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Attempts to model complex task environments can serve as 
benchmarks that enable us to assess the state of cognitive 
theory and to identify productive topics for future research. 
Such models must be accompanied by a thorough 
examination of their fit to overall performance as well as their 
detailed fit to the microstructure of performance. We provide 
an example of this approach in our Argus Prime Model of a 
complex simulated radar operator task that combines real-
time demands on human cognitive, perceptual, and action 
with a dynamic decision-making task. The generally good fit 
of the model to overall performance is a mark of the power of 
contemporary cognitive theory and architectures of cognition. 
The multiple failures of the model to capture fine-grained 
details of performance mark the limits of contemporary theory 
and signal productive areas for future research. 

Introduction 
Understanding human cognition requires knowing how 
control of semi-independent functional modules such as 
visual attention, perception, movement, and memory is 
integrated to accomplish complex tasks. Our understanding 
of this integration may be furthered by simple laboratory 
tasks, but as this understanding advances, it must be tested 
in increasingly complex task environments. In this paper we 
provide a progress report on our ability to predict complex 
behavior from our current understanding of its underlying 
functional components. 

Our levels-of-analysis approach is inspired by Newell’s 
famous timescale of human activity (Newell, 1990) that 
divided mental life into time-based levels where the time 
span of each level’s processes differs from those of its 
neighbors by an order of magnitude. For example, Newell’s 
operations level emerges at about 1/3 to 3 sec (100 sec) 
while above it is the unit task level (3–30 sec or about 101 

sec) and below it is the deliberate act level (30–300 msec or 
about 10-1 sec). Our approach is congenial to, but distinct 
from, Anderson’s (2002) challenge to the cognitive 
community to show that our understanding of low level 
cognitive functions can lead us to manipulations that 
differentially influence educational outcomes; specifically, 
by manipulating low-level, theory-based, functional 
components of cognition we can span “seven orders of 
magnitude” to influence educational outcomes that take 
weeks, months, or semesters to achieve. 

In contrast to Anderson’s building blocks approach, we 
use a wide-angle lens to characterize overall model 

performance as well a set of zoom lenses to magnify the 
differences between our model and our human subjects at 
increasingly fine levels-of-analyses. Our current quest starts 
with a multi-component complex task that takes humans 12 
minutes (about 103 sec) to perform and requires a model that 
accurately predicts human performance on this task. We 
then proceed to zoom in on multiple components of our 
complex task and then to zoom in on components of those 
components. For each component and subcomponent we 
derive detailed measures of human performance and ask 
how well our model predicts performance on those 
measures. 

Taking snapshots as we zoom-in leaves us with a set of 
conflicting images. For many of our components our 
measures of human and model behavior match fairly well. 
For other components, they do not. We use the results of 
these matches and mismatches to direct our attention to (a) 
our assumptions regarding the task analysis that underlies 
our model, (b) the theory-based assumptions that underlie 
the model’s components, and (c) the mechanisms that 
control the sequencing and interleaving of cognitive 
subsystems to produce behavior that is adapted to its task 
environment.  

In the next section we describe the complex task 
environment that provides the behavior for our comparisons. 
That section is followed by a description of the actual 
experiment. Data from our model and our humans are then 
presented and examined under increasingly higher 
magnifications. We conclude with a discussion of the 
implications of our zoom lens approach for cognitive theory 
as well as for cognitive research. 

A Complex Task Environment 
Argus Prime is a complex but tractable simulated task 
environment (Gray, 2002) that we have used in a variety of 
studies (see, e.g., Gray & Schoelles, 2003; Gray, Schoelles, 
& Myers, 2004; Schoelles, 2002; Schoelles & Gray, 2001b). 
With a small matter of programming, Argus is a flexible 
simulation into which we have incorporated a variety of 
nominally related tasks.   

The version of Argus Prime discussed in this paper 
combines our basic simulated radar-operator classification 
task (Schoelles & Gray, 2001a) with a preferential choice 
decision-making task. During the 12-min scenarios used for 
this study, subjects altered between performing the 
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Classification Task and Decision-Making Task. The 
Decision-Making Task presented subjects with a list of four 
or six targets that they had already classified and asked them 
to decide which of the target set had the highest threat value. 
When the Decision-Making Task was on the screen the 
targets on the radar side of the screen (see Figure 1) kept 
moving, but subjects were unable to access the information 
required to perform the Classification Task. Hence, 
obtaining a high score on both tasks placed some time 
pressure on the subject to do the Decision-Making Task 
quickly as well as accurately. 

Classification Task  For the Classification Task the subject 
must assess the threat value of each target in each sector of a 
radar screen (depicted in Figure 1). The screen represents an 
airborne radar console with ownship at the bottom. Arcs 
divide the screen into four sectors; each sector is fifty miles 
wide. The task is dynamic since the targets have a speed and 
course. A session is scenario driven; that is, the initial time 
of appearance, range, bearing, course, speed, and altitude of 
each target are read from an experimenter-generated file. 
The scenario can contain events that change a target’s 
speed, course, or altitude. Current targets can fly off the 
screen and new targets can appear so that 18-22 targets are 
on the radar screen at any one time. 

The subject selects (i.e., hooks) a target by moving the 
cursor to its icon (i.e., track number) and clicking on it. 
When a target has been hooked, an information window 
appears (this is not shown in Figure 1, but would appear at 
the upper-right of the display) that contains the track 
number of the target hooked and the current value of target 
attributes such as speed, bearing, altitude, and course. The 
subject’s task is to combine these values into a total score, 
using an algorithm that we have taught them, and to map the 
total score onto a 7–point threat value scale. (This scale 
appears at the bottom of the information window). 

Targets must be classified once for each sector that they 
enter. If a target leaves a sector before the subject can 
classify it, it is considered incorrectly classified and a score 
of zero is assigned. A running score that indicates 
percentage of targets correctly classified is shown in the 
upper-left of the display. For this study, each Argus Prime 
scenario lasted 12-min. During this period a subject had the 
opportunity to calculate the threat value of targets between 
70 and 90 times.  

Decision–Making Task (DMT) Each scenario proceeded 
until the subject had classified 8 targets. At this point, a 
Decision-Making Task presented the subject with 4 or 6 
targets for which he or she had already calculated the threat 
value. The subject’s task was to choose the target with the 
highest threat value. 

All groups were given the track number for each of the 
Decision-Making Task alternatives in a target-column that 
appeared in the lower right of the display (see Figure 1). 
The subject’s task was to determine which target had the 
highest threat value and select that target by clicking on its 
number in the target-column. The Decision-Making Task 

ended and the classification task resumed when the subject 
clicked the CHOOSE button located below the target-column. 

On making a correct choice, feedback was given via a 
simulated explosion, the chosen aircraft was removed from 
the radar screen, and the overall percent score for decision-
making on that scenario was increased. If the subject chose 
the incorrect target, the subject’s overall percent score for 
that scenario was reduced. A running average of Decision-
Making Task performance was presented to the right of the 
classification score. After classifying or re-classifying 8 
more aircraft, another Decision-Making Task was presented. 
This sequence continued until the end of each scenario. 

The key to performing the Decision-Making Task well is 
to obtain an accurate threat value for each target in the 
decision-making table. The threat value for a target could be 
accessed in one of two ways. First, as the subject had 
already classified the target, its threat value might be 
accessed by a memory retrieval. Alternatively, if the mouse 
cursor were moved to the target’s icon in the radar window, 
its threat value would appear next to the target in a popup 
window. In considering these two alternatives, it is 
important to point out that although the Decision-Making 
Task appeared after every 8 classifications, the targets in the 
Decision-Making Task were not necessarily from the set 
that had been classified most recently. Rather, the 8 were 
chosen at random from the set of all previously classified 
targets with the constraint that the highest threat value in 
each Decision-Making Task set be unique to a single target 
(more than one target could share all but the highest threat 
value). 

In summary, for this complex task environment there are 
two major subtasks: the Classification Task and Decision-
Making Task. Both tasks heavily rely on interactive 
behavior and incorporate subtasks of visual search, memory 
encoding and retrieval, and decision making. Information 
for the Decision-Making subtask may be obtained by either 
memory retrieval or by moving the mouse cursor to over the 
target’s icon in the radar window. Hence, a key feature of 
this version of Argus Prime is that knowledge obtained in 

 
 
Figure 1: Argus Prime Radar Screen (left) and DMT target 
column (featuring 6 alternatives, to the right). 
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the course of performing one task component (the 
Classification Task) is directly relevant to performing the 
other task component (the Decision-Making Task). 

Experimental Procedure1 Subjects were randomly 
assigned to either the 0-Second Lockout (0-Lock) or 2-
Second Lockout (2-Lock) condition. These two between-
subjects conditions differed in their cost of information 
access. To obtain a threat value, the 0-Lock and 2-Lock 
groups had to locate the target on the radar screen and move 
the cursor to it. Similar to a tool-tip, the threat value then 
appeared next to the target. For 0-Lock, the threat value 
appeared as soon as the cursor moved to the target. For 2-
Lock, the threat value appeared after a 2-sec delay. 

Model Description 
The Argus Prime Model is written in ACT-R 6.0 and is fully 
compliant with all changes in the ACT-R architecture. To 
perform the task, the model uses the same task environment 
software that the subjects use. The model consists of 276 
productions of which 56 are specific to the Decision-
Making Task and 3 are required to recognize and switch 
attention to the Decision-Making Task when the 
Classification Task is interrupted. A run of the model is the 
length of a scenario, which is 12 minutes. The model runs in 
real time in order to maintain synchronization with the 
dynamic Argus task environment. 

The Argus Prime Model uses the standard ACT-R 
parameters for the activation and decay of declarative 
memory elements. It does not, however, learn the utilities of 
productions in ACT-R’s procedural memory system. The 
parameters of the vision and motor system are also the 
standard ACT-R values. 

The Decision-Making Task portion of the Argus Prime 
Model is enabled when a production detects the appearance 
of the Decision-Making Task table on the screen. The model 
moves visual attention to the table (bottom-right of Figure 
1) and finds and reads the first track number (from the top-
down) that it has not previously read. With equal probability 
it tries to find the target on the screen or remember how it 
classified this target. The search for the target on the screen 
is a random search. Search is a three-step process. First, the 
location of a track on the radar screen is determined. 
Second, attention is moved to the track to read it. Third, the 
number read is compared to the track number that is the 
target of the search. (Remember that at all times the tracks 
of from 18–22 targets appear on the radar side of the 
display, and only 4 or 6 of these are potential matches to 
those listed in the decision-making table.) If the number on 
the track matches the target of the search then the cursor is 
moved to the track and kept over it until the threat value 
appears.  

                                                             
1 The full study used three between-subjects conditions, only 

two of which will be discussed here. (For more procedural details 
see, Gray, Schoelles, & Myers, 2004). 

Both the model and humans know that each decision-
making table has one target that has the highest threat value. 
They also know that the highest possible threat value is 7. 
Hence, the model has the heuristic of choosing a target as 
the highest threat value in a decision-making table if it has a 
threat value of 7. 

If the threat value is not 7 then a comparison is made as to 
whether the current threat value is the highest seen in this 
particular Decision-Making Task. The “highest-so-far” 
information is stored in a slot in the current goal. If the 
threat value just obtained is higher than the current highest, 
it and its associated track number overwrite the current 
highest threat value and track number. At this stage, if the 
current highest threat value is a 6, then it tries to remember 
if it classified any targets higher than 6 (i.e., 7). If it fails on 
this retrieval the model will gamble that 6 is currently the 
highest and choose this target even if not all the targets in 
the table have been checked. Otherwise the model will try to 
find a target in the table that it has not yet checked. 

In summary, the model will process all targets in the 
decision-making table unless it encounters a target with a 
threat value of 6 or 7. If the threat value is 7, the model will 
immediately know that this is the highest threat value target. 
If the threat value is 6 the model will try to remember if it 
has classified any 7s. If it cannot remember classifying a 
target as a 7 it will conclude that the 6 is the highest 
possible threat value and stop processing table items. 

The model has two potential ways of accessing a target’s 
threat value. It randomly decides to either try retrieving the 
threat value from memory or obtaining the threat value from 
a search of the radar screen. The search of the radar screen 
is always successful, whereas memory retrieval might fail, 
in which case a search of the radar screen is initiated. 

Human & Model In Harmony 
Eleven human subjects were run in each of our two lockout 
conditions. Each subject completed 4 scenarios with just the 
classification task followed by 8 scenarios that mixed the 
Classification Task with the Decision-Making Task. In 
contrast, the model was run 11 times in each condition. 
Across conditions, no scenario was used by the model more 
than twice. 

Classification Task 
Although we have much to say concerning how the model 
compared to human performance in the Classification Task, 
in this short report we focus on the Decision-Making Task 
and limit our discussion of the Classification Task to one 
overall measure of performance. Hence, we can report that 
the model compares very well with human performance 
with a mean score of 58% compared to the human mean of 
61%. The 95% confidence interval (CI) for the human data 
is 58% to 65%; hence, the model’s performance falls just 
inside this interval. 
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Decision-Making Task 
Overall Accuracy At the highest level of analysis, we can 
compare mean score per scenario of the model and humans 
on the percentage of correct decisions. Both groups were 
overwhelmingly accurate in their decisions. Humans 
showed a small and non-significant difference of 94% 
accuracy in 0-lock and 92% for 2-lock [F(1, 20) = 2.12, p = 
.161] with a 95% CI of 92% to 97% for 0-Lock and 89% to 
94% for 2-Lock. The Argus Prime Model was also highly 
accurate with a mean of 92% for 0-Lock and 93% for 2-
Lock. Not only does the model do very well, but its 
performance falls within the confidence interval of the 
human data. 

Another measure of overall performance is the 
percentage of Decision-Making Tasks for which a decision 
was made. Humans and models had a maximum of 60-sec 
for each Decision-Making Task. After 60-sec, the Decision-
Making Task was scored as an error and the Classification 
Task resumed. This 60-sec timeout imposed some time 
pressure on both humans and model as neither could 
deliberate without limit.  

Our human subjects in the two lockout conditions made a 
selection in 99.9% of all Decision-Making Tasks. The 
model chose a target candidate 100% of the time. 

Number of Decision-Making Tasks Another basic 
measure of performance is the number of Decision-Making 
Tasks the subject or model received. This number depends 
on the speed with which the Classification Task is 
performed as well as the speed with which the highest threat 
valued target is chosen in the Decision-Making Task. 

Humans show a small, but not significant difference 
between lockout conditions of 5.75 (0-Lock) versus 5.48 (2-
Lock) DMTs per scenario [F(1, 20) = 0.351, p = .56]. There 
was, however, a small but significant difference of number 
of DMTs as a function of the number of targets, 2.86 for 
DMT-4 versus 2.75 for DMT-6, [F(1, 20) = 7.87, p = 
0.011]. 

The model matched the humans well on these measures 
showing an average number of 6.09 DMTs in the 0-lock and 
5.63 in the 2-lock conditions. These figures are within the 
95% CI for this measure (5.2 to 6.3 for 0-Lock and 4.9 to 
6.0 for 2-Lock). Likewise the model matches the humans on 
this measure when we compare across Decision-Making 

Task size with 2.86 for DMT-4 and 2.75 for DMT-6. Again 
this falls within the 95% CI for this measure of 2.6 to 3.1 for 
0-Lock and 2.5 to 3.0 for 2-Lock. 

We conclude from these comparisons that humans and 
models did not differ in the number of Decision-Making 
Tasks performed. 

Speed A more exacting measure of performance is the 
speed with which model and humans made their choices. 
For humans the between-subjects comparison of lockout 
conditions (see Figure 2a) was marginally significant with a 
mean time per DMT of 16.45 sec for 0-Lock and 23.56 sec 
for 2-Lock [F(1, 20) = 4.13, p = .056]. The model mirrored 
human performance showing a mean of 15.59 sec for 0-
Lock and 22.34 sec for 2-Lock [F(1, 20) = 42.55, p < .001]. 
Both of these times fall within the 95% CI (11.29 to 21.61 
sec for 0-Lock and 18.40 to 28.72 sec for 2-Lock). 

The human data also shows a significant main effect of 
size (see Figure 2b) with DMT-4 at 17.41 sec being (not 
surprisingly) faster than DMT-6 at 22.59 sec [F(1, 20) = 
15.53, p = .001]. Again this difference is captured by the 
model [F(1, 20) = 32.24, p < .001] with mean speeds of 
15.96 sec (DMT-4) and 21.97 sec (DMT-6) that fall well 
within the 95% CI for this measure (14.62 to 20.20 sec for 
DMT-4 and 17.84 to 27.34 sec for DMT-6). 

Summary of Human & Model in Harmony 
As shown by the results reported in this section, the model 
does a good job of replicating both overall and detailed 
effects found in the human data. Clearly, we have reported 
enough good fits to declare victory and to pat ourselves on 
the back for having successfully modeled human 
performance in a complex task environment. Although we 
neither dismiss nor distain our success, we feel we can learn 
more about human cognition by zooming in on a higher 
resolution of performance. 

Zooming in to Reveal Differences 
The above measures represent the standard sorts of factors 
on which human or model performance are typically 
compared. In this section we zoom in further on human and 
model performance in an attempt to find the points at which 
they begin to diverge. 

   

(a) Choice times (sec) by lockout. (b) Choice times (sec) by DMT-size. (c) Percentage of the targets checked. 

Figure 2: Comparisons between human and model subjects. (Error bars denote 95% confidence intervals for human data.) 
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Percentage of Alternatives Checked 
Going deeper than the number of Decision-Making Tasks 
performed, we can ask of human and model what 
percentage of the targets in the decision-making table were 
checked? Humans apparently guess or rely on memory as 
they check only 66% of the targets by moving to and 
clicking on its trace on the radar screen. The model never 
guesses and is, apparently, able to rely on its memory as 
across both DMT-sizes it only checks 57% of the table 
targets. Interestingly, the model and target diverge in that 
the model checks about the same percentage of targets for 
DMT-4 as DMT-6 (see Figure 2c) whereas humans check a 
significantly larger percentage of targets in the DMT-4 
condition than in the DMT-6 condition [70% vs. 62%, 
respectively, F(1, 20) = 18.46, p = .000; 95% CI: 60% to 
82% for DMT-4 and 50% to 74% for DMT-6]. 

Nonetheless, the fact that the model only checks 57% of 
all targets and achieves accuracy levels above 90% means 
that we at least partially succeeded in our objective of 
creating a model that not only successfully performs the 
task, but does so by using potentially fallible memory 
retrievals.  

Accuracy 
As mentioned above, the model captures the overall effect 
of level of accuracy of the humans as well as the lack of 
difference in accuracy between lockout conditions. 
However, zooming in we find that the model mismatches 
human behavior when we look at the effect of task size. 
Whereas humans perform significantly better on DMT-4s 
than on DMT-6s [96% vs. 90%, respectively, F(1, 20) = 
15.1, MSE = 21.6, p = .001] the model shows a slight 
difference in the opposite direction 92% vs. 94%. In 
addition, on this measure the model’s result fall outside of 
the 95% CIs for human data (93% to 98% for 0-Lock and 
88% to 92% for 2-Lock). 

A close examination of the human data revealed that for 
one-third of the errors humans chose a target with a lower 
threat value when one of the checked targets had a higher 
value. In the other two-thirds of errors humans did not check 
the target with the highest threat value; that is, they either 
satisficed before getting it or relied on an erroneous 
memory. In contrast, the model never forgets the highest-so-
far threat value and never retrieves an erroneous memory. 
(It may fail to retrieve any memory, but in that case it 
performs an overt search and check of the radar display.) 
Clearly, a better handling of memory is needed to bring 
model performance into line with human performance at 
this detailed level of analysis. 

Time Spent per Target 
Earlier we looked at the overall speed with which decisions 
were made. In this section we examine the durations of sub-
components. An important indicator of the methods used by 
operators in a Decision-Making Task is the average time per 
target check. We computed this time by dividing the total 
sum of choice times by the number of targets checked 
(including duplicate checks) and subtracting 2-sec from the 

target check times of the 2-lock group (due to the enforced 
wait before the threat value was displayed). This procedure 
makes the simplifying assumption that subjects did nothing 
but checking targets on a Decision-Making Task; i.e., it 
counts the time spent on visual search for targets as part of 
the time per check. 

An intriguing finding is that, even with lockout time 
subtracted, humans spend twice as long on 2-Lock target 
checks (7.2 sec) as on 0-Lock checks (3.1 sec). Gray et al. 
(2004) interpreted this significant difference (p < .01) as a 
strategic effort to adjust to the longer memory retention 
requirements in this condition. Unfortunately, the model 
currently has average target check times of 5.8-sec 
regardless of condition and does thus not reflect the same 
behavioral pattern. 

Check and Check Again 
Although humans and model check a similar number of the 
table targets, the model differs from humans in its 
percentage of duplicate checks; i.e., the proportion of all 
checks that were to targets that had already been checked on 
the current Decision-Making Task. 

For humans, duplicate checks make up 19.3% of all 
checks, whereas the proportion of duplicate checks for the 
model is a mere 2.2%. Humans also display a sensitivity to 
the costs of checking that the model does not. In the human 
0-lock group, 32.9% of all checks were rechecks; that is, 
checks of a target that had been already checked at least 
once. In contrast, for the human 2-lock group, rechecks 
constitute only 5.8% of all checks. As the costs for checking 
in the 2-lock case are higher (due to the lockout) this is a 
functional adaptation on part of the humans. By contrast, the 
corresponding model data for duplicate checks are only 
2.8% and 1.5% for the 0-lock and 2-lock conditions. Thus, 
the model generally tends to not check targets repeatedly, 
regardless of the checking costs. 

Summary of Zooming In 
Unlike the pattern in the previous section of the paper, the 
data reviewed in this section reveal intriguing shortcomings 
of the model. A consideration of these differences suggests 
a profound lack of knowledge on our part as to how to 
repair them without imperiling our impressive successes. 

Summary and Conclusions 
In addition to giving us a way to think about processes that 
emerge at different timescales of human activity (Newell, 
1990), Newell also warned us that an unremitting focus on 
isolated components of cognition would never enable us to 
see how these components fit together (Newell, 1973). We 
argue that Newell was right and that the time to build 
integrated models of cognitive systems is now. In some 
sense, our position is neither bold nor novel as there are 
many examples of other researchers engaged in much the 
same enterprise (for a collection of examples, see Gray, in 
press). 
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However, our call is a bit different than a call to build 
models using an architecture of cognition. Ours is a call to 
build models that faithfully reflect not only the cognitive, 
perceptual, and motor operations of embodied cognition, but 
that reflect detailed and accurate models of subsystems of 
perception (such as visual search and audition) as well as 
subsystems of cognition (such as memory and attention) 
along with more complete models of motor movements. 
Instead of building complex models for complexity’s sake 
we argue for modeling increasingly complex tasks and then 
examining the success and failure of the model on this 
complex task through an array of wide-angle and zoom 
lenses.  

Our goal is to gain a better understanding of how the 
human control system orchestrates and interleaves the 
resources at its disposal. A failure of the model to accurately 
capture increasingly detailed data should be regarded not as 
a dead end but as an opportunity to increase our 
understanding of one or more components and their 
integration as part of the cognitive system. 

We believe that our proposed approach can be fruitful in 
the scientific sense of leading to interesting research and 
productive advances in theory. Early attempts to model 
Argus Prime have resulted in research focused on visual 
search (Myers & Gray, 2005; Neth, Gray, & Myers, 2005), 
task switching (Altmann & Gray, 2002), stable but 
suboptimal performance (Fu & Gray, 2004, in press), as 
well as to a theory of resource allocation at the under 1,000 
millisecond level of analysis (Gray, Sims, Fu, & Schoelles, 
2006). 
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