predicting different
experiments. This has many advantages over the typical
practice in imaging research of using exploratory
analyses to find out what regions are significant in par-
ticular experiments. The exploratory approach has
substantial problems in avoiding false positives
because there are so many experimental tests being
done looking for significance in each brain voxel. To
the extent that the exploratory approach can cope with
this, it winds up setting very conservative criteria and
fails to find many effects that occur in experiments.
This had lead to the impression (e.g., Uttal, 2001) that
results do not replicate over experiments.

Beyond these issues, determining regions by
exploratory means is not suitable for model testing.




52 SYSTEMS FOR MODELING INTEGRATED COGNITIVE SYSTEMS

Being selected to pass a very conservative threshold of
significance, these regions give biased estimates of the
actual effect size, Also the exploratory analyses typically
look for effects that are significant and not whether they
are the same. This can lead to merging brain regions
that actually display two (or more) different effects that
are both significant. For instance, if one region shows
a positive effect of a factor and an adjacent region
shows a negative effect, they will be merged, and the
resulting aggregate region may show no effect.

Predicting the BOLD Response

We have developed a methodology for relating the pro-
file of activity in ACT-R modules to the blood oxygen
level dependent (BOLD) responses from the brain
regions that correspond to these modules. Figure 4.2
illustrates the general idea about how we map from
events in an information-processing model onto the
predictions of the BOLD function. Each time an infor-
mation-processing component is active it will generate a
demand on associated brain regions. In this hypotheti-
cal case, we assume that an ACT-R module is active for
150 ms from 0.5 to 0.65s, for 600ms from 1.5 to 2.1,
and for 300 ms from 2.5 to 2.8s. The bars at the bottom
of the graph indicate when the module is active.

A number of researchers (e.g., Boyton, Engel,
Glover, & Heeger, 1996; Cohen, 1997; Dale & Buck-
ner, 1997) have proposed that the hemodynamic
response to an event varies according to the following
function of time, t, since the event:

hty=t%™", M

where estimates of the exponent have varied between
2 and 10. This is essentially a gamma function that will
reach maximum at g time units after the event Al
illustrated in Figure 4.2, this function is slow to rise,
reflecting the lag in the hemodynamic response o
neural activity. n
We propose that while a module is active it is conb
stantly producing a change that will result in 2 BOLE
response according the above function. The ob
fMRI response is integrated over the time that the
ule is active. Therefore, the observed BOLD responsg

will vary with time as

~ ;.
B(t) =M [d)h ﬁuw dx, @
) i

where M is the magnitude scale for response, 1 is the
latency scale, and d(x) is a “demand function” that

reflects the probability that the module will be in use

at time t. Note because of the scaling factor, the pres
diction is that the BOLD function will reach
mum at roughly t = a X s seconds. -9

As Figure 4.2 illustrates, one can think of the
observed BOLD function in a region as reflecting the

sum of separate BOLD functions for esch period of time

the module is active. Each period of activity is going 8
generate a BOLD function according to a gamma funos

tion as illustrated. The peak of the BOLD functions |

reflects roughly when the module was active but is offset
because of the lag in the hemodynamic response. The
height of the BOLD function reflects the duration of the
event since the integration makes the height of the funes
tion proportional to duration over short intervals.

fMRI Response to Events

FIGURE 4.2 An illustration of how

0123456789 101112131415161718192021

Time (sec.)

three BOLD functions from three
different events result in an overall
BOLD function.

o

Note that this model does not reflect a frequent

. umption in the literature (e.g., Just, Carpenter, &

Warma, 1999) that a stronger BOLD signal reflects a
higher rate of metabolic expenditure. Rather, our
smumption is that it reflects a longer duration of meta-
bolic expenditure. The two assumptions are relatively
Indistinguishable in the BOLD functions they pro-
duce, but the time assumption more naturally maps

... onto an information-processing model that assumes
7 stages taking different durations of activity. Since these

7. processes are going to take longer, they will generate

L higher BOLD functions without making any extra

smumptions about different rates of metabolic expen-

diture. The total area under the curve in Figure 4.2

- will be directly proportional to the period of time that
. the module is active. If a module is active for a total

period of time T, the area under the BOLD function

o« will be MXT'(a + 1)XT, where I is the gamma func-

Hon (in the case of integer 4, note that I'la + 1] =al).

Application of an Existing Model
% a New Data Set

The Anderson (2005) Aigebra Modsl

Anderson (2005) described an ACT-R model of how
children leamed to solve algebra equations in an
experiment reported by Qin, Anderson, Silk, Stenger,
and Carter (2004). That model successfully predicted

8 how children would speed up in their equation solving

over a five-day period. The model used the general
instruction-following approach described in Anderson
et al. (2004) to model how children learned. Thus, it
did not require handcrafting production rules specifi-
cally for the task. Rather the model used the same gen-
eral instruction-following procedures described in
Anderson et al. (2004) for learning of anti-air warfare
coordinator (AAWC) system. That model was just
given a declarative representation of the instructions
that children received rather than a declarative repre-
sentation of the AAWC instructions. The mode] ini-
tially interpreted these declarative instructions, but
with practice, it built its own productions to perform
the task directly. Only two parameters were estimated
in Anderson (2005) to fit the model the model to latency
data. One parameter, for the visual module, concemed
the time to encode a fragment of instruction from the
screen into an intemnal representation. The other para-
meter scaled the amount of time it took to perform
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retrievals in declarative memory as a function of level
of activation. All the remaining parameters were default
parameters of the ACT-R model as described in
Anderson et al. (2004).

Given these time estimates, that mode] predicted
when the various modules of the ACT-R theory would
be active and for how long. Moreover, it predicted how
these module activities would change over the five-day
course of the experiment. Thus, it generated the demand
functions we needed to predict the BOLD responses
in these brain regions and how these BOLD functions
varied with equation complexity and practice. In gen-
eral, these predictions were confirmed.

Aduit Learning of Artificial Algebra

This chapter proposes to go one step further than
Anderson (2005). It proposes to take the model in
Anderson (2005), including the time estimates and make
predictions for another experiment (Qin et al., 2003).
This can be seen as a further test of the underlying
model of instruction and as a further demonstration of
how brain imaging can provide converging data for a
theory. Participants in this experiment were adults per-
forming an artificial algebra task (based on Blessing &
Anderson, 1996) in which they had to solve “equations.”!
To illustrate, suppose the equation to be solved was

@PD45, 3)

where the solution means isolating the P before the
“63.” In this case, the first step is to move the “@4”
over to the right, inverting the “@” operator to a “@”;
the equation now looks like

DPD5D4. )

Then the @ in front of the P is eliminated by convert-
ing @s on the right side into @s so that the “solved”
equation looks Jike:

Pes@5@4, (5)

Participants were asked to perform these transfor-
mations in their heads and then key out the final
answer— this involved pressing the thumb key to indi-
cate that they had solved the problem and then keying
3,5, 3, and 4 in this example (2 was mapped to the
index finger, 3 to middle finger, 4 to ring finger, and 5
to little finger). The problems required 0, 1, or 2 (as in
this example) transformations to solve. The experi-
ment looked at how participants speed up over five
days of practice. Figure 4.3 shows time to hit the first
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FIGURE 4.3 Mean solution times
(and predictions of the ACT-R

model) for the three types of

* equations as a function of delay.
Although the data were not

key (thumb press) in various conditions as a function
of days.” The figure shows a large effect of number of
transformations but also a substantial speed up over
days. 1t also presents the predictions from the ACT-R
model, which will now be described.

The ACT-R Mode!

Table 4.1 gives an English rendition of the instructions
that were presented to the model. The general strategy
of the model was to form an image of the items to the
right of the “e” and then transform that image
according to the information to the left of the “3.” In
addition to the instructions, we provided the model
with the knowledge

TABLE 4.1 English Rendition of Task Instructions
Given to ACT-R

1. To solve an equation, first find the “€3,” then encode the
first pair that follows, then shift attention to the next pair if
there is one, then encode the second pair.

2. If this is a simple equation, output it; otherwise process
the left side.

3. To process the left side, first find the P.

4. 1f “e3” immediately follows, then work on the operator
that precedes the P; otherwise, first encode the pair that
follows, then invert the operator, and then work on the
operator that precedes the P.

$. To process the operator that preceded the P, first retrieve
the transformation associated with that operator, then apply
the transformation, and then output.

6. To output press the thumb, output the first item, output
the next, output the next, and then output the next.

collected, the predicted times are
presented for the practice session of
the experiment (Day 0).

1. that @ and @ were inverses of each other as were
the operators @ and ®.

2. the specific rules for getting rid of the @, @, ®, and
® operators when they occurred in front of a P

These instructions and other information are
encoded as declarative structures and ACT-R has general
interpretative productions for converting these instruc-
tions to behavior. For instance, there is a production
rule that retrieves the next step of an instruction:

IF one has retrieved an instruction for achieving a
goal,

THEN retrieve the first step of that instruction

There are also productions for performing reordering
operations such as

IF one’s goal is to apply a transformation to an
image
and that transformation involves inverting the
order of the second and fourth terms

and the image is of the form “abc d”

THEN change the image to “ad ¢ b”

Using such general instruction-following productions
is laborious and accounts for the slow initial perform-
ance of the task.

Production compilation (see Anderson et al., 2004;
Taatgen & Anderson, 2002) is one reason the model is
speeding up. This is a process by which new production

e

o hr

A

VR

rules are learned that collapse what was originally
done by multiple production rules. In this situation,
the initial instruction-following productions are com-
piled over time to produce productions to embody pro-
cedures that efficiently solve equations. For instance,
the following production rule is acquired:

IF the goal is to transform an image

and the prefix is @

and the image is of the form “ab ¢ d”
THEN change the image to “ad ¢ b”

The model was given the same number of trials of
practice as the participants received over the course of
the experiment. Thus, we can look at changes in the
model's performance on successive days. Figure 4.4a
compares the encoding portion of a typical trial at the
heginning of the Day | and with a typical trial at the
end of the Day 5. In both cases, the model is solving
the two-step equation:

DPD4e>Q5

The figure illustrates when the various modules were
active during the solution of the equation and what
they were doing. Some general features of the activity
in the figure include:

1. Multiple modules can be active simultaneously.
For instance, on Day 5 there is a point where the
visual module detects nothing beyond the @5
(encode null right), while an instruction is being
retrieved, while the goal module notes that it is
in the encoding phase and while an image of the
response “2 5” is being built up.

2. Much of the speed up in processing is driven by
collapsing multiple steps into single steps. A par-
ticularly dramatic instance of this is noted in
Figure 4.4 where five production firings and five
retrievals on Day 1 (between “encode null right”
and “encode equation @PD®”) are collapsed
into one each. Production compilation can com-
press these internal operations without limit.

Figure 4.4b compares the transforming portion of a
typical trial at the beginning of the Day 1 and with a
typical trial at the end of the Day 5. The reduction in
time is even more drammatic here because this portion
of the trial involves the retrieval of inverse and transfor-
mation rules for getting rid of prefixes. These retrieval
times show considerable speed up because of the
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growth in base-level activation in the declarative repre-
sentation of these basic facts. Figure 4.4c shows the out-
put portian of a typical trial, which is identical on Days
1 and 5 since production compilation cannot collapse
productions that would skip over extemal actions.
Note, however, that the times reported in Figure 4.3
correspond to the time of the thumb press, which is the
fiest key press. Nonetheless, the rest of Figure 4.4¢ will
affect the BOLD response that we will see.

Brain imaging Data

Participants were scanned on Days 1 and 5. Parti-
cipants had 18s for each trial. Figure 4.5 shows how
the BOLD signal in different brain regions varies over
the 18-s period beginning 3s before the onset of the
stimulus and continuing for 15 s afterward. Activity was
measured every 1.5s. The first two scans provide an
estimate of baseline before the stimulus comes on.
These figures also display the ACT-R predictions. The
BOLD functions displayed are typical in that there is
some inertia in the rise of the signal after the critical
event and then decay. The BOLD response is delayed
so that it reaches a maximum about 4-5s after the
brain activity. In each part of Figure 4.5 we provide a
representation of the effect of problem complexity
averaging over number of days and a representation of
the effect of practice, averaging over problem com-
plexity. None of the regions showed a significant inter-
action between practice and number of steps or
between practice, number of steps, and scan.

Figure 4.5a shows the activity around the left cen-
tral sulcus in the region that controls the right hand.
The effect of complexity is to delay the BOLD func-
tion (because the first finger press is delayed in the
more complex condition), but there is no effect on the
basic shape of the BOLD response because the same
response sequence is being generated in all cases. The
effect of practice is also just to move the motor BOLD
response forward in time.

Figure 4.5b shows the activity around the left infe-
rior frontal sulcus, which we take as reflecting the
activity of the retrieval module. It shows very little rise
in the zero transformation condition because there are
few retrievals (only of a few instructions) in this condi-
tion. The lack of response in this condition distin-
guishes this region from most others. The magnitude
of the response decreases after five days, reflecting that
the declarative structures have been greatly strength-
ened and the retrievals are much quicker.
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FIGURE 4.4 Module activity during the three phases of a trial: (a) encoding, (b) transforming, and
(c) outputting. In the first two phases, the module activity changes from Day ! to Day 5.

{continued)
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FIGURE 4.4 Continued.

Figure 4.5¢ shows activity in the left anterior cingu-
late, which we take as reflecting control activity, and
Figure 4.5d shows activity around the left intraparietal
sulcus, which we take as reflecting changes to the
problem representation. Both of these regions show
large effects of problem complexity and little effect of
number of days of practice. Unlike the prefrontal
region, they show a large response in the condition of

" zero transformations. There is virtually no effect of
. practice on the anterior cingulate. According to the

ACTR theoty, this is because the model still goes

- through the same control states, only more rapidly on

Day 5. In the case of the parietal region and its associ-
ation with problem representation, there is a consider-
able drop out of intermediate problem representations,
but most of this happens early in the leaming and
therefore not much further Jearning occurs from Day
} to Day 5.

Figure 4.5¢ shaws the activity in the caudate,

. which is taken to reflect production firing. The signal
- W rather weak, here but there appears to be litile effect

of complexity and a substantial effect of practice. The
effect of complexity is predicted to be weak by the
model because most of the time associated with trans-
formation is taken up in long retrievals and not many
sdditional productions are required. The model

" underpredicts the effect of learning for much the same

reason it predicts a weak effect of practice in the pari-

etal. The effects of practice on number of productions

i

i

i

i

|

tends to happen early in this experiment and there is
not that much reduction after Day 1.

Comments on Model Fitting

The model that yields the fits displayed in these figures
was run without estimating any time parameters. This
makes the fit to the latency data in Figure 4.3 truly
parameter free, and it is remarkable how well that data
does fit, given that we estimated parameters with chil-
dren and now are fitting them to adults. At some level,
this indicates that the children were finding leaming
real algebra as much of a novel experience as these
adults were finding learning the artificial algebra and
were taking about as long to do the task.

In the case of fitting the BOLD functions, however,
we had to allow ourselves to estimate some parameters
that describe the underlying BOLD response. To
review, there were three parameters—an exponent a
that governs the shape of the BOLD response; a
timescale parameter s that, along with a, determines
the time to peak (aXs=peak); and a magnitude
parameter m that determines just how much increase
there is in a region. Table 4.2 summarizes the values of
these parameters for this experiment with adults and
artificial algebra and the previous experiment with
children and real algebra.

We used the same value of a for both experiments
and all regions. This value is 3 and it seems to give us
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FIGURE 4.5 Use of module behavior to predict BOLD response in various
regions: (a) manual module predicts motor region; (b) retrieval module
predicts prefrontal region; (¢) control/goal module predicts anterior
cingulate region; (d) imaginal/problem state module predicts parietal region;
(e) procedural module predicts caudate region.

@ pretty good fit over a wide range of situations. The
. value of the latency scale parameter was estimated sep-
-+ wnately for each region in both experiments. 1t shows

- only modest varigbility amd has a value of approxi-
" mately 1.5s, which would be consistent with the gen-
** eral observation that it is about 4.5s for the BOLD
* tesponse to peak. There is some variability in the

BOLD response across subjects and regions (e.g,
Huettel & MecCarthy, 2000; Kastrup, Kritger, Glover,
Neumann-Haefelin, & Moseley, 1999).

The situation with the magnitude parameter, how-
ever, does reveal some discrepancies that go beyond

naturally expected variation. In particular, our experi-
ment has estimated a motor magnitude that is less than
40% of the magnitude estimated for the children and
a parietal magnitude that is almost four imes as large.
1t is possible that these reflect differences in popula-
tion, perhaps related to age, but such an explanation
does not seem very plausible.

In the case of the parietal region, we think that
the difference in magnitude may be related to the
difficulty in manipulating the expressions. While this is
the first time the children were exposed to equations,
these expressions had a lot of similarity to other sorts of
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‘ C
TABLE 4.2 Parameters Estimated and Fits to the Bold Response B(t) ﬂaﬁmu AR

Motor/ Prefrontal/ Farietal/ Cingulate/ Caudate/
Manual Retrieval Imaginal Goal Procedural
Children 0.531 0.073 0.231 0.258 0.207
Magn(m)
Adults 0.197 0.078 0.906 0.321 0.120
Exponent(a) 3 3 3 3 3
Children 1.241 1.545 1.645 1.590 1.230
Scale{s)
Adults 1.360 1.299 1.825 1.269 1.153

arithmetic expressions children had seen before in their
lives. In contrast, the expressions in the artificial algebra
that the adults saw were quite unlike anything experi-
enced before. One might have expected that this would
be reflected in different times to parse them but we used
the same estimates as with the children—0.1s for each
box in the imaginal columns of Figure 4.4. If we
increased this estimate, however, we would have had to
decrease some other time estimate to fit the latency data.

In the case of the motor region, we think that the
difference in magnitude may be related to the different
number of key presses. The adults in this experiment
had to press five keys to indicate their answer, while
the children had only to press one key. There is some
indication (e.g., Glover, 1999) that the BOLD response
may be subadditive.

Both discrepancies reflect on fundamental assump-
tions underlying our modeling effort. In the case of the
parietal region, it may be that the same region working
for the same time may produce a different magnitude
tesponse, depending on how “difficult” the task is. In
the case of the motor region, it may be the case that
our additivity assumption is flawed.

While acknowledging that there might be some
flies in the ointment with respect to parameter esti-
mates, it is still worth asking how well the model does
fit the data. We have presented in these figures meas-
ures of correlation between data and theory, While
these are useful qualitative indicants, they really do not
tell us whether the deviations from data are “signifi-
cant.” Addressing this question is both a difficult and
questionable enterprise, but | thought it would be use-
ful to report our approach. We obtained from an analy-
sis of variance how much the data varied from subject

to subject. This is measured as the subject-by-condition
interaction term, where the conditions are the 71
observations obtained by crossing difficulty (3 values)
with days (2 values) with scans (12 values). This gives
us an error of estimate of the mean numbers going infe

the figures as data (although in these figures we have’

averaged over one of the factors). We divided the sum

of the squared deviations by this error term -1.

obtained a chi-square quantity:
A -2 :

TE-X) @

St

which has degrees of freedom equal to the number of
observations being summed (72) minus the number of

parameters estimated (2—latency scale and magni

tude). With 70 degrees of freedom, this statistic is sig-
nificant if greater than 90.53. The chi-square values for
four of the five regions are not significant (motor,
70.42; prefrontal, 46.91; cingulate, 48.25; parictal,
88.86), but the estimnate for the caudate is with a chi-
square measure of 99.56. It turns out that a major dis
crepancy for the caudate is that the BOLD function
rises too fast. If we allow an exponent of 5 (and so
change the shape of the BOLD response), we get a
chisquare deviation of only 79.23 for the caudate.

It is wise not to make too much of these chi-square
tests as we are just failing to reject the null hypothesis:
There may be resl discrepancies in the model’s fit that
are hidden by noise in the data. The chi-square test i
just one other tool available to a modeler and somes
times (as in the case of the caudate) it can alert one to
a discrepancy between theory and data.

E.n of fMRI brain imaging has both influenced
T the development of the current ACTR theory and
~ rovided support for the state of that theory. For
Istance, it was one of the reasons for the separation of
the previous goal structure into a structure that just
held control information (currently called the goal)
#nd a structure that contained information about the

_problem state (now called an imaginal module).

Bevides giving us a basis for testing a model fit, the data
provided some converging evidence for major qualita-
Mve claims of the model —such as that there was litde
fetrieval in the zero transformation condition and that
Where was little effect of learning in this experiment on
pontro! information.

~ While things are encouraging at a general level, our
discussion of the details of the model fitting suggested
that there are some things that remain to be worked out.

‘We saw uncertainity about a key assumption that mag-
. witude of the BOLD response only reflects time a mod-
e is active. Differences in the magnitude of response

In the two experiments in the parietal region suggested

* that there be different magnitude of effort in a fixed

Bime. Again differences in magnitude of response in the
motor region suggested that BOLD effects might be
ubadditive. On another front, problems in fiting the

* twudate raised the question of whether all the regions

sre best fit by the same shape parameter. While use of

- beain imaging data is a promising tool, it is apparent we
‘ire still working out how to use that tool.

- We should note that there is no reason such data

~fd methodology should be limited to testing the
" ACTR theory. Many other information-processing
 theories could be tested. The basic idea is that the
*. BOLD response reflects the duration for which various
* eognitive modules are active. The typical additive-factors
" Information-processing methodology has studied how
" manipulations of various cognitive components affect
. nsingle aggregate behavioral measure like total time.
" ffwe can assign these different components to different
- brain regions, we have essentially a separate dependent
" measure to track each component. Therefore, this

ethodology promises to offer strong guidance in the

" development of any information-processing theory.
*Finally, we want to comment on the surprising match
- of IMRI methodology to the study of complex tasks. A
. problem with fMRI is its poor temporal resolution.
~ However, as is particularly apparent in the behavior of

our manual module, the typical effect size in a complex
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mental task is such that one can still make temporal
discriminations in fMRI data. One might have thought
the outcome of such a complex task would be purely
uninterpretable. However, with the guidance of a
strong information-processing model and well-trained
participants one not only can interpret but also predict
the BOLD response in various regions of the brain.
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Notes

1. The reason for using an artificial algebra is that
these participants already knew high school algebra, and
we wanted to observe leaming.

2. Note that there is a Day 0 when subjects practiced
the different aspects of the task but were not metered in 2
regular task set; see Qin et al. (2003) for details.
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The Motivational and Metacognitive

Control in CLARION

Ron Sun

This chapter presents an overview of a relatively recent cognitive architecture and its internal control
structures, that is, its motivational and metacognitive mechanisms. The chapter starts with a look at some
general ideas underlying this cognitive architecture and the relevance of these ideas to cognitive modeling
of agents. It then presents a sketch of some details of the architecture and their uses in cognitive modeling

of specific tasks.

This chapter presents an overview of a relatively recent
pognitive architecture and its internal control structures
fle., motivational and metacognitive mechanisms) in
particular. We will start with a look at some general
Meas underlying this cognitive architecture and the rel-
#vance of these ideas to cognitive modeling.

. In the attemnpt to tackle a host of issues arising from
somputational cognitive modeling that are not ade-
qately addressed by many other existent cognitive
rchitectures, CLARION, a modularly structured cog-
ltive architecture, has been developed (Sun, 2002;
$un, Merrill, & Peterson, 2001). Overall, CLARION
gonsists of a number of functional subsystems (e.g., the
getion-centered subsystem, the metacognitive subsys-
#em, and the motivational subsystem). It also has a
#hual representational structure —implicit and explicit
Rpresentations in two separate components in each
mubsystern. Thus far, CLARION has been successful in
fapturing a variety of cognitive processes in a variety of
sk domnains based on this division of modules (Sun,
2002; Sun, Slusarz, & Terry, 2005).

A key assumption of CLARION, which has been
argued for amply before (see Sun, 2002; Sun et al,,
2001; Sun et al., 2005), is the dichotomy of implicit
and explicit cognition. In general, implicit processes
are Jess accessible and more “holistic,” while explicit
processes are more accessible and crisper (Reber,
1989; Sun, 2002). This dichotomy is closely related to
some other wellknown dichotomies in cognitive sci-
ence: the dichotomy of symbolic versus subsymbolic
processing, the dichotomy of conceptual versus sub-
conceptual processing, and so on (Sun, 1954). The
dichotomy can be justified psychologically, by the
voluminous empirical studies of implicit and explicit
learning, implicit and explicit memory, implicit and
explicit perception, and so on (Cleeremans, Des-
trebecqz, & Boyer, 1998; Reber 1989; Seger, 1994;
Sun, 2002). In social psychology, there are similar
dual-process models, for describing socially relevant
cognitive processes (Chaiken & Trope, 1999). Denoting
more or less the same distinction, these dichotornies
serve as justifications for the more general notions of




