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Abstract 

It is generally accepted that an integrated cognitive 
architecture is required to fully explain complex functions of 
the brain such as learning and behavior.  However, typical 
architectures do not include a theory of emotion.  This article 
proposes a framework of emotion suitable for inclusion in an 
integrated architecture and examines the impact of arousal on 
memory and how a particular architecture that does not 
account for emotion fails to accurately model a classic 
psychological experiment.  Simulations and memory models 
are also presented that account for arousal’s impact on 
memory.   

Introduction 
The breadth and complexity of our emotions are critical to 
our human experience.  In many ways, the sensation or 
feeling of these emotions is what makes life worth living.  
These emotions also provide adaptive advantages important 
for our well being and survival. They facilitate a 
compacting of our experience that can result in a fast and 
desirable decision without requiring a substantial amount of 
time for deliberation.  This effect can be critical when a 
quick decision is necessary but all the relevant information 
is either not available or the time required to process would 
be too great.   
 
It is our belief that emotion should be included as an 
integral component of any integrated cognitive architecture 
that strives to provide a rich and accurate explanation and 
framework for the emulation of human cognition.  Such a 
model would have many applications in either an analysis 
or synthesis mode, including behavioral finance, interactive 
entertainment, automotive telematics, and computer 
assisted education.   
 
Therefore, development is underway of a comprehensive 
computational model of emotion that is targeted at 
integration with cognition.  This model is being formulated 
in terms of general mechanisms of the emotional system 
that interact with cognition and provide a mapping to 
typical emotional states, such as anger and happiness.  An 
early step in this development is an analysis and simulation 

of the interaction of arousal and memory, and this work is 
described in the sections that follow.   

Modeling Emotion 
Emotions are often tied to appraisals.  Fear, for example, 
can be seen as a reaction to a prediction of danger.  The 
emotional model we are pursuing is in line with this point 
of view except that the “appraisals” are not cognitive, but 
are instead mechanistic.  Pain, for example, is a simple 
“appraisal” mechanism that is crucial to emotions.  This 
model, put forth by Chown and others (Chown, 2006; 
Kaplan, 1991), posits that emotions are a fast, automatic 
assessment system consisting of three core parts or 
mechanisms:  m1: an arousal system that provides a 
measure of importance, m2: a pleasure/pain system that 
assesses valence, and m3: a clarity/confusion system that 
provides a measure of competence.  All of these 
components are automatic (one does not decide to be 
confused for example), but can be affected by cognition. 
These mechanisms are chosen due to their ability to model 
a broad range of the emotional spectrum and can be used as 
a foundation for looking at how cognition and emotion 
interact.  Typical emotional tags (angry, sad, happy) can be 
generated through a mapping of these mechanisms: (f: m1 x 
m2 x m3 ö tag). 
  
The figure below illustrates how these mechanisms can be 
viewed in a 3-state space and how the model may drive 
these states over time in response to various stimuli.   
 

 
 

Figure 1: Representation of Emotion 
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The inter-relationship of these mechanisms are shown in the 
figure below. The pleasure/pain and clarity/confusion 
mechanisms are separated in the figure to depict their 
inhibitory relationships (e.g., a highly pleasurable stimulus 
may effectively negate minor pain stimuli). Each 
mechanism processes its own set of stimuli, which may 
include the state of another mechanism.  For example, the 
clarity/confusion mechanism provides input to the 
pleasure/pain mechanism. Stimuli can be physically 
external (e.g., hearing a gun shot), internal (e.g., pain in 
stomach), and as a result of cognitive appraisal.  
 

 
Figure 2:  Emotional Mechanisms 

 
Another way to view these mechanisms is in terms of their 
evolutionary development.  Borrowing from Damasio’s tree 
metaphor (2003), the figure below depicts the evolutionary 
levels of our model with the trunk (arousal) being the most 
basic level.  In contrast to Damasio’s view, we do not 
include basic bodily functions, such as metabolic regulation 
and immune responses, in our model.   
 

 
Figure 3:  Evolutionary Levels of Emotion 

 

Regardless of their role in the overall emotional 
architecture, all of these mechanisms are crucial in driving 
human behavior.  This article focuses specifically on 
arousal, which forms the basis of the emotional model and, 
from our point of view, is most significant in its effects to 
changes in human behavior and performance. 
Future articles will expand this work and explore the other 
mechanisms in pursuit of a comprehensive computational 
model. 

Arousal and Memory 
A recent study on the brain and behavior (Garey, 
Goodwillie, J. Frohlich, et al, 2003) defined arousal as 
being more “responsive to a wide variety of external stimuli 
spanning sensory modalities” and being more “motorically 
active”.  Conforming with this definition, arousal can also 
be viewed as a call to action with the other emotional 
mechanisms providing direction. For example, pain, 
whether physical or cognitive, facilitates an increase in 
arousal and impacts behavior and goal setting in such a way 
to bring about a change in behavior to alleviate the pain.   
A familiar effect of arousal is the inverted ‘U’ performance 
curve, which was first documented by Yerkes and Dodson 
(1908).  As the following figure shows, there is an optimal 
level of arousal related to performance.  This optimal level 
is a mid range of arousal in contrast to too little arousal, 
which facilitates a lethargic condition that can inhibit 
motivation, and too much arousal, which facilitates a 
hyperactive condition that can inhibit concentration.   
Performance in this sense is applicable to both memory and 
learning (Sherwood, 1965) as well as task execution.  When 
arousal is high, tasks that require a relatively high cognitive 
workload (complexity) or are less well-learned are less 
likely to be pursued.  However, high levels of arousal can 
increase the likelihood that physically demanding tasks 
(e.g. running) will be pursued.   
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Figure 4: Inverted U Curve 
 

Regarding memory, high arousal during encoding can 
facilitate long term retention, but it is also associated with 
an inability to retrieve information for a short period of time 
(up to about 30 minutes) following the original encoding.  
A classic paired associate experiment performed by 
Kleinsmith and Kaplan (1963) revealed this impact of 
arousal on memory by performing memory tests on subjects 
while monitoring arousal levels.  The details of the 
experiment are summarized below: 
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• 48 subjects were divided into 6 groups of 8.   
• Each subject participated in a single learning trial of 8 

words with a paired association of a number between 2 
and 9.   The words used were kiss, rape, vomit, exam, 
dance, money, love, and swim.  

• The ordering of the stimulus was unique to each 
member in a group.   

• A stimulus was first presented for 4 seconds followed 
by the presentation of the paired number with the 
stimulus.  

• This was repeated eight times and color slides were 
presented to the subject in between each test.  The 
subjects were not told that they would be tested for 
paired associate recall. 

• A galvanic skin response (GSR) recording device was 
attached to each subject during the experiment. The 
levels were recorded during display of the stimulus. 
This level was used to determine which words caused 
high arousal during encoding. The three highest arousal 
words were grouped into a high arousal category.  The 
three lowest arousal words were grouped into a low 
arousal category.  The results of the middle two words 
were discarded.   

• Each group was later tested for recall at different times: 
1 week, 1 day, 45 minutes, 20 minutes, and 2 groups at 
2 minutes.  The order of stimulus presentation during 
recall was varied.   

 
Figure 5 shows the recall performance from the experiment 
for the high arousal word group and low arousal word 
group.  The results for the low arousal word group show a 
familiar forgetting / decay curve; however, the  results for 
the high arousal word group show that recall actually 
improved with time.  For the first 20 minutes, a blocking 
effect can be observed relative to the low arousal group but 
then the recall performance improves drastically and 
approaches the short duration recall performance of the low 
arousal group. These results demonstrate the 
aforementioned effects of short-term blocking and long-
term reminiscence due to high arousal.   
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Figure 5: Results of Experimental Study 

Kleinsmith and Kaplan (1964) later replicated the study 
using nonsense syllables instead of emotionally charged 
stimulus and documented similar results to the original 
study.  These effects were also seen by Levonian (1967) in 
a study of 83 high school students who were presented 
continuous material while being monitored by GSR sensors.  
It was found again that high arousal (deflection from 
nominal) facilitated short term forgetting and long term 
(one week) remembering.  Low arousal showed the 
converse effect.  Gray, Braver, and Raichle (2001) recently 
studied the impact of arousal accompanied by pleasure and 
pain and found that an unpleasant, highly aroused 
emotional state impaired short term verbal memory.  They 
also found that a stronger emotional induction led to a 
stronger performance effect.  

Model 
Our goal is to model the results of the Kleinsmith and 
Kaplan experiment utilizing a model that can predict both 
the low arousal and high arousal results.  The simulation 
environment utilized is Matlab, and the memory model 
utilized is from ACT-R (Anderson & Lebiere, 1998).   
 
It is important to note that there have been other efforts to 
add elements of emotion to ACT-R through manipulation of 
the parameters within the conflict resolution algorithm1. 
Ritter, Avraamides, Councill et al., (2002) have shown that 
emotional labels such as threatened and worried can be 
modeled by varying parameters as a way to model the level 
of motivation and clarity of thought. Belavkin (2001) 
provided an explanation of the aforementioned inverted U 
curve.  Performance was in terms of speed of learning and 
arousal was modeled by varying parameters within the 
conflict resolution algorithm. 
 
Within ACT-R, (declarative) memory is represented by 
chunks.  Every chunk in ACT-R has associated with it an 
activation level.  When a retrieval request is made of the 
memory system, the chunk with the greatest activation 
among those that match a retrieval specification is 
retrieved.  However, there is a retrieval threshold that 
specifies the minimum activation level of a chunk for 
retrieval.  If the chunk with the highest activation among 
those that match the request has an activation level less than 
the retrieval threshold, then a failure to retrieve will occur.   
 
The equation for the activation Ai of a chunk i is defined 
as2: 

ε+= ii BA  
Bi:  The base-level activation.  

                                                           
1 Conflict resolution is embedded in the procedural module, and 
the memory model is embedded in the declarative module.   
2 Similarity and Source Activation are ignored 
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є: Noise.  The noise is composed of two components: a 
permanent noise associated with each chunk and an 
instantaneous noise computed at the time of retrieval. 
The equation for base-level activation for chunk i is: 
 

)ln(
1
∑
=

−=
n

j

d
ji tB

  
n: Number of presentations for chunk i. 
tj: Time since presentation j. 
d: Decay parameter 
 
This equation describes a process in which each time an 
item is presented there is an increase in its base-level 
activation, which decays away as a power function of the 
time since that presentation3.     
 
Note that arousal is not a parameter to the activation 
equation; therefore, it is somewhat intuitive that this 
existing formula will not be adequate for modeling both the 
low arousal and high arousal performance curves.  Figure 6 
compares the ACT-R activation curve from a single 
encoding (presentation) with the Kleinsmith and Kaplan 
results4.  The ACT-R decay parameter (d) is set to 0.05 for 
the simulation.   
 
As might be expected, the ACT-R activation slope closely 
follows the low arousal group curve, which might be as 
expected for a decay based model.  The high arousal recall 
performance is shown to be drastically different.  The high 
arousal words were poorly recalled at 2 minutes and 20 
minutes (short term) but were recalled at a much higher 
percentage at 45 minutes, 1 day, and 1 week (long term).   
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Figure 6: Experimental Results vs. ACT-R 

 

                                                           
3 There are three types of events that are considered a presentation 
of a chunk: creation, merging, and retrieval. 
4 0.5 is added to the ACT-R activation for display purposes 

As Figure 6 shows, the current ACT-R memory model is 
not adequate for predicting the recall results of the high 
arousal word grouping.  In order to do so, a memory model 
that increases activation with time is needed.  This can be 
accomplished by replacing the decay parameter with a 
growth parameter (negative decay rate) and implementing a 
ceiling for activation after 45 minutes.  This ceiling 
represents that the memory no longer continues to increase 
or decrease (at least at the same rate) once it is deeply 
encoded and the short term blocking effect has dissipated.  
The growth parameter generates an increase in memory 
activation as time proceeds between encoding and 
attempted recall.  Figure 7 shows a simulation of memory 
encoding and recall using the modified activation equation 
with the growth parameter (-d) set to 0.04. 500 memory 
encoding and recall cycles were simulated using a noise 
variance of 0.15.  Also, a base level constant (BLC) of -4.5 
was added in the activation equation.   
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Figure 7: Simulation Results 

 
It is interesting to note that this function utilizing a growth 
parameter (negative decay) closely follows the 
experimental results and that the growth parameter (0.04) is 
very close to the negative of the decay (0.05) that was used 
previously to follow the low arousal group curve. 

Discussion 
Additional data on specific arousal levels (relative to a 
baseline) during encoding and retrieval are needed for the 
specification of a robust general memory model.   However, 
we sketch a model proposal using the previous results and 
the findings from Gray, Braver, and Raichle (2002) that 
show that a stronger affect facilitates a more pronounced 
behavioral effect.  It is important to note that one of the 
goals of this general model is that it will simplify to the 
original ACT-R equation when arousal is set to its nominal 
level. 

                                                           
5 A normal distribution is utilized instead of a logistic distribution 
(as utilized in ACT-R).   
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We first propose that the base level activation decay 
parameter (d) should be some function of arousal at time of 
encoding.  The decay rate should increase for lower arousal 
levels and turn into a growth parameter (g = -d) for higher 
arousal levels.   

)ln(
1

)(∑
=

−=
n

j

ad
ji tB

 Next, we propose a definition of d(a) as a linear function of 
arousal (a), a high arousal threshold (ah), and a scale 
parameter (s): 

)()ln(
1

)/1(
n

n

j

aad
ji aatB hs −−= ∑

=

−−

 ds: scaled decay (growth) parameter: s * d 
a: arousal at the time of encoding; 0 § a § 1 
an: nominal arousal 
ah: high arousal threshold 
 
Arousal (a) can vary between 0 (e.g., sleep) and 1 (full 
arousal).  The exponent to tj becomes a growth parameter 
when arousal is high (a > ah), and the decay accelerates 
when arousal is low (a < ah).  The equation defaults to the 
ACT-R activation equation when arousal is set to its 
nominal level and decay is scaled to the inverse of the (1-
a/ah) term.  The term outside the log function (a – an) 
provides initial blocking for high arousal levels.   
 
For example, we set the parameters as follows: ds = 3*d;  
an = 0.5; ah = 0.75, which gives us the following equation: 

)5.0()ln(
1

)75.0/1(*3 −−= ∑
=

−− atB
n

j

ad
ji  

Figure 8 depicts a simulation of this general activation 
function over time for three levels of a using a decay rate of 
0.05.   This model provides considerable blocking for high 
arousal in the first few minutes and relatively strong 
activation after 20 minutes.  A ceiling function was not 
utilized in this simulation but could be easily added.   
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Figure 8: General Model, Three Levels of Arousal 

 
Figure 9 depicts one hundred simulations with arousal 
normally distributed about 0.5 utilizing a standard deviation 
of 0.2. 
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Figure 9: General Model 

 
As stated previously, the modeling of arousal is an early 
step in an effort to develop a comprehensive computational 
model of emotion integrated within a theory of cognition.  
Arousal is one way in which the emotional system provides 
automatic  direction of behavior.  Arousal can be seen as a 
kind of importance  gage, which is discussed more 
thoroughly in a  companion paper (Chown, 2006). 
 
Important events should be remembered, and different  
behavioral strategies should be employed based upon the 
level of  importance.  The next steps will be to expand and 
refine the work on arousal and examine computationally the 
impact of pleasure and pain. 
 
Pleasure and pain provide an organism with a measure of 
valence –  pleasurable outcomes are preferred over painful 
results.  This  suggests that organisms will work to stop 
feeling pain and avoid  future pain while trying to continue 
to feel pleasure and seeking to  get pleasure in the future.  
Of the three parts of the emotional  system proposed in our 
model the pleasure/pain system is the most  highly studied 
both within cognitive science and also mathematically  
(most machine learning systems can be cast in terms of 
pleasure and  pain, and reinforcement learning is directly 
inspired by the  relationship of pleasure and pain to 
behavior).  
 
The final part of our emotional model is the least well 
understood in  terms of mechanism.  Clarity and confusion 
are important to decision  making agents because they 
provide a rough measure of competence  (Kaplan, 1991).  
When the world and one’s model of the world are in  sync 
then one’s model is likely to provide the basis of sound  
decisions.  It is relatively simple to see how such a 
mechanism would  work at the neural level – focused neural 
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activity that results from  the confluence of internal and 
external input should correspond to  clarity.  On the other 
hand, when internal and external signals are  at odds neural 
activity should be more diffuse.  It is relatively  more 
difficult to cast this in symbolic terms because it requires  
constantly and explicitly monitoring the state of the agents  
knowledge structures as measured against what the agent is 
perceiving. 

Summary 
Emotion is a critical element to being human, and it impacts 
cognitive functions like performance, memory, and 
behavior.  Computer systems that emulate intelligence as 
well as cognitive models typically lack this important 
element and therefore have difficulty modeling and 
predicting human behavior when real-life emotions are at 
work outside a laboratory setting.   
 
This paper reviewed a classic experimental psychology 
study on arousal and memory, compared its results to what 
would be predicted by a memory model typically found in a 
cognitive architecture, and then modified the model to 
provide a better match against the data.  A general memory 
model that accounts for arousal was also proposed.   
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