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The authors propose a reinforcement-learning mechanism as a model for recurrent choice and extend it
to account for skill learning. The model was inspired by recent research in neurophysiological studies of
the basal ganglia and provides an integrated explanation of recurrent choice behavior and skill learning.
The behavior includes effects of differential probabilities, magnitudes, variabilities, and delay of
reinforcement. The model can also produce the violation of independence, preference reversals, and the
goal gradient of reinforcement in maze learning. An experiment was conducted to study learning of
action sequences in a multistep task. The fit of the model to the data demonstrated its ability to account
for complex skill learning. The advantages of incorporating the mechanism into a larger cognitive
architecture are discussed.
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One of the central issues in psychology concerns how people
make choices from sets of alternatives. In some cases making
choices involves a great deal of deliberation, even to the point of
seeking professional advice and appointing subcommittees to as-
sess different aspects of a choice. However, most of people’s
everyday behavior involves selections of particular actions out of
all those that are physically possible, as they decide what to say
next, whether to click on an option in searching the World Wide
Web (Fu & Pirolli, in press; Pirolli & Fu, 2003), or whether to
switch the channel on a TV set. The “selection” of actions does not
imply a conscious or deliberative process. It simply refers to the
fact that if the individual follows one particular course of action,
there are other courses of action that he or she thereby forgoes.
Such choices are not unique to humans, either—many creatures
constantly make such choices in foraging in the wild or choosing
among options in the laboratory. Our concern is with understand-
ing these quick selections, typically made in less than one second,
that determine the moment-to-moment course of people’s lives.
The ability to smoothly and accurately make such decisions is a
major part of performing complex skills. Our interest arises out of
the fact that the mechanism underlying such decisions plays a
major role in cognitive architectures, and we cast our ideas in a
production-system framework (Anderson et al., 2004; Meyer &
Kieras, 1997a, 1997b; Newell, 1990). Part of what is new is that
we incorporate recent ideas from research on reinforcement learn-

ing (e.g., Barron & Erev, 2003; Erev, Bereby-Meyer, & Roth,
1999; Gray, Sims, Fu, & Schoelles, in press; Holroyd & Coles,
2002; Houk, Adams, & Barto, 1995, Sutton & Barto, 1981), which
is concerned with just these types of decisions.

At the outset, we would like to stress that there is a type of
decision making to which our theory is not applicable. This is
decision making that is accompanied by a time-consuming process
characterized by “indecisiveness, vacillation, inconsistency,
lengthy deliberation, and distress” (Busemeyer & Townsend,
1993, p. 432). Rather, we are concerned with the kind of quick,
nondeliberative decision making that builds up through repeated
exposures to simple situations. Although our theory is not appli-
cable to the overall time-consuming process involved in the pur-
chase of a house, it might describe little components of the
purchase of a house, such as one’s decision to smile when talking
to a realtor or whether one looks at the dining room first or the
living room. This is not to deny the importance of the large-scale,
deliberative kind of decision making or to deny that there are some
outcomes in common at the two timescales. However, this is not
the concern of the current study; rather, our concern is with the
outcome of a nondeliberative, statistical learning process over
many exposures to the same or similar small-scale decisions. We
discuss how this kind of learning is central to behavior from simple
recurrent choice to complex skill learning shortly.

There have been numerous studies on this kind of nondeliberate
choice under uncertainty in the last 50 years. Studies have been
conducted on humans, pigeons, rats, and other creatures to under-
stand how repeated rewards and punishments determine choice
behavior in various situations (see Myers, 1976; Vulkan, 2000; and
Williams, 1988, for reviews). In a typical experimental setting, an
organism is asked to give repetitive responses such as button
pressing or key pecking. Responses are intermittently rewarded or
penalized according to a predefined probability. The recurrent
choice behavior among the alternatives is found to be sensitive to
the probabilities, the amount, and the variability of reinforcement
(reward or penalty) as well as other schedule parameters such as
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the time delay before reinforcement is given. One of the chief
principles characterizing the allocation of choices has been the
matching law (Herrnstein, 1961) and the related but different
probability matching. Whereas probability matching refers to the
general tendency to choose an alternative a proportion of the time
equal to its probability of being correct, the matching law is more
specific in terms of the mathematical relation between the propor-
tion of choices and the proportion of the reinforcement. Specifi-
cally, the matching law is characterized as asserting that under
steady-state conditions, the proportion of choices of an alternative
is equal to the proportion of the total reinforcement allocated to
that alternative.

Matching is often referred to as a molar measure, in the sense
that it is largely independent of the moment-to-moment behavior
of the organism and is often reached as a stable end state under
particular conditions of reinforcement. The matching law says
nothing about the individual processes constituting the molar mea-
sures. Recently, a good deal of effort has gone into developing
molecular behavioral principles of the underlying process or pro-
cesses to provide a moment-to-moment explanation for recurrent
choice. On the one hand, psychologists have conducted experi-
ments to identify a wide range of essential properties of recurrent
choice in animals and humans, and specific models have been
constructed to provide explanations of these properties. On the
other hand, recent advances of neurophysiological studies of the
basal ganglia have revealed important features of the reinforce-
ment circuitry responsible for reward-related learning behavior.
One of the purposes of this article is to build on previous work in
these domains by constructing a unified, molecular mechanism
that produces the diverse set of recurrent choice behavior. The
other purpose of this article is to extend this recurrent choice
mechanism to explain the acquisition of complex action sequences
in skill learning.

Reinforcement learning is a process by which organisms learn
from their interactions with the environment to achieve a goal or to
maximize some form of reinforcement. The main characteristic of
reinforcement learning is the use of a scalar reinforcement signal1

that provides information about the magnitude of the “goodness”
of an action in a particular context. Recently, it has been found that
a reinforcement signal is provided by the firing patterns of dopa-
minergic neurons in response to sensory stimuli and the delivery of
reward. Although much research has investigated reinforcement-
learning mechanisms in neuroscience and machine learning, to our
knowledge, no attempt has been made to test the capability of the
mechanism to explain complex behavioral data. The primary goal
of this article is to extend the scope of this neurally inspired
reinforcement-learning mechanism to explain a breadth of recur-
rent choice and skill-learning phenomena. To achieve this goal, we
identified a representative set of behavioral data that highlight the
major phenomena in the literature. We then tested our version of
the reinforcement-learning mechanism against these selected data
sets. We believe that our results will help to bridge the gap
between neurophysiological and psychological research on recur-
rent choice behavior. By putting the constraints from various areas
together, we hope to produce an integrated theory that explains
both recurrent choice and skill-learning behavior that can be im-
plemented in a cognitive architecture such as ACT–R (Adaptive
Control of Thought—Rational; Anderson & Lebiere, 1998).

One of the major strengths of the current model is its ability to
learn in multistep recurrent choice situations, in which reinforce-

ment is received after a sequence of choices have been made. From
our review of the literature, we found that previous research on
recurrent choice has almost exclusively used single-step choice
tasks (one exception is the concurrent-chain schedule; e.g., Mazur,
2002) in which reinforcement is received after a choice is made in
a single context. Because reinforcement is delayed in multistep
choice tasks, a major difficulty is for the organism to determine the
critical choices, among the sequence of choices made, that are
responsible for the delayed reinforcement. Indeed, this problem,
often called the credit-assignment problem, is central to the acqui-
sition of complex action sequences in skill learning, in which one
must make a sequence of action selections before feedback is
received. Although numerous attempts have been made to tackle
this problem in the machine learning literature, few attempts have
been made to directly study how humans or animals learn to assign
credit or blame to different actions. We therefore designed a
general skill-learning task that studied how human subjects learn
to acquire complex action sequences with delayed feedback. The
results allowed us to test how well the reinforcement-learning
mechanism can scale up to account for skill learning. To our
knowledge, no existing psychological models have attempted to
predict such sequential choice data.

In the animal learning literature, maze learning is a good exam-
ple of a multistep choice problem. Maze learning has a long history
in experimental psychology, and it has provided some of the
strongest evidence for animals’ ability to adapt to the reward
structures of complex environments. A number of studies have
shown that rats are skillful at learning to navigate to the locations
of food and other objects in complex mazes (e.g., O’Keefe &
Nadel, 1978; Reid & Staddon, 1998; Spence, 1932; Tolman &
Honzik, 1930). Although part of the learning depends on the
development of “cognitive maps” (O’Keefe & Nadel, 1978), there
is also evidence that rats learn to associate distinct cues in the
environment to specific turns in the maze (Hull, 1934). This
essentially involves the ability to apply the appropriate actions at
different points in time. Part of the knowledge seems to result from
the ability to associate cues in the environment to actions that will
lead to some form of delayed reinforcement (Killeen, 1994;
Machado, 1997; Reid & Staddon, 1998), an ability that is funda-
mental to the learning of most complex skills (see, e.g., Lewis &
Anderson, 1985). A major contribution of this endeavor is to show
that the reinforcement-learning mechanism that accounts for learn-
ing in simple recurrent choice can be extended to account for
learning in complex skills.

This article has two major sections. In the first section, we
develop the basis for our reinforcement-learning mechanism. We
start with a brief review of the various properties of the
reinforcement-processing circuitry in the cortical–basal–
ganglionic loop, especially the relation between the dopaminergic
signals in the basal ganglia and the temporal-difference error
signals in reinforcement learning. This has served as the basis for
a number of recent proposals (see, e.g., Holroyd & Coles, 2002;
Yeung, Botvinick, & Cohen, 2004). Then, we develop the prop-
erties of our learning mechanisms on the basis of the ideas from
this circuitry, from the machine learning literature, and from the

1 A scalar signal has a single value and does not inform whether it is
“good” or “bad”; that is, it contains the magnitude but not the valence
information.
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experimental psychology literature. Our proposal will be some-
what different from others in order for it to work naturally in a
production-system framework.

The second section consists of various tests of our proposed
mechanisms. First we test them against a diverse set of published
data. Research on recurrent choice behavior has been studied for
many years in a variety of procedures. To summarize, these
procedures are designed to study the effects of one or more of the
following four variables: the probabilities of receiving a reward,
the magnitudes of the rewards, the variabilities of the rewards, and
the delay of the rewards. We selected data sets that are represen-
tative in illustrating the effects of one or more of the above four
variables. We were particularly interested in data that had been
modeled by others and those that show not only the stable end
states of choice allocations but also the learning trajectory that
leads to these end states. These data sets allowed us to test whether
the model could exhibit the main effects of each factor, as well as
any interactions among them. We provide a detailed comparison
between our model and the existing models in the General Dis-
cussion section.

Reinforcement Learning

The Basal Ganglia

The production system in ACT–R (Anderson & Lebiere, 1998)
has been associated with the basal ganglia (Anderson, 2005;
Anderson et al., 2004) on the basis of the circuitry of the basal
ganglia and brain imaging data. Other researchers have identified
the basal ganglia with reward-related learning. This hypothesis has
been supported by two important architectural features: (a) the
specialization of spiny neurons in the striatum for pattern recog-
nition computations (Houk, 1995; Houk & Wise, 1995) and (b) the
existence of relatively “private” feedback loops of connectivity
from diverse cortical regions that converge onto those striatal
spiny cells, via the pallidum and thalamus, and lead back to the
frontal cortex (e.g., Alexander, Crutcher, & Delong, 1990; Amos,
2000; Kelly & Strick, 2004). The cortical–basal–ganglionic archi-
tecture creates a context-sensitive information-processing system
that allows the striatum to instruct cortical areas as to which
sensory inputs or patterns of motor outputs are behaviorally sig-
nificant (see Figure 1). Unlike neurons that learn through a

Hebbian-like mechanism, spiny neurons are found to receive spe-
cialized inputs that appear to contain training signals from dopa-
mine (DA) neurons in the ventral tegmental and substantia nigra
region (Schultz, Dayan, & Montague, 1997; Schultz et al., 1995).
The availability of the training signals allows much more efficient
learning, as dynamic information can be incrementally obtained
from the environment.

Research has also found that when presented with reinforce-
ment, the striatum appears to be capable of ordering its response in
accordance with the valence (reward or punishment) and magni-
tude of the reinforcement (Breiter, Aharon, Kahneman, Dale, &
Shizgal, 2001; Delgado, Locke, Stenger, & Fiez, 2003; Yeung &
Sanfey, 2004). For example, using a gambling paradigm, Delgado
et al. (2003) found that the striatum differentiated between the
valence (a “win” or “loss” event) for both large and small magni-
tudes of reward or punishment. In addition, a parametric ordering
according to magnitude of reinforcement was observed in the left
caudate nucleus: Activity of the striatum was the highest with large
rewards, followed by small rewards, and the lowest with large
penalties. Similarly, Yeung and Sanfey (2004), by measuring the
event-related brain potential during a gambling task, found two
distinct signals that were sensitive to the reward magnitude and the
valence respectively, suggesting that reward magnitudes and va-
lence were evaluated separately in the brain. These results seem to
suggest that valence and magnitude of reinforcement may have
differential effects on choice allocations.

Reinforcement information is believed to be carried by dopa-
minergic signals to the striatum. The role of the dopaminergic
signals in the learning process was once widely believed to be
signaling the occurrence of reward-related activities experienced
by the organism. However, recent studies on the role of dopami-
nergic signals show that they do not simply report the occurrence
of reinforcement. For example, Ljungberg, Apicella, and Schultz
(1992) and Mirenowicz and Schultz (1994) showed that the acti-
vation of DA neurons depends entirely on the difference between
the predicted and actual rewards. Once an unpredicted reward is
perceived, response in DA neurons is transferred to the reward-
predicting contextual patterns recognized by the striatum. In-
versely, when a fully predicted reward fails to occur, DA neurons
are depressed in their activity at exactly the time when the reward
would have occurred (Pagnoni, Zink, Montague, & Berns, 2002;
Schultz, Apicella, & Ljungberg, 1993). It therefore appears that
outputs from DA neurons code for a deviation or error between the
actual reward received and predictions or expectations of the
reward. A simplified view2 is that DA neurons seem to be feature
detectors of the “goodness” of environmental events relative to the
learned expectations about those events—that is, a positive signal
is emitted when the reward is better than expected, no signal when
the reward equals the expectation, and a negative signal when the
reward is worse than expected. The output of the DA neurons is
therefore often conceived of as an error signal fine-tuning the
predictions of future reinforcement.

A number of researchers (Fu & Anderson, 2004; Holroyd &
Coles, 2002; Houk et al., 1995; O’Reilly, 2003; Schultz et al.,

2 The time course of the DA signals is more complicated (see Fiorillo,
Tobler, & Schultz, 2003, 2005; Niv, Duff, & Dayan, 2005). Because our
level of analysis is at the production level (i.e., approximately 50 ms), the
complication is obviously outside the scope of this article.

Figure 1. A simplified schematic diagram of the cortical–basal–
ganglionic feedback loop. SNc � Substantia Nigra pars compacta.
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1995, 1997) have associated the role of dopaminergic signals with
the error signal in an algorithm called the temporal difference (TD)
algorithm (Sutton & Barto, 1998). Sutton and Barto (1981) showed
that although the TD algorithm has its roots in artificial intelli-
gence, it can be easily related to animal learning theory. In fact,
mathematically, it can be considered a generalization of the
Rescorla–Wagner learning rule (Rescorla & Wagner, 1972) to the
continuous time domain. Our learning mechanism is basically an
elaboration of the TD algorithm that (a) makes it more suitable for
modeling learning data and (b) incorporates it into a production-
system framework.3 In what follows we develop our application of
the TD algorithm step by step.

Simple Integrator Model

The basic TD algorithm belongs to a class of learning models
called simple integrator models (see, e.g., Bush & Mosteller,
1955). The simple integrator model is a popular model that has its
form in discrete time as the following, also known as the difference
learning equation:

Vi�n� � Vi�n � 1� � a�Ri�n� � Vi�n � 1��,

in which Vi(n) represents the value or strength of some item i (e.g.,
a paired associate, stimulus–response bond, or production) after its
nth occurrence and Ri(n) represents the actual reinforcement (ei-
ther a reward or a penalty) received on the nth occurrence. The
parameter a (0 � a � 1) controls the rate of learning. One way to
look at the model is that the prediction of the reinforcement, which
usually reflects the strength of preference for a particular response,
is updated according to the discrepancy between the actual rein-
forcement received and the last prediction of the reinforcement,
that is, Ri(n) � Vi(n � 1). This discrepancy can be considered as
an error signal, which drives the learning process that aims at
minimizing the error signal; when Vi(n � 1) � Ri(n), the error is
zero, and learning will stop. One appealing characteristic of this
learning process is that the feedback takes the form of a scalar
value without the valence information of “good” or “bad.” As we
will show later, this characteristic allows the model to learn from
a continuous range of outcomes without the requirement of a
“teaching signal” that informs whether the actions executed are
good or not.

To understand the dynamics of the learning mechanism, con-
sider the simple situation where a constant reward R is received in
every time step. After t time steps, the expected reward can be
shown to be Vi(n) � R � (1 � a)t[R � V(0)], where V(0) is the
initial value of V. The integrator model therefore approaches the
actual reinforcement value R with an exponential learning curve.
The model, however, is quite limited as it depends only on the
previous expectation and the current reinforcement. In cases where
a sequence of actions is made before reinforcement is received, the
effects of reinforcement need to be distributed across the sequence
of actions. To solve this problem, we need a more general
algorithm.

The TD Algorithm

The TD algorithm uses the same update equation as that in the
simple integrator model. However, the definition of Ri(n) is elab-
orated to include both the immediate reward, ri(n), and the value of
the next item i � 1, Vi � 1(n � 1):

Ri�n� � ri�n� � g�ti�Vi�1�n � 1�.

Note that this equation (the discounted reward equation) uses n �
1 to denote the value of the next item before it is updated. In this
equation ti is the time lag between item i and item I � 1; g is called
the discount function that decreases monotonically with ti. The
farther away the future reinforcement is, the larger the discount
will be and the less impact the value of the next item will have on
the value of the current item. The expanded error term, Ri(n) �
Vi(n � 1) � ri(n) � g(ti)Vi � 1(n � 1) � Vi(n � 1), is called the
temporal difference error.

One question concerns what the form of g should be. It can be
shown that the sufficient condition for R to be bounded is that g is
a monotonically decreasing function of ti. In the original TD
algorithm (Sutton & Barto, 1998), the exponential function is used
as the discount function. Although the exponential function has
nice computational properties, researchers have shown that it is
often incapable of explaining results from empirical studies of
delayed reinforcement (Ainslie & Herrnstein, 1981; Doya, Same-
jima, Katagiri, & Kawato, 2002; Mazur, 1984, 1985, 2001; Tade-
palli & Ok, 1998). For example, Ainslie and Herrnstein (1981)
compared the preference for a larger, later reward with a smaller,
sooner reward and studied how this preference changed as a
function of the delay to both rewards. They found that when the
delay was small, subjects preferred the smaller, sooner reward, but
as the delay increased, their preferences reversed in favor of the
larger, later reward. It was found that the exponential function
cannot predict the preference reversal. On the other hand, the
hyperbolic function [g(t) � 1/(1 � kt)] predicts the preference
reversal. Further support for the hyperbolic function was provided
by Mazur (1984, 1985, 2001) on animal choice behavior and by
Loewenstein and Prelec (1991) on human choice behavior. These
studies have shown that the hyperbolic function provides good
descriptions of choice behavior over extended periods of time. Our
goal is to show how the discount function can be useful when
incorporated in a more general learning mechanism that is capable
of predicting local response patterns in a wide range of choice
behavior.4

We can see that this learning rule updates prediction of future
reinforcement by taking into account both the future reinforcement
value and the time lag before the reinforcement is received. In

3 However, it is not specific to our ACT–R theory, nor indeed has it yet
been implemented in the ACT–R theory.

4 It is worth noting that even if we make the discounting between
successive items correspond to the hyperbolic function, the discounting
across items may not be hyperbolic and thus may not predict preference
reversal and the delay–amount tradeoffs. See Rachlin (2000, pp. 111–115)
for partial support of this prediction. In general, if m items are repeatedly
experienced and they are spaced at equal intervals t, then asymptotically,

V1 � �
k�1

m

g�t�k�1r�k�,

where V1 is the value of the first production and r(k) is the reward
received at the kth production. In the special case where no reward is
received until after the m items are presented, then V1 � g(t)m � 1r(m) �
[1/(1 � kt)]m�1r(m). In this special case, the convergence properties
associated with the standard exponential discounting will still be true with
our hyperbolic discounting.
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general, the reinforcement will have less impact on items that are
farther away from it. This makes predictions about the order in
which a sequence of choices will be learned. The choice close to
the reinforcement will acquire value first, and then its value will
propagate back to early choices. The idea of this kind of backward
learning goes back at least to the Hullian notion of goal gradient
(Hull, 1932). Hull stated that the goal event, often the reward,
creates a “force field” that establishes a temporal gradient repre-
senting the distance to the goal. For example, in maze-learning
experiments, the number of errors made by rats decreased when
they were closer to the reward (e.g., Tolman & Honzik, 1930).
Similarly, the theory of reinforcement of Killeen (1994) states that
the effect of reinforcement has a “memory window,” such that the
reinforcement has the strongest influence on the response closest
to the reinforcement and the influence on responses farther away
from the reinforcement decays exponentially with time. A major
contribution of our model is to propose a mechanistic account of
how this kind of “backward spread of reinforcement” may influ-
ence recurrent choice behavior and, subsequently, complex skill-
learning behavior.

Implementing a Reinforcement-Learning Mechanism in a
Production-System Framework

Since their introduction by Newell (1973), production systems
have had a successful history in psychology as theories of cogni-
tion (Anderson et al., 2004; Anderson & Lebiere, 1998; Klahr,
Langley, & Neches, 1987). A production is basically a condition–
action pair, with the condition side of a production rule specifying
the state of the model (either internal cognitive state or external
world state) and the action side specifying the action that is
applicable at that particular state. Take, for example, the following
two productions:

If the goal is to choose between Button 1 and Button 2, then choose
Button 1.

If the goal is to choose between Button 1 and Button 2, then choose
Button 2.

The “if” sides of the productions specify the state in which the
model must choose between Button 1 and Button 2, and the “then”
sides of the productions specify the action of choosing either one
of the buttons. In ACT–R, each production has a utility value,
which influences the likelihood of executing the production when
it matches the current state of the model. The execution of a
production will change the state of the model or the external world,
which will lead to the next set of applicable productions. The next
production is then selected and executed, and so on. Production
systems have been applied to explain a broad range of cognitive
phenomena, especially those that emerge from combinatorially
complex tasks, such as studies of problem solving or human–
computer interaction. As one can easily imagine, the behavior of a
model depends critically on the process of selecting the next
productions. In this section, we show how we implement the
reinforcement-learning mechanism so that the model learns how to
select productions to maximize its long-term reward. In subsequent
sections we will show how we can use the same mechanism to
account for behavior that spans from simple recurrent choice to
complex skill learning.

A number of production systems have incorporated
reinforcement-like learning. More or less standard reinforcement
learning has been used for operator selection in the Soar architec-
ture (Nason & Laird, 2004). ACT–R (Anderson et al., 2004) has a
reinforcement-like learning mechanism for selecting among pro-
ductions. However, none of the prior theories have the system we
propose here, nor have these systems addressed the range of data
of concern here (although Lovett, 1998, did address one of these
phenomena within the ACT–R framework). We assume a general
framework like that in ACT–R, where the reinforcement-learning
mechanism applies to production rules and enables the selection
among competing rules. The focus on learning the value of rules is
part of a tradition in psychology that extends from stimulus–
response (S-R) learning (and production rules can be seen as the
modern embodiment of S-R bonds) to connectionist learning
(where synapses are the equivalent of S-R bonds). Although many
reinforcement-learning algorithms try to learn the value of states,
our proposal is similar to the learning of state-operator transitions
in the Q-learning algorithm (Watkins, 1989). In Q-learning, an
agent tries to learn the values of actions in particular states—that
is, it learns the value of state–action pairs. The learning of the
values of productions is also consistent with the notion that rein-
forcement affects the environment–behavior relation, not just a
response (Skinner, 1938).

As in the above example, in many choice situations of interest
more than one production can be applied. Therefore, besides
calculating the values of each production, we also need to define
a policy to select among the productions. One of the most common
policies in reinforcement learning is called the “soft-max” function
(see, e.g., Sutton & Barto, 1981), which, coincidentally, is also a
part of the ACT–R theory.5 We adopted the ACT–R formulation of
this soft-max function, in which the production with the highest
value is selected, but these values are noisy. The noise is added
from a normal-like logistic distribution. Thus, the production that
will be selected can randomly vary from trial to trial. There is an
approximate analytic equation (for details, see Anderson & Leb-
iere, 1998, chap. 3, Appendix A) that gives the probabilities for
selecting any production in a conflict set of competing rules. If Vi

is the evaluation of alternative i, the probability of choosing that ith
production among n applicable productions with evaluations Vj

will be

exp�Vi /t�

�
j � 1

n

exp�Vj /t�

,

where the summation is over the n alternatives. The parameter t in
the above distribution is related to the standard deviation, �, of the
noise by the formula t � �6�/�. This equation (the conflict-
resolution equation) is the same as the Boltzmann equation used in
Boltzmann machines (Ackley, Hinton, & Sejnowsky, 1985; Hin-
ton & Sejnowsky, 1986). In this context t is called the temperature.
This conflict-resolution equation has the property that as t ap-
proaches 0, the probability of choosing the production with the
highest value approaches 1 (i.e., becomes deterministic). As t

5 Although ACT–R has a very different assumption behind the use of the
soft-max function, the mathematical form is basically the same.
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increases, the probability of choosing the production with the
highest value decreases. The equation therefore allows a balance
between exploration and exploitation by varying the value of
t—that is, it allows the model to explore other alternatives even
when those alternatives may have low utility values. The smaller
t is (and the less noise), the stronger will be the tendency to select
the maximum item. Note that the conflict-resolution equation
represents the expected long-term behavior of the selection pro-
cess. The actual predictions depend on Monte Carlo simulations.

We illustrate our algorithm in a simple model with four produc-
tions that fire in cycles. During each cycle, the production fires in
this sequence: P-Step1, P-Step2, P-Step3, and P-Step4. After
P-Step4 is fired, a reward of 1 is received, and another cycle begins
by firing P-Step1. Figure 2 shows how the expected values change
with the reinforcement-learning mechanism. We used the param-
eters in this model that were used throughout the article—learning
rate a was .05 and delayed-reward parameter k was .25. In Figure 2
we assume a 1-s delay between each production, which means that
each production discounts the value of the next by 1/(1 � .25 *
1) � .8. After the 150 trials in Figure 2, the productions are
reaching their steady-state values, which can be expressed as

V1 � .8V2 � 0.512

V1 � .8V2 � 0.512

V2 � .8V3 � 0.640

V3 � .8V4 � 0.800

V4 � 1.0 � .8V1 � 1.00

V2 � .8V3 � 0.640

V3 � .8V4 � 0.800

V4 � 1.0 � .8V1 � 1.00.

Consistent with the goal-gradient hypothesis, Figure 2 shows how
the reinforcement signal propagates back in time and diminishes as
it goes farther away from the actual reward. In later sections, we
provide further examples that show how the discounting of de-
layed rewards explains skill-learning behavior.

Testing the Mechanism Against Empirical Data

We tested the predictions of the reinforcement-learning mech-
anism against several sets of data. To highlight the properties of
the mechanism, we present the results in three parts. In Part 1, we
chose data sets from simple recurrent choice situations where two
or more alternatives are chosen repeatedly with different proba-
bilities, magnitudes, and variabilities of reinforcement. We aimed
at testing whether the combination of the basic TD algorithm (with
properties of a simple integrator model) and the choice rule (the
soft-max function) is capable of exhibiting the same sensitivities to
the three major manipulations of reinforcement as human subjects.
In Parts 2 and 3, we tested aspects of the model that are specific to
our version of the TD algorithm. In Part 2 we tested the assumption
of the hyperbolic discount function and how it predicted the
various effects of the delay of reinforcement. In Part 3 we tested
the process by which the TD algorithm propagates credits back to
earlier productions and how it can account for skill-learning be-
havior. Throughout this effort we held all of the critical parameters
in the theory constant:

Delayed reward parameter k � .25

Learning rate a � .05

Noise parameter t � 1.00

The setting of the noise parameter basically sets the scale for the
values (and so really is not an estimated parameter). The only
parameters we estimated to fit particular data sets were the reward
parameters (r) associated with various outcomes. These parameters
correspond to what the experimenter manipulated and so would be
expected to vary from experiment to experiment and condition to
condition. The initial expected values of all the productions were
set to 0 at the beginning of the experiments and changed as a
function of experience. In other words, we assumed equal prefer-
ence for all choices a priori and focused on tasks that show how
preferences change owing solely to the accumulation of reward
experiences.

Figure 2. The expected values of the four productions that fired in cycles and received a reward of 1 after
P-Step4 was fired. The time for each production to fire was 1 s. Learning rate (a) � .05; delayed-reward
parameter (k) � .25.
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Part 1: Learning From Differential Probabilities,
Magnitudes, and Variabilities of Reinforcement

In the first part, we focus on three factors in recurrent choice: the
probabilities, magnitudes, and variabilities of reinforcement. These
three factors cover most of the literature on recurrent choice
behavior (the other factor is the delay of reinforcement, which we
discuss in Part 2). First, we selected one of the most comprehen-
sive data sets by Friedman et al. (1964) on how people learn to
guess which of two alternatives occurs—a paradigm called prob-
ability learning. Second, we selected the data set by Myers and
Suydam (1964) that manipulated the magnitudes of reward orthog-
onally with the event probabilities. Many published data sets have
shown the effects. We chose these two data sets because they
provided the most comprehensive information on the experiments
and the data, especially the fact that they presented both learning
and asymptotic performance across a large number of trials. In
addition, these data sets were modeled by others: The data set by
Friedman et al. was modeled by Lovett (1998), and that by Myers
and Suydam was modeled by Busemeyer and Townsend (1993)
and Gonzalez-Vallejo (2002). Testing our model against these two
data sets therefore allowed a direct comparison among models. For
example, we will show that although Lovett’s model can account
for the data set by Friedman et al., it has trouble fitting the data set
by Myers and Suydam.

We then tested our model in more complex situations where the
payoffs were not fixed. We selected the data set by Busemeyer and
Myung (1992) that showed how people learn to choose in situa-
tions that meet with a continuous range of outcomes with different
probabilities. This data set is particularly problematic for models
that require a “training signal” that informs the model to change its
preferences for different options. We showed that our model
describes the interesting patterns of behavior, and we compared
our model with the adaptive network model of Busemeyer and
Myung. Last, we selected the data set by Myers, Suydam, and
Gambino (1965) that showed the interaction effects of differential
payoffs and event probabilities and how they influenced risk-
taking behavior. This data set is from a classic study, and many
consider it a benchmark test for existing models (e.g., Barron &
Erev, 2003; Busemeyer & Townsend, 1993; Gonzalez-Vallejo,
2002). In summary, the four data sets we selected in Part 1 showed
how our model accounts for the effects of the major manipulations
of reinforcement in the recurrent choice literature.

Probability Learning

A fairly direct form of choice under uncertainty is the study of
how people select between multiple alternatives with uncertain
outcomes and rewards. The simplest situation is the probability-
learning experiment, in which a participant guesses which of the
alternatives occurs and then receives feedback on his or her
guesses. We start with the consideration of this paradigm, as the
changes in choice proportions directly reflect how preferences
change with reward experiences. Thus, it served as one of the
bases for the development of the current reinforcement-learning
mechanism.

In Friedman et al. (1964), participants completed more than
1,000 choice trials over the course of 3 days. For each trial, a signal
light was illuminated, participants pressed one of the two buttons
presented, and then one of the two outcome lights was illuminated.

Task instructions encouraged participants to try to guess the cor-
rect outcome for each trial. The two buttons’ success probabilities
varied during each 48-trial block in the experiment. Specifically,
for the odd-numbered blocks 1–17, the probabilities of success of
the buttons ( p and 1 � p) were .50. For the even-numbered blocks
2–16, p took on the values from .10 to .90, in a random order.
Therefore in the first block, the two buttons were equally likely to
be correct. Starting from the second block and in each of the
subsequent even-numbered blocks, one of the buttons was more
likely to be correct. There were 48 trials in each block, and
Friedman et al. provided the mean choice proportions of each
button in every 12-trial subblock. This allowed us to match the
learning of the event probabilities across the 48 trials in each block
(i.e., the four 12-trial subblocks in each block). We focus on the
analysis of the even-numbered blocks, as they show how people
adapted to the different outcome probabilities with experience.

Figure 3a shows the predicted proportion of choices in the
experiment by Friedman et al. (1964). Participants in general
exhibited “matching” behavior—that is, they came to choose a
button approximately in proportion to its probability of being
correct. Across the four 12-trial subblocks in each of the even-
numbered blocks, participants chose the correct button in roughly
50% of the trials in the first subblock and approached the corre-
sponding p values by the final subblock. This is called probability
matching.

Figure 3b shows the proportions predicted by the model, which
had four productions: Prepare, Button 1, Button 2, and Finish. We
use variations on this same model throughout this section. Before
a trial starts, Prepare fires, waiting for the trial to begin. Then one
of the productions, Button 1 or Button 2, fires. If the button chosen
is a correct button, a reward of value r will update the value of the
production; otherwise, a reward of –r will be received. The Finish
production then fires, which leads to the start of the next trial. We
assume that each of these productions takes about 1 s of process-
ing. Given the 1-s delay and the value of k � .25, the discount
value, 1/(1 � kt), is .8 between pairs of productions.

The expected values of the four productions were updated
according to the difference learning equation in the reinforcement-
learning mechanism. There was an r or –r amount of reward
credited to the productions that chose the buttons. To fit the data,
we set r to 1.4. The exact sequence of outcomes as reported in
Friedman et al. (1964) was presented to the model. We obtained a
fit of R2 � .912. The standard error of the model’s estimate (a
measure of deviation between prediction and observation) is .056.
As one measure of the reliability of the data, we looked at the
degree to which the probability of choice in the p condition could
be predicted by 1 minus the probability of choice in the 1 � p
condition. They should be the same because the two alternatives
are indistinguishable. The average deviation in these numbers is
.058. Therefore, it seems the model does correspond to the data
within the limits of the data’s own precision. The fit is also similar
to that obtained by Lovett (1998). However, because the model by
Lovett combined event probabilities and amount of reward into a
single parameter, it has trouble fitting the data set by Myers and
Suydam (1964), which we discuss shortly.

Figure 3c provides an illustration of the changes in the values
that are behind these predictions. There we have plotted the change
in the values of the four productions over the course of the 48
trials. It is assumed that each production has an initial value of 0,
and we plot the average values of the productions after each
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subblock of 12 trials. It can be seen that the high-probability-of-
reward button (Button 1) grows rapidly whereas the low-
probability-of-reward button (Button 2) decreases fairly rap-
idly. The figure indicates the difference in values between the
two button productions and how this difference maps onto
probability of choice according to the conflict-resolution equa-
tion. As the model increasingly tends to choose the high reward
button (Button 1), it passes the positive reinforcement signal

back to the sequence of productions that preceded Button 1. As
a result, the value of the Prepare production tends to increase.
Similarly, the Finish production accrues .8 of the value of the
Prepare production that follows it.

Contingent Payoffs

In the previous two experiments, the two outcomes were basi-
cally symmetrical in the sense that whichever option was pre-
dicted, if it occurred the same reward was given. However, one can
also make payoffs contingent on which action is predicted. One
such example is the study by Myers and Suydam (1964), which
was also chosen as a benchmark test for the models by Busemeyer
and Townsend (1993) and Gonzalez-Vallejo (2002). Myers and
Suydam’s experiment provides further evidence that a successful
choice model must be sensitive to the probabilities and magnitudes
of reward separately. Lovett’s (1998) model would have difficulty
with this experiment because it used a single parameter to repre-
sent the reward obtained from choosing the outcomes; in contrast,
Myers and Suydam’s design made the reward depend on the
choice. In Myers and Suydam’s experiment, if participants chose
the first alternative (which was always the more probable) and
were correct, they received a reward of G points; if they were
wrong, they lost L points, and the values of G and L depended on
condition. The second alternative always paid 1 point if correct and
�1 point if wrong. The values of G and L (expressed as points) are
shown in Table 1. All participants started with a stake of 100
points, redeemable at .25 cent per point. The study was a 2
(probability of Alternative 1 being correct � .60, .80) 	 2 (G �
1, 4) 	 2 (L � 1, 4) between-subjects design. The expected
payoffs for alternatives in each condition are also shown in Table
1. For example, the expected payoff of Alternative 1 in the p �
.60, G � 1, L � 1 condition can be calculated as (.60)1 � (1 �
.60)(�1) � .20, and that of Alternative 2 will be (.60)(�1) � (1 �
.60)(1) � �.20.

If preference strengths are sensitive to the expected payoffs,
then preferences should be in the order of the differences between
the two options, hence the following order: (G � 4, L � 1) 

(G � 4, L � 4) 
 (G � 1, L � 1) 
 (G � 1, L � 4). It is
interesting to note that except when p(1) � .60, G � 1, and L �
4, Alternative 2 should be chosen over Alternative 1. Figure 4
presents two displays of the results. Figure 4a shows the average
proportion of choice of Alternative 1 over all 300 trials for the
eight conditions of the experiment. The results were in general
consistent with the predictions based on expected payoffs: Partic-

Figure 3. Observed (a) and predicted (b) choice proportions in Friedman
et al. (1964) across four 12-trial blocks of different probability of success
( p) for one of the buttons. Part (c) shows the average change in values
across the course of the experiment in the condition when p � .90. Dif �
difference; prob � probability.

Table 1
Expected Payoffs (EP) for Each Condition in Myers and
Suydam’s (1964) Experiment

G L

P(1) � .60 P(1) � .80

EP(1) EP(2) Dif EP(1) EP(2) Dif

1 1 0.2 �0.2 0.4 0.6 �0.6 1.2
1 4 �1.0 �0.2 �0.8 0 �0.6 0.6
4 1 2.0 �0.2 2.2 3 �0.6 3.6
4 4 0.8 �0.2 1.0 2.4 �0.6 3.0

Note. G and L reflect points gained and lost, respectively. Dif �
difference.
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ipants chose Alternative 1 more often in all but the condition in
which p(1) � .60, G � 1, and L � 4, and the magnitude of choice
proportions was in the predicted order: (G � 4, L � 1) 
 (G � 4,
L � 4) 
 (G � 1, L � 1) 
 (G � 1, L � 4). Myers and Suydam
(1964) found a significant G 	 L interaction. Specifically, in-
creases in L had a larger effect when G � 1 than when G � 4.
Figure 4b shows averages over the .60 and .80 conditions and
displays the average learning curves, in blocks of 50 trials, for each
combination of G and L. These four learning curves are rather
similar. Except for the G � 1, L � 1 curve, participants show
about 2/3 of the rise from Block 1 to Block 2 that they show over
the entire course of the experiment. In general, participants appear
to have reached close to asymptote by the end of the experiment.

Figure 4 also displays the fit of our model to these data. We
allowed ourselves to estimate independent rewards for each out-
come: �4, �1, �1, and �4. Our estimates of these values were
R(�4) � 2.9; R(�1) � 1.2; R(�1) � �1.8; and R(�4) � �4.2.
As can be seen, the losses are of greater absolute magnitude than
the positive rewards, corresponding to the frequent finding that
people are loss averse.6 All other parameters were the same as in
previous models. We obtained a fit of R2 � .932 (to all 48

observations yielded by crossing the 8 conditions with the 6 points
on the learning curve). The standard error of the model’s estimate
was .048. Note in particular that the model captures the interaction
between the levels of L and G noted by Myers and Suydam (1964)
and the observed rate of learning. Although the estimates of
parameters for magnitude of rewards will substantially determine
the asymptotic levels of choice in the model, the predictions about
the learning rate really fall out from the fixed parameters of the
model. We should point out that our model is the first to produce
these learning curves, although the average choice proportions in
Figure 4a have been modeled by others (Busemeyer & Townsend,
1993; Gonzalez-Vallejo, 2002).

Learning From Variable Rewards

In the preceding experiments a particular choice was either right
or wrong. However, in many situations a choice can meet with a
continuous range of outcomes. Reinforcement learning is particu-
larly suited for this type of learning because it does not require an
explicit teacher who offers the correct answer. Instead, reinforce-
ment is simply compared with existing expectation, and if it is
higher than expectation, it is considered a positive reinforcement;
otherwise, it is considered a penalty. Busemeyer and Myung
(1992) conducted such an experiment in which participants were
told to select one of the three treatment strategies for patients
suffering from a common set of symptom patterns. Feedback on
the effectiveness produced by the treatment was given after each
selection. For the sake of convenience, the treatment with the
highest expected effectiveness is called Treatment 3, the next most
effective is called Treatment 2, and the least effective is called
Treatment 1. Figure 5 illustrates the distribution of payoffs of the
treatments. The effectiveness produced by each treatment was
normally distributed with equal standard deviation, but the mean
payoffs are different (as explained below). Participants had to
evaluate each treatment on the basis of trial-by-trial feedback.
Participants were told to maximize the sum of the treatment effects
over training, and they were paid 4 cents per point. The means of
the normal distributions are equally spaced apart for Treatments 1,
2, and 3. The two independent variables were mean difference (d)
(i.e., the separation of the distributions in Figure 5) and standard
deviation (which affects the amount of overlap in Figure 5). The
exact values of d and the standard deviations are shown in Table
2. Each participant was given nine blocks (50 trials per block) of
training in each condition. The model received the same amount of
training as the participants.

From Table 2 we can see that as d increased, the observed
choice proportions of the optimal treatment increased. As the
standard deviation increased, the observed choice proportions of
the best treatment decreased. These two main effects were signif-
icant, and the interaction between them was not. These results
were quite striking, as they showed how participants estimated the
payoff distributions on the basis of repeated sampling of the

6 Asymptotically, the only thing that matters for prediction is the differ-
ence between the utilities and not their actual values. However, as the
learned utilities all start at zero, the predicted learning curves depend
somewhat on the actual values. Nonetheless, our predictions would change
only modestly if we were to adjust these four utilities by adding a constant
so that their average is zero.

Figure 4. Observed (obs) and predicted (pred) choice proportions from
the experiment by Myers and Suydam (1964) in the eight conditions (a)
and learning rates (b). G and L indicate points gained and lost, respectively.
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effectiveness of each treatment without any information on which
treatment was the optimal treatment.

To model the data, we used the same model as we did for the
Friedman et al. (1964) data, except that three productions were
used to choose each of the three treatments. Similar to all previous
models, the initial expected value of each production was set to 0.
For each trial, the rewards obtained by the model were simulated
by drawing a sample from the normal distribution that represents
the effectiveness of the treatment chosen by the model. One of the
problems we faced was how to scale these objective rewards onto
subjective rewards for the model. We could not take the approach
of the previous model of simply estimating a different subjective
reward value for each objective reward, because there are an
infinite number of such rewards. Although we could have taken the
approach of trying to estimate a more complex function, we simply
used the following equation to map the objective reward onto the
subjective reward value:

Subjective reward � scale*objective reward.

Curiously, we estimated the multiplicative scale factor to be ex-
actly 1.00 to best fit the data. We obtained a fit of R2 � .782. This
is smaller than the previous fits; however, the correlation between
the numbers and what would be predicted from the main effects
alone is only .804, and the interaction term is not significant. This
suggests that we may be fitting the data to the degree of its
reliability. The standard error of the model’s estimate was .039.
The new learning mechanism built up the distributions of effec-
tiveness of the treatments from trial-by-trial feedback and exhib-
ited similar sensitivity to the differences of the variabilities and
means of the distributions as participants. The average difference
between standard deviations of 6.0 and 3.0 (row effect in Table 2)
was 8% in accuracy, whereas the model predicts 6%. The average
difference between a mean difference of 3.0 and 2.0 (column effect
in Table 2) was 17%, whereas the model predicts 14%. Thus, the
model captures the relative magnitude of the two effects, although
slightly underpredicting them.

Busemeyer and Myung (1992) showed that their adaptive net-
work model also produced the set of results they obtained. Actu-
ally, their model (a generalization of a class of learning models by
Gluck & Bower, 1988, who derived the models from the learning
rule of Rescorla & Wagner, 1972) has a similar mathematical form
to the current stage of the reinforcement-learning mechanism.
However, the current reinforcement-learning mechanism is sim-
pler than their adaptive network model, and as we will show
shortly, our mechanism has other attractive properties that their
model does not have.

Choosing to Gamble

In many situations one can be faced with the choice between
accepting a sure gain or loss and choosing to gamble to try to
obtain something better than the sure gain or to avoid the sure loss.
The final experiment that we consider in this section is a relatively
complicated experiment by Myers et al. (1965) that investigated
such a situation. In their experiment, participants were asked to
choose between a sure thing (either a gain or a loss of 1 point in
different conditions) or a gamble that would return more points if
successful but result in losing more points if unsuccessful. Half of
the participants were assigned to the low-risk group (a range of
outcomes for the risky option from �2 to �6 for a win and �2 to
�6 for a loss) and the other half to the high-risk group (from �12
to �16). The researchers also manipulated the probability that the
risky option would succeed.

There are two aspects to their experiment. The first is illustrated
in Figure 6, which displays the learning effects, averaging over the
magnitudes of payoffs. The two main findings were that (a) the
choice to gamble increased when the probability of succeeding in
the gamble was greater (.80 vs. .50 vs. .20) and (b) the choice to
gamble was greater when the sure outcome had a negative payoff
(�1 point vs. �1 point).7 It is also worth noting that throughout
the experiment, there was a slight overall bias to choose to gamble
over the fixed alternative: Gambles were chosen on 55% of the
trials, averaging over the whole experiment and all conditions.

The second effect in this experiment (and the one that has drawn
more attention) concerns a pattern that appears most clearly in the
asymptotic performance in the last 50 trials of the experiment. It is
illustrated in Table 3. In the presence of a sure gain, participants
were more likely to gamble when the magnitude of the gamble was
large. In the presence of a sure loss, in contrast, participants were
more likely to gamble when the magnitude of the gamble was
small. This effect is a violation of a property of the classical utility
theory called independence between alternatives (Tversky &

7 It should be pointed out that the probability of success of gamble could
depend on what the certain outcome was. There were three groups: For one
group that probability was .50 independent of the certain outcome; for a
second group it was .80 in the presence of a certain reward and .20 with a
certain loss; and for the third group this was reversed. Thus, all groups had
on average a .50 probability of success, but the last two groups had to learn
the relationship between the sure payoff and the probability of success of
a gamble.

Figure 5. Distribution of effectiveness of different treatments in the
experiment by Busemeyer and Myung (1992).

Table 2
Observed and Predicted Choice Proportions of the Optimal
Treatment From the Experiment by Busemeyer and
Myung (1992)

SD

Mean difference (d)

2.0 2.5 3.0

3.0 0.69 0.84 0.85
(0.71) (0.80) (0.85)

4.5 0.69 0.72 0.84
(0.69) (0.77) (0.83)

6.0 0.65 0.63 0.86
(0.66) (0.73) (0.79)

Note. Predicted scores are in parentheses.
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Russo, 1969). The property of independence states that if A
(gamble with large magnitude) is chosen more often in the choice
set containing A and C (the sure gain) than B (gamble with small
magnitude) is chosen in the choice set containing B and C, then A
should be chosen more often in the choice set containing A and D
(the sure loss) than B is chosen in the choice set containing B and
D. This property is true of our model, because if A is chosen more
often in the presence of C than B is chosen in the presence of C,
then A must have greater value than B, and this greater value
should also lead to more choices in the presence of D. Nonetheless,
as can be seen, our model predicts this effect in this experiment,
and we explain why after describing the model.

To model the data from Myers et al. (1965), we assumed four
choice productions. In the presence of a sure loss of 1 point, there
was one pair of productions that chose the loss or the gamble. In
the presence of a sure gain of 1 point, there was another pair of
productions that chose the gain or the gamble. As noted in footnote
5, separate productions were required by the fact that the gambles
paid off differently in the presence of a sure gain versus a sure loss.
Another critical feature of this study was that after the choice,
participants were always told what they would have received if the
other alternative had been chosen, which is not the case for most

two-choice experiments. Because of this unique feature of the task,
we, as with other models of this experiment (e.g., Busemeyer &
Townsend, 1993; Gonzalez-Vallejo, 2002), assumed that the reac-
tion to a gamble depended on both outcomes. This is consistent
with results from the measurement of event-related brain potential
in a similar gambling task (Yeung & Sanfey, 2004), in which
participants were shown the outcome of the alternative they chose
and the outcome of the alternative they did not choose. Two
seemingly separate brain signals were recorded—one signal cor-
related with the valence of the reward and the other correlated with
the magnitude of the reward (or loss). Specifically, these two
signals together carried information about whether points were
gained or lost relative to the outcomes of the alternative not
chosen.

We therefore decided to use four different parameters to repre-
sent these signals. Specifically, we assumed that if a small gamble
was unsuccessful in the presence of a sure loss, this resulted in
only a small regret. On the other hand, if the unsuccessful gamble
was large or the alternative was a sure gain, we assumed that there
was a large regret. Analogously, we assumed that if a small gamble
was successful in the presence of a sure gain, this produced only
a small elation, but that there was a large elation if the successful
gamble was large or there had been a sure loss. The values we
estimated were �2.0 for small regret and �3.3 for large regret and
2.7 for small elation and 3.3 for large elation. In principle, we
could have estimated eight different utilities for all possible out-
comes of the gamble (win vs. loss crossed with large vs. small
crossed with sure gain vs. sure loss), but it seemed that these four
parameters were adequate. In addition we estimated a 0 value for
the sure gain of 1 point and �0.3 value for the sure loss of 1 point.
The model does a good job of fitting the data. Looking at all 72
data points—the 36 in Figure 6 for both large and small gambles—
the R2 was .946. The standard error of the model’s estimate was
.060.

In particular, the model captured the violation of independence
between alternatives. This depended on assessing the outcome of
a gamble differently, depending on what the certain outcome was.
This is not really an assumption of the model but simply borrowed
from other models of the phenomenon. However, it is noteworthy
that the model can predict the result of this experiment even

Table 3
Observed and Predicted Choice Proportions at Asymptote From
Myers, Suydam, and Gambino (1965)

Probability
Magnitude
of gamble Certain payoff Data Model

.20 low �1 .08 .12

.20 high �1 .10 .13

.20 low �1 .29 .34

.20 high �1 .16 .17

.50 low �1 .35 .40

.50 high �1 .43 .47

.50 low �1 .74 .70

.50 high �1 .59 .54

.80 low �1 .83 .82

.80 high �1 .92 .89

.80 low �1 .98 .95

.80 high �1 .88 .92

Figure 6. Proportion of gambles taken by participants and the model in each 50-trial block in the experiment
by Myers et al. (1965). Obs � observed; pred � predicted.
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though its basic choice rule obeys the property of independence
between alternatives. The key to producing the result is that it was
not the same rules (or indeed the same participants) that were
choosing a gamble in the presence of a certain gain versus a certain
loss or when the gamble was small versus when it was large.
Therefore, the rules could evolve to have different values depend-
ing on how the outcomes were assessed. There may well be
violations of the property of independence between alternatives
where our explanation for the Myers et al. (1965) experiment is no
longer valid, such as the choice among single gambles where
probabilities are explicitly given and there is not a learning com-
ponent (but see Barron & Erev, 2003). However, we would argue
that these are perhaps specific to more deliberative decision mak-
ing, not the kind of experience-based decision making on which
we focus. Again, we should note that despite the fact that there are
a number of models (e.g., Busemeyer & Townsend’s, 1993, deci-
sion field theory and Gonzalez-Vallejo’s, 2002, proportional dif-
ference model) for the asymptotic behavior in the Myers et al.
experiment, our model is the only one, to our knowledge, that
predicts the learning trends.

Summary of Results

We have tested the mechanism against four sets of data showing
how preferences change over time with different experienced
probabilities, magnitudes, and variabilities of payoffs. In the ex-
periment by Friedman et al. (1964), response proportions of both
the model and the participants were approximately consistent with
probability matching. The simulation of this experiment estab-
lished that the model showed the same sensitivities to the various
probabilities of outcomes and learned approximately at the same
rates as the participants. When fitting the learning data from Myers
and Suydam (1964), only the reward parameters were changed and
the model exhibited the same interactions between the effect of
rewards and losses. Specifically, the model showed a larger effect
when the loss was increased when the reward was low than when
the reward was high. These two data sets showed the major effects
of probabilities and magnitudes of reward in the recurrent choice
literature, and our model has done a good job accounting for these
effects. Although there were many published data sets that dem-
onstrated these effects, we chose these two mainly because they
presented both learning and asymptotic performance over a large
number of trials.

We also showed that our model fits more complex data sets that
other recent models have attempted to fit. The fit to the results
from Busemeyer and Myung (1992) shows the flexibility of the
model to learn from a continuous distribution of reinforcement.
The fit also demonstrates the model’s appealing characteristic that
the feedback used for learning takes the form of a scalar error
signal—that is, no explicit teacher who offers the correct answer is
required. In fact, we showed that the model adapts to both the
means and the variabilities of rewards based on the scalar error
signal. Last, the model exhibits the choice between certain and
uncertain outcomes in Myers et al. (1965). It also describes the
risk-taking behavior that violated the independence axiom derived
from the classic subjective utility theory. Both data sets were
modeled by others, and we showed that our model is comparable
to the fits of these existing models.

Part 2: Tests of Temporal Discounting

The examples so far establish that the proposed learning mech-
anisms can account for the choice behavior of individuals faced
with alternatives that have different values and probabilities. Al-
though we have used the full model, these examples have not
really tested the assumptions in the model about delay of rein-
forcement. They basically are tests of the simple integrator model
described in the introduction. There are two assumptions, unique
to reinforcement learning, that we test in the next two sections. The
one we test in this section concerns how value is discounted with
delay. The next section is concerned with how the value of a
reward links back over time to the actions that led to it. Much of
this research has focused on animal learning, and we begin with a
pair of experiments on pigeon choice behavior when the values
and delay of reinforcement of two options are manipulated.

With respect to temporal discounting, we should note that some
sort of discounting of future rewards is required in order for the
model to converge. The typical reinforcement algorithm uses an
exponential discounting, largely because of its tractable mathemat-
ical properties. However, as we will show, this seems incompatible
with the actual discounting that is observed, and as others have
proposed, something like our hyperbolic function is required (but
see footnote 4).

Preference Reversal and Delayed Reinforcement

In the experiment by Ainslie and Herrnstein (1981), pigeons
were put in a chamber containing two keys. Food was delivered
with a delay after either key was pecked. However, the delay for
one key was D seconds, and the delay for the other key was D �
4. In addition, the amount of food delivered for the long-delay key
was always twice that for the short-delay key. For half of the
pigeons, D was increased from 0.01 s to 2, 4, 6, 8, and 12 s, and
then returned to 0.01 s. For the other half, D was increased from
0.01 s to 12 s, then decreased to 8, 6, 4, 2, and 0.01 s. Regardless
of the delay between pecking and food, the total length of a trial
was 60 s. Pigeons were kept in a constant delay condition for many
sessions of 40–45 days until stable performance developed (the
total experiment lasted 320 days). The results, illustrated in Figure
7, showed that subjects initially strongly preferred the smaller
reinforcer at 0.01 s rather than the larger reinforcer at 4.01 s.
However, as D was increased, all subjects reversed preference,
choosing the larger-later option more often than the smaller-sooner
option.

Figure 7 also shows the match of the model we developed,
whose structure is illustrated in Figure 8. It is very similar to the
choice models we used in the previous section except that we have
different Finish productions to represent consummation of the two
different rewards at different delays (in contrast, in previous mod-
els the reward was given immediately with the choice production).
Because Ainslie and Herrnstein (1981) were concerned with as-
ymptotic behavior rather than learning, we calculated the steady-
state values of the system at which the values are no longer
changing. We used the same parameters as in the previous models
except for the rewards (i.e., r), which were estimated to be 27.6 for
the small reward and 42.8 for the large reward. To help explain the
behavior of the model, we consider its behavior for the condition
where the two delays are 4 and 8 s. The following equations
express the steady-state values for the Prepare production (P), the
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Choose Short production that chooses the short delay (CS), the
Choose Long production that chooses the long delay (CL), the
Finish Short production that finishes the short delay with the
reward (FS), and the Finish Long production that finishes the long
delay with the reward (FL):

VP � d�1�*�p�S�*VCS � p�L�*VCL� � 11.52

VCS � d�4�*VFS � 14.19

VCL � d�8�*VFL � 14.55

VFS � 27.6 � d�55�*VP � 28.38

VFL � 42.8 � d�51�*VP � 46.64.

In the above, d(t) � 1/(1 * kt) (k � .25) is the temporal discount,8

p(S) is the probability of choosing the short interval, and p(L) is
the probability of choosing the long delay. With the noise param-
eter set at the fixed value of 1.0, the value of p(S) � .412 and
p(L) � .588 according to the conflict-resolution equation. To reach
these steady-state utilities, one has to guarantee that each choice
gets sampled enough, and therefore it is necessary to use a noisy
conflict-resolution equation so that each item has a minimum
probability of being selected. Without this, the model can some-
times reach asymptote on the preferred option before the other
option and come to select it exclusively, blocking further learning
on the other option. This is consistent with the procedure in many
animal studies (e.g., Mazur, 1985), in which forced-choice trials
are interspersed with free-choice trials to ensure the experience
with each alternative.

The indifference point is where the values of CS and CL are
equal, which is where the ratio of d(t)/d(t � 4) is the same as the
ratio of VFL/VFS, and that equals 1.55. With k � .25 and solving for
d(t)/d(t � 4) � 1.55, we get t � 3.3 s. With respect to the fit of the
model, we obtained a fit of R2 � .956 and a standard error of the
estimate of .068. This experiment is just one of the many studies
in the animal conditioning literature that justifies a temporal dis-
count function such as the one in our model; on the other hand, it
is the first that shows the dramatic preference reversal as the delays
of reinforcement were manipulated. We will show shortly why the

exponential discount function had trouble producing the prefer-
ence reversal.

Reinforcement Delay–Amount Trade-Offs

Although the previous experiment justifies a temporal discount,
it does not justify the hyperbolic function. Evidence for the hy-
perbolic form comes from the experiment of Mazur (1985), which
introduced an adjusting procedure to find the indifference points
for various sets of delayed reinforcement. In an adjusting proce-
dure, subjects choose between a standard alternative and an ad-
justing alternative. In Mazur’s experiment, the standard alternative
delivered pigeons a certain amount of food (RF) after a fixed delay
DF. The delay for the standard alternative was different in each of
the nine conditions but was fixed throughout a condition. The
adjusting alternative delivered a larger amount of food (RA) after
an adjusting delay (DA). The amount of food for the adjusting
alternative was three times that for the standard alternative. (The
delay between trials was 15 s, independent of choice.) If a pigeon
chose the adjusting alternative on two consecutive trials, DA was
increased by 1 s; if the standard alternative was chosen on two
consecutive trials, DA was decreased by 1 s. When the pigeon
chose the two alternatives about equally often, the adjusting delay
could be considered the indifference point. At the indifference
point, the values of the CS and CL productions are equal. In each
of the nine conditions, pigeons were given a minimum of 12
64-trial sessions, until the choice stabilized. The standard delays
for the nine conditions were DF � 0, 1, 2, 6, 6, 10, 12, 14, and 20.
Figure 9 shows the mean indifference points for each standard
delay. The best fitting regression line indicates a slope of 2.4 and
a y-intercept of 2.2.

At the indifference point the values of the two choices will be
the same, and we can use an extension of the asymptotic equations
given earlier to find two expressions for this value corresponding
to its calculation at the long and short delay:

V � d�S��RS � d�15�d�1�V�,

V � d�L��RL � d�15�d�1�V�.

These equations and the definition of the discount function d(t) �
1/(1 � kt) can be manipulated to give an expression for the long
delay (L) that matches a particular short delay (S):

L � RL/RS*S �
�RL/RS � 1��1 � d�15�d�1��

k
.

Thus, the calculation of the matching delay depends on the ratio of
the larger to the smaller reward (RL/RS) and not on their actual

8 Note that because each trial took 60 s, the time to the next trial was
slightly less in the case of the long interval. For instance, in the case of a
4-s short delay versus an 8-s long delay it would be 55 s after reward to the
next trial for the short delay and 51 s for the long delay.

Figure 7. Proportion of choice of the smaller-sooner (SS) option as a
function of the delay of the larger-later (LL) option in the experiment of
Ainslie and Herrnstein (1981).

Figure 8. The model for the experiment by Ainslie and Herrnstein
(1981).
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values. The best fitting value of this ratio is 2.34. With this value
of the ratio of the rewards, the model predicts a linear equation
with this ratio as the slope and the intercept of 4.46 s. The model
fits the data well, R2 � .998, and standard error in prediction was
1.28 s, which is quite adequate given that the standard deviation in
the empirical values is 1.80 s. This is striking support for our
theory, particularly for the underlying discount equation. It pre-
dicts the linear relationship between the length of the two intervals,
and it predicts both the slope and the intercept of that equation with
an estimate of a single parameter (the ratio of the rewards).

As we noted, the most typical temporal discount function in
existing reinforcement-learning models is the exponential func-
tion. We can substitute the exponential function d(t) � at into the
equations above for value in the short and long delays to calculate
the relationship between the two at the point of equilibrium:

L � S �
ln�RL/RS� � ln�1 � a16�S�1 � RS/RL��

ln�a�
.

This shows that the relationship is again predicted to be linear but
this time with a slope of 1 and an intercept that depends on the
ratio of the large to the small reward.9 This equation shows that the
fundamental problem with an exponential discount function is that
it predicts an additive shift in the matching delay for a larger
reward. However, we showed that the relationship between the two
delays is basically multiplicative. We should point out that the
exponential discount function predicts that the two curves will
never cross over. Thus, the exponential function is not capable of
producing the preference reversal as shown by Ainslie and Hern-
stein (1981).

Summary of Results

We showed that the model fit the two sets of data well. In the
experiment by Ainslie and Herrnstein (1981), both the model and
the subjects reversed preference for the larger-later rewards instead
of the smaller-sooner rewards as the delay increased. In the ad-
justing schedules of the experiment by Mazur (1985), the model
stabilized at the same indifference points for the various conditions
as the subjects did. Although the same hyperbolic function was

used by Mazur, our model was at a lower level than the model by
Mazur, which aimed at predicting the stabilized indifference
points. Unfortunately we do not have the learning data for Ainslie
and Herrnstein or Mazur’s experiments, but our model is poten-
tially able to match the learning data that the molar model of
Mazur is not capable of doing.

Part 3: Tests of Credit Propagation in the Acquisition of
Action Sequences

One of the powerful features of the TD algorithm is its ability to
propagate credit back to previous productions. However, this pro-
cess takes time. Initially, only the production that directly leads to
the reward gets credit. In the next cycle of production firings, some
of that credit propagates back to the previous production. Eventu-
ally, credit can find its way back to a critical early production
through a chain of productions that leads to the reward. This credit
propagation mechanism is essential for learning action sequences,
as credits are assigned to all productions that eventually lead to a
reward, including the critical production that initiates the sequence
of productions. Strong evidence for such propagation of credit
would seem to be found in the research on goal gradients in maze
learning. We describe a model for the classic experiment by
Tolman and Honzik (1930) and then point out the problem with
this experiment and similar experiments. Then we describe the
experiment we performed to obtain more definitive data on this
issue.

The Maze Experiment by Tolman and Honzik With Rats

Tolman and Honzik (1930) used a 14-unit T maze (see Figure
10) to study how rats learn to eliminate blinds. After preliminary
training on how to manipulate the gates and curtains at the junction
points, each of the 36 rats was given one run a day in the maze for
17 days. Time and error records were kept, but as we are not
predicting time here, we focus on the error data. An entrance into
a blind was considered an error. Gates prevented returns into units
just visited, and so there was not the potential to retract successful
choices and go backward. Figure 11a shows the learning measured
as total number of errors made by the 36 rats, and Figure 11b
shows the proportion of errors to each of the blinds in Figure 10.
Figure 11 shows that rats learned to reduce the number of errors
with practice but that errors were not distributed equally for all
blind positions. Overall, there was a trend for fewer errors closer
to the food, but it is clear that other factors were at work as well.
In addition to proximity to the food, fewer errors were made when
the correct choice was to go to the right or to go down. Overall,
more correct moves are to the right, and so moving right is a good
guess. The advantage of the downward moves is a second-order
goal-gradient effect in that correct moves close to the food are
down whereas those farther away are up. Although there are these
important directional effects, the overall pattern of results is often
taken as evidence supporting the notion of a goal gradient: The
influence of the final reward is graded according to how far away
the stimulus is from the goal (or in this case, the food reward).

9 Although the intercept is expressed above as a subtraction, it is a
positive intercept because ln(a) � 0 and the ratio of the rewards is greater
than 1.

Figure 9. Indifference points of the two delayed rewards in Mazur’s
(1985) experiment. LL � larger-later option; SS � smaller-sooner option.
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Figure 11 also displays the predictions of our model for this
task. The model assumes that there are two productions specific to
each choice point, each requesting a move in the two possible
directions. In addition, there are four general directional produc-
tions, move down, move up, move left, and move right. Given the
design of the maze, at any choice point, only two of the general
directional productions are applicable. The first set of choice-
specific productions would eventually learn the maze, but the
second set allowed for directional biases, particularly in the early
stages of learning. One production fired at each choice point. If it
led to a blind, it was punished with a negative value. If it did not
lead to a blind, nothing happened, except for the last production,
which would be rewarded positively with the food. Eventually, the
results from the correct final choice can propagate back to the
earlier choices. The two parameters estimated were the positive
utility of the food (estimated at 120) and the negative utility of
going down a wrong choice and having to back up (estimated at
�19). All other parameters were the same as in the other models.
Figure 11 displays the correspondence between this model and the
data, and it is quite striking. For the learning curve, R2 is .973 and
mean error is 13. For the blind performance, R2 is .718 and mean
error is 2.2%.

A Maze Experiment With Humans

After working with the Tolman and Honzik (1930) data set, we
came to the conclusion that it had three unfortunate aspects with
respect to assessing credit assignment in the TD algorithm. First,
the directional effects have a major impact on the goal gradient, as
is apparent from Figure 11b. Although we captured much of this
effect with our use of left, right, up, and down productions, there
may have been other directional biases to complicate matters (rats
are particularly good with respect to directional sensitivity; see
O’Keefe & Nadel, 1978). Second, rats came immediately to a blind
after a mistake and were forced onto the right path. Thus, the
blinds provided immediate feedback, and it was not necessary for

credit to propagate back from the goal. We modeled this by having
a negative value for a wrong choice. Indeed, it was necessary to
have these punishment factors because of the third problem with
the Tolman and Honzik experiment: that it was simply not possible
for credit to effectively work its way all the way back through 14
choices from the goal in 17 trials.10 To address these problems, we
chose to run an isomorph of a maze experiment with humans. The
character of the isomorph was designed to eliminate any complex-
ities produced by spatial reasoning. However, it retained the char-
acteristic that learning requires the acquisition of action sequences
that depends critically on the assignment of credit to the right
actions executed at different points in time.

The maze-searching task. The maze-searching experiment
was designed to directly test the goal-gradient hypothesis as sug-
gested by the results from the maze experiment by Tolman and
Honzik (1930). To eliminate the complexities of spatial reasoning,
we created an artificial maze-searching game, presented on a

10 While one might think one choice point could be learned per trial and
so 17 trials would be enough for 14 choices, it takes a number of trials for
the assessment to build up at a choice point before any significant credit
can propagate back to the next choice point.

Figure 10. T maze used in Tolman and Honzik (1930). The numbers
represent blinds in the maze. When a rat chose the wrong direction and
entered a blind, it needed to turn around and go in a different direction to
go to the next T junction.

Figure 11. (a) Observed and predicted number of errors and (b) percent-
age of errors in each of the blinds in the maze experiment of Tolman and
Honzik (1930).
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computer, in which participants were asked to make arbitrary
association of objects to guide their choices as they progressed
through a series of simulated rooms. The screen symbolizing each
room contained a single object term (e.g., chairs, phones)11 and
terms for two elements (chosen from four—gold, wood, water, and
fire—intended to be analogous to the four directions in the maze
experiment). Figure 12 shows a screenshot of a room. By selecting
an element, participants were taken to another room with a new
object and another two elements. The participant’s task was to find
the correct sequence of elements that would lead through the
correct sequence of rooms to finish the trial. The correct element
depended on the object in the room. Thus, a particular element was
successful only in rooms that contained a particular object. Per-
formance on the task thus depended on learning which element to
select in the presence of each object. This kind of learning is
central to many skill-learning situations, as the main component of
a skill is to know when to apply the right action given a particular
context of cues in the environment. The learning of the association
of the object and right element (i.e., actions) can therefore be
considered one of the core learning components in skill
acquisition.

The crucial aspect of the task is that feedback was given only
after three correct choices had been made or when a dead end was
reached. Figure 13 shows the map of the rooms (which was not
shown to participants). In each of the rooms, there were four
possible object–element triplets. When participants reached a
room, one of the object–element triplets was randomly sampled
and presented on the screen. The participant had to choose between
the two elements, and only one would lead to the correct next room
(provided the participant was still on the correct path). All trials
began in Room 1. When three correct choices were made (i.e.,
when participants progressed from Room 1 to Room 2 to Room 3
to “finish” in Figure 13), the trial would end and 3 points would be
given. Otherwise, if one or more of the choices were wrong,
participants would reach one of the dead ends (i.e., D1 to D7 in
Figure 13) and 1 point would be deducted from the total score.
When a dead end was reached, participants had to reset (by
clicking a button in a pop-up window) and try again. After the
reset, participants would be taken to the earliest room where they
had made the wrong choice.12 For example, if the participant
correctly chose Room 2 in Figure 13 but then erroneously chose
Room 4 followed by D3 and reset, the participant would be taken
to Room 2. Another object–element triplet was then sampled and
presented to the participants in Room 2, and the game continued
until they finished the trial. The fact that the object–element triplet
was resampled meant that it was very difficult for participants to

determine what room they had been sent back to, and in effect the
only direct feedback they received was on moves that directly led
to a dead end (and they lost a point) or when they reached the
finish room (and they gained 3 points).

There were 12 correct object–element associations (4 in each of
the 3 correct rooms on the way to finishing the trial). Because
feedback was given only when the correct path was found or when
a dead end was reached, learning of the correct early object–
element associations required propagating credit back from later
object–element associations. If the goal-gradient hypothesis is
correct, object–element associations closer to the feedback should
be learned faster than those farther away from the feedback (i.e.,
learning should be fastest in Room 3, followed by Room 2, and
slowest in Room 1).

Note that this is a problem that is not naturally represented in
terms of choice of states, which is the more traditional use of
reinforcement learning in artificial intelligence. Participants are
making a choice of an operator, not a unique state; when they
choose an operator, they can transit to any of the four different
states depending on what operator comes next. It is also the case
that there are 4 	 4 	 4 � 64 correct operator sequences depend-
ing on what states the participant transitions to. Therefore, it is not

11 The objects used were torches, spiders, tables, fishes, dishes, books,
computers, cigarettes, smoke detectors, televisions, radios, pencils, wal-
lets, keys, rats, cats, chairs, telephones, bags, cups, glasses, watches, cans,
folders, magazines, newspapers, envelopes, and stamps.

12 There were a number of reasons for not taking participants all the way
back to the beginning each time. One was that we wanted to give partic-
ipants one experience with the correct choice at each level on each trial. It
also made the experiment a little less frustrating, because if we had always
sent participants back to the beginning, they would have had a (1/2)3

chance of getting it right and thus have had to make three choices for each
mistake—which implies something like 24 moves to solution at the begin-
ning before they learn. We also feared that always sending them back to the
beginning might invoke some strategy of trying to get that first move right
first.Figure 12. A screenshot of an example room in the maze-searching task.

Figure 13. The structure of the seven rooms in the maze-searching task.
When a dead end (D1, D2, D3, D4, D5, D6, or D7) was reached, partic-
ipants needed to reset. C � correct choice; W � wrong choice.
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feasible to learn each sequence separately. Rather, the participant
must learn the 12 rules specifying what elements to select in the
presence of a particular object. Also, it is not obvious what level
(first, second, or third) one is at, because one is not told the level
to which one is sent back. Thus, the only real feature is the
presented object and not the point in the maze. Except for the last
move, the only feedback one gets as to whether one has applied a
correct operator is whether one is then transitioned to a state where
one can apply a correct operator. So it is a task that really can only
be learned by credit-assignment mechanisms like those in rein-
forcement learning.

Method. Twenty members of the Carnegie Mellon University commu-
nity (age ranged from 19 to 32; 9 women, 11 men) participated in the
experiment. Each participant finished 200 trials and was paid either $8 or
1 cent per point, whichever amount was greater. Participants spent an
average of 1 hr in the game. They were instructed that through experience
with the rooms they could learn which elements would be correct in the
presence of different objects and that the object–element associations
would stay the same throughout the experiment (the actual instructions
given to the participants can be found in the Appendix). Participants were
told that the only feedback they would be given was when they had made
three correct choices or when they had reached a dead end. They were told
that when they reached a dead end, they had to click the “reset” button,
which would take them to another room. Participants were not informed of
the structure of the rooms. All stimuli were presented and all responses
were recorded via a standard monitor controlled by a personal computer
system.

Results. Figure 14 shows the mean number of rooms visited in
a trial in each of the 10 20-trial blocks. Participants visited roughly
10 rooms in the beginning trials and approached the asymptote of
4 rooms per trials after roughly 100 trials (perfect performance was
3 rooms per trial). Figure 14 also shows the predictions of our
model for the task. The model represents each object–element
association as a production. Similar to the model for the maze in
Tolman and Honzik (1930), there are always two productions that
compete in each of the rooms. However, in this task, we do not
need the general directional productions to account for the direc-
tional biases observed in the Tolman and Honzik experiment. We
constrained the major parameter values of the model to be the
same as in previous models (i.e., delayed-reward parameter k �
.25, learning rate a � .05, and noise parameter t � 1.0)13 and
varied only the reward parameter to fit the data. The reward
parameter was estimated to be 12. Because learning was relatively
insensitive to the punishment parameter we set it to be �12 (just
to be simple), which is the negative of the reward parameter. We
obtained a fit of R2 � .947, with an average error of .54. In general,
the model captures the learning curve of the participants. Given the
constraints of the parameter space, we consider the model to have
done a good job fitting the data.

Initially, the model randomly picks one of the productions to
progress through the rooms. The rewards and punishment eventu-
ally propagate back to the earlier productions. Figure 15 shows the
percentages of correct choices made in Rooms 1, 2, and 3. The
main effects of rooms and trials were significant, F(2, 57) � 6.96,
MSE � 2.42, p � .01, �2 � .074. The differences between Room
2 and Room 1 and between Room 3 and Room 1 were significant,
F(1, 57) � 3.87, MSE � 1.35, p � .05, �2 � .041, and F(1, 57) �
13.9, MSE � 4.84, p � .01, �2 � .186, respectively. The differ-
ence between Room 3 and Room 2 approached significance, F(1,
57) � 3.11, MSE � 1.08, p � .08, �2 � .030. In general, the
results are consistent with the goal-gradient hypothesis: The

object–element associations closer to the reward were learned
faster. Figure 15 also shows the predictions of the model. With the
same constraints of parameter values, we obtained a fit of R2 �
.857, with an average error of .07. The model captures the goal
gradient of reinforcement by learning the object–element associ-
ations in Room 3 fastest, followed by Room 2, and then Room 1.
The model, however, learned slower than the participants in Room
1 during early trials. We speculate the reason is that there was
some inherent saliency of Room 1 as it was the first room of each
trial and perhaps some participants were setting up special strate-
gies to try to learn this choice.

Summary of Results

The model fits the two sets of data fairly well. In both cases, the
reinforcement-learning mechanism propagates discounted credit
back to previous productions, which in effect produces the goal
gradient—that is, learning of rewards is graded and is more effi-
cient at choice points that are closer to the rewards. The results
demonstrated that through repeated exposures to the same reward
structure in the maze, the “built-in” credit-assignment mechanism
in the reinforcement-learning algorithm exhibited the goal gradient
found in many animal studies (see Killeen, 1994, for a review). In
the second experiment, the human data we collected from the
maze-searching task supported the basic premise of the goal-
gradient hypothesis, and our model exhibits a similar goal gradient
as a result of the credit-assignment mechanism. Specifically, the
credit-assignment mechanism allows the model to learn which of
the many possible object–element rules are more likely to be
correct, and performance improves as these correct rules are se-
lected more often across trials.

General Discussion

We have presented a reinforcement-learning model of recurrent
choice implemented in a general production-system framework.
The model was inspired by recent understandings of the dopami-
nergic signals in the basal ganglia and their relation to reinforce-
ment learning. To demonstrate the value of this endeavor we have
identified representative results that covered the major manipula-
tions in the recurrent choice literature, namely, the probabilities,
magnitudes, variabilities, and delay of reward. To extend the
model and test its ability to account for skill learning, we per-
formed a study that tested the goal-gradient hypothesis in a maze-
searching task. We showed that the reinforcement-learning models
we constructed provided general moment-to-moment predictions
of the strength of preference of alternatives. Although the success-
ful use of temporal difference methods has been demonstrated in
many artificial intelligence systems, to our knowledge, no attempts
have been made to test their psychological validity against the
same range of empirical data as we did. The fact that the use of a
fixed set of learning and delayed-reward parameters explained

13 The time between moves was set to 3 s, which was approximately the
average intermove time for the participants.
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such a wide range of choice phenomena provides strong psycho-
logical validity to the mechanism.

The reinforcement-learning model, in its simplest form, is sim-
ilar to an integrator model that accumulates information about the
consequences of a choice. We showed that the model, when
combined with the conflict-resolution equation, provides a
stochastic–dynamic description of the recurrent choice process
that lies at the heart of learning and performance in choice behav-
ior. We showed that the reinforcement-learning model has two
unique characteristics that are often neglected in other recurrent
choice models: how value is discounted with delay and how the
utility of a reward will link back over time to the actions that led
to it. These characteristics are essential for skill learning, which
often requires the learning of action sequences by delayed
feedback.

Multistep Recurrent Choice and Skill Learning

We showed that the temporal discounting of rewards produced
the results from the experiment of Ainslie and Herrnstein (1981),
in which preferences reversed from a larger-later reward to a
smaller-sooner reward as the difference of delays of the two

rewards increased. Further support was provided as we showed
that the model provided striking fits to the data from Mazur’s
(1985) experiment, in which a wide range of delays of reinforce-
ment was manipulated. The discounting property is then combined
with the credit-assignment mechanism to predict behavior during
skill learning. Skill learning can often be cast as multistep recur-
rent choice situations, in which several actions are performed
before reinforcement on the full course of actions is received. In
these situations, not only are rewards temporally discounted, but
rewards must propagate back to the appropriate actions that are
responsible for the rewards. The reinforcement-learning model
provides a straightforward explanation of how rewards propagate
back to earlier actions. Initially, only the production that leads to
reward gets credit. The next time, some of that credit propagates
back to the previous production. Eventually, credit can find its way
back to critical early productions in a long chain of productions
leading to a reward. We showed that our model provides good fits
to the data both from the maze-learning experiment by Tolman and
Honzik (1930) and from the experiment we designed. Both data
sets support the existence of a goal gradient of reinforcement—that
is, credit received is graded according to how close the actions are
to the reward.

Figure 14. Observed and predicted number of rooms visited in each 20-trial block of the maze-searching task.

Figure 15. Observed (obs) and predicted (pred) percentages of errors in Rooms 1, 2, and 3.
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In the animal literature, it has long been noted that a reinforcer’s
effects are not limited to just the response that immediately pre-
ceded it. Rather, the reinforcement reaches back toward earlier
responses, but the effectiveness diminishes with temporal distance
(see Killeen, 1994, for a review). Killeen (1994) proposed that the
animal keeps tracks of past responses in short-term memory, and
reinforcement will strengthen the responses in short-term memory
with a decay gradient, so that the reinforcement will have less and
less impact on the responses farther away from the reinforcement.
Killeen’s theory raises the questions of how the responses are
represented in memory and, to be able to explain human behavior,
whether previous responses are actually remembered and whether
this is a criterion for any response to be reinforceable. Indeed,
recent neuroscience studies on rats have shown that reward-related
response learning does not seem to rely on declarative memory
representations of past responses (e.g., Packard, 1999; Packard &
McGaugh, 1996). Rather, declarative (hippocampus) and non-
declarative (striatum) memory systems seem to work indepen-
dently of each other during maze learning. As previous studies
have found a close match between neural activities in the striatum
and the reinforcement-learning mechanism during skill learning
(e.g., Knowlton, Mangels, & Squire, 1996; Poldrack, Prabhakaran,
Seger, & Gabrieli, 1999; Schultz et al., 1997), our model is more
closely related to the nondeclarative response-learning mechanism
found in the striatum in different reward-related learning tasks.
However, it seems likely that complex skill learning may involve
both memory systems and their complex interactions.

The interactions of the declarative and the nondeclarative mem-
ory systems have also been shown by recent neuroimaging studies.
For example, Poldrack et al. (1999), using a probabilistic classi-
fication task, showed that the striatum plays an active role during
the learning process. In that task, participants were presented with
two cards with different patterns on them. They were then asked to
press a switch if they thought the patterns signified rain, guessing
at the outset but using feedback on each trial to learn which
patterns signified rain. Each pattern combination had a certain
probability of signifying rain. In addition to the significantly
higher activation in the striatum, Poldrack et al. (1999, 2001)
found that the anterior portion of the medial temporal lobe, which
is often associated with declarative memory retrieval, was deacti-
vated compared with the baseline activation when the striatum was
active. The significant negative correlation between the activities
of these two memory systems suggests that they may play disso-
ciable roles in skill learning. Knowlton et al. (1996) also found that
patients with dorsolateral frontal lesions performed just as well as
healthy individuals in a probability-learning task, whereas patients
with Huntington disease (which compromises the function of the
striatum) performed significantly worse than healthy individuals
(see also Morris, Miotto, Feigenbaum, Bullock, & Polkey, 1997).

Comparisons to Other Models

A number of the data sets presented in this article have been
modeled by other theories of choice. In this section we present
some comparisons of our model to the existing models. Two of
these theories are the decision field theory (DFT) of Busemeyer
and Townsend (1993) and the proportional difference (PD) model
of Gonzalez-Vallejo (2002). Although they are not restricted to
models of recurrent choice, both of these models have provided
good fits to the asymptotic performance of participants in the

Myers and Suydam (1964) and Myers et al. (1965) studies. How-
ever, instead of focusing on how preferences change with repeated
feedback on previous choices, both theories focus on the local
context defined by the alternatives in single-choice studies. In
DFT, strengths of preferences are represented by the difference of
two weighted averages of the valences of the alternatives. In PD,
strengths of preferences are represented by a mechanism that
performs trade-offs between attributes within a particular repre-
sentational structure defined by a function that calculates the
proportional difference between the alternatives. In contrast, our
model calculates moment-to-moment preferences from the histo-
ries of reinforcement of different alternatives. The appealing as-
pect of our model is that we are capable of explaining the learning
data that DFT and PD cannot. Conversely, the focus on local
context allows both DFT and PD to predict results that show
violations of transitivity (e.g., Mellers, Chang, Birnbaum, & Or-
donez, 1992; Tversky, 1969) that our model cannot predict, as
those studies are not conducted under recurrent choice situations.

A recent recurrent choice model, called reinforcement learning
among cognitive strategies (RELACS), was proposed by Erev and
Barron (2003; see also Erev et al., 1999). RELACS is a learning
model that captures the changes in choices as a function of the
experienced payoffs. Because RELACS is derived from the same
reinforcement learning algorithm as our model, it is not too sur-
prising that the behavior of RELACS is very similar to our model.
For example, Erev and Barron showed that their model described
the learning trends in Myers et al. (1965) and some of the similar
effects such as probability learning that we presented in Part 1 of
our section Testing the Mechanism Against Empirical Data. In
addition, there are reinforcement-learning models that show prob-
ability matching behavior (Egelman, Person, & Montague, 1998;
Montague, Dayan, & Sejnowski, 1996). Our model, however,
extends the scope of the mechanism to successfully describe
empirical results that show how choice behavior is sensitive to
delay of rewards and the sequential dependencies of choice actions
in skill learning. We believe that our effort is complementary to the
work by Erev and his colleagues and others.

To return to the distinction at the beginning of this article, our
model is concerned with outcome of quick, nondeliberate deci-
sions reflecting statistical learning over many experiences and not
deliberative decision making. It would seem that DFT and PD are
more appropriate to the latter. Nonetheless, our model and theirs
have been applied to predicting the same asymptotic performance
in the Myers and Suydam (1964) and Myers et al. (1965) experi-
ments, and this raises the question of what kind of decision making
participants were actually engaged in during those experiments.
Undoubtedly, it is a mix of the two, but our success at predicting
the learning trends leads us to believe that the behavior was
dominated by the kind of statistical learning that our model ad-
dresses (see, e.g., the discussion by Estes, 2002).

It is interesting to compare our model with the adaptive network
model (a generalization of a class of learning models by Gluck &
Bower, 1988) that produces the set of results from the experiment
of Busemeyer and Myung (1992). We find that the mathematical
form of the adaptive network model is similar to the general form
of our model (without the temporal discounting of rewards). Their
model has been applied to learning the relevance of multiple cues
in a categorization task. Anderson and Matessa (1998) showed that
the kind of utility learning in ACT–R can predict, at least quali-
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tatively, the results from Gluck and Bower’s complex categoriza-
tion experiments on cue learning.

The good fits to the data from the experiments by Ainslie and
Herrnstein (1981) and Mazur (1985) show that the hyperbolic
discount function in the reinforcement-learning model provides a
good description of how delayed rewards are discounted. Although
the same hyperbolic discount function has been used by Mazur and
others (e.g., Loewenstein & Prelec, 1991), the current form of our
model predicts learning data that cannot be predicted by the
steady-state model of Mazur or Loewenstein and Prelec.

The data from Tolman and Honzik (1930) and the maze-
searching task have provided further support to the temporal
discounting function. In addition, the good fits of the model to the
maze-searching task data show that the temporal discounting func-
tion provides good description to the learning process. The good
fits also show that the credit-assignment mechanism in the model
explains how people learn to choose a sequence of actions that
eventually leads to the rewards. Although many machine learning
methods and their properties have been presented (see, e.g., Sutton
& Barto, 1998) to show how an artificial agent learns to choose
among sequences of actions from delayed feedback, no attempt has
been made to study how people learn to assign credit to different
actions in these situations.

The cumulative effects model by Davis, Staddon, Machado, and
Palmer (1993) addresses animal choice behavior in situations
involving extinction of reinforcement. In one of these situations
(Davis & Staddon, 1990), the animal first received reinforcement
from the right alternative for n sessions, then received reinforce-
ment from the left alternative for m (where m � n) sessions, and
then no reinforcement was given (extinction). During extinction,
the animal began the first session with an almost exclusive left
preference, but preference shifted through indifference to a right
preference by the fourth session of extinction. Not only does the
cumulative effects model predict the spontaneous recovery of an
earlier preference (i.e., regression) in extinction, it also predicts
phenomena such as the dependence of learning rate on the fre-
quency of reversals of reinforcement and improvement in learning
speed across reversals of reinforcement, all of which require some
“memories” of the past histories of reinforcement. Davis et al.
showed that a simple integrator model, without separately keeping
track of past histories of reinforcement, fails to predict these
phenomena. Because our model, in its general form, is an integra-
tor model, changes need to be made if the model is to produce the
same behavior as the cumulative effects model predicts. Although
it is interesting and important to implement in our model, we have
decided not to put this possible extension in this article to avoid
overly complicating the basic model.

Advantages of Implementing the Model in a Production-
System Framework

By implementing the learning mechanism under a general
production-system framework, successful models were produced
and reviewed in this article. Our intention is that the model can be
incorporated into a larger cognitive architecture such as ACT–R,
Soar, or Epic. We believe that by putting the choice mechanism
into a larger architecture, one can apply the same ideas to the many
aspects of recurrent choice behavior that occur in complex tasks,
such as sequence learning, strategy selection, and problem-solving
search. This allows the construction of choice models in more

real-world, complex situations (e.g., the dynamic tasks facing
anti-air warfare coordinators). In complex, dynamic tasks (Ander-
son et al., 2004; Fu et al., 2004), a model of choice often requires
the integration and orchestration of several cognitive mechanisms,
and each of these is driven by simple choices. For instance, choices
are required about what particular memory elements are needed at
a particular time, what part of the visual array to attend to, or
which method to apply to make an edit to a text. We believe that
the advantage of the integration provided by a cognitive architec-
ture is the potential to apply the same insights to all of these
decisions.
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Appendix

Instructions Given to the Participants in the Maze-Searching Task

Please study the following instructions carefully before you begin.
This is a game in which you will be asked to make a series of choices,

and you will be paid according to how many correct choices you can make.
When the task begins, you will be situated in a room with a single object
and two elements (an element is either “gold,” “wood,” “water,” or “fire”).
You have to choose one of the elements by clicking on its button. The
object in the room is uniquely related to the correct element throughout the
whole experiment.

After you select an element, you will be taken to another room. The
room will be identical to the first room, except that the object and two
elements are different. Again, you need to select an element by clicking on
its button, which will take you to another room, and so on. When you have
made three choices, a window will pop up to inform you whether the three
choices you made are all correct or not. If all three choices are correct, you
will be informed that you have successfully reached the end of the trial, and
you will receive 3 points; another trial will then begin. On the other hand,
if one of the three choices you made is wrong, you will be informed that
you have reached a dead end, and 1 point will be deducted from your total
score. Note that in this case you will only be informed that you have
reached a dead end, but you will NOT be told which choice(s) you made
is/are correct or wrong.

If you did not succeed, you may have made 1, 2, or 3 wrong choices (you
will not be told how many wrong choices you have made). Before you can

finish the trial you will need to get a total of 3 correct choices. When you
reach a dead end, you need to click the “reset” button so that you can get
a chance to make the needed number of correct choices. When you reset,
you will be taken to another room and you can make another choice. You
will then continue to make choices until (1) you make a total of three
correct choices, in that case your trial will finish; or (2) you reach another
dead end again, in that case you need to click “reset” again. However, you
only need to make a total of three correct choices to finish a trial. For
example, if in the first round you make one correct choice and two wrong
choices and reach a dead end, after resetting you only need to make two
more correct choices to reach the end (or if this time you make one or two
wrong choices you will reach a dead end again).

There will be a total of 200 trials. In all the trials, all relations between
the object in the room and the correct element will stay the same. Remem-
bering the relations is therefore useful for making correct choices. You will
be paid 1 cent per point in your total score in addition to the base payment
of $8. The maximum you can earn is $15.

If you have any questions, please ask the experimenter NOW.
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