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Attempts to model complex task environments can serve as
benchmarks that enable us to assess the state of cognitive
theory and to identify productive topics for future research.
Such models must be accompanied by a thorough
examination of their fit to overall performance as well as their
detailed fit to the microstructure of performance. We provide
an example of this approach in our Argus Prime Model of a
complex simulated radar operator task that combines real-
time demands on human cognitive, perceptual, and action
with a dynamic decision-making task. The generally good fit
of the model to overall performance is a mark of the power of
contemporary cognitive theory and architectures of cognition.
The multiple failures of the model to capture fine-grained
details of performance mark the limits of contemporary theory
and signal productive areas for future research.

Introduction

Understanding human cognition requires knowing how
control of semi-independent functional modules such as
visual attention, perception, movement, and memory is
integrated to accomplish complex tasks. Our understanding
of this integration may be furthered by simple laboratory
tasks, but as this understanding advances, it must be tested
in increasingly complex task environments. In this paper we
provide a progress report on our ability to predict complex
behavior from our current understanding of its underlying
functional components.

Our levels-of-analysis approach is inspired by Newell’s
famous timescale of human activity (Newell, 1990) that
divided mental life into time-based levels where the time
span of each level’s processes differs from those of its
neighbors by an order of magnitude. For example, Newell’s
operations level emerges at about 1/3 to 3 sec (10° sec)
while above it is the unit task level (3-30 sec or about 10’
sec) and below it is the deliberate act level (30-300 msec or
about 10" sec). Our approach is congenial to, but distinct
from, Anderson’s (2002) challenge to the cognitive
community to show that our understanding of low level
cognitive functions can lead us to manipulations that
differentially influence educational outcomes; specifically,
by manipulating low-level, theory-based, functional
components of cognition we can span “seven orders of
magnitude” to influence educational outcomes that take
weeks, months, or semesters to achieve.

In contrast to Anderson’s building blocks approach, we
use a wide-angle lens to characterize overall model
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performance as well a set of zoom lenses to magnify the
differences between our model and our human subjects at
increasingly fine levels-of-analyses. Our current quest starts
with a multi-component complex task that takes humans 12
minutes (about 10” sec) to perform and requires a model that
accurately predicts human performance on this task. We
then proceed to zoom in on multiple components of our
complex task and then to zoom in on components of those
components. For each component and subcomponent we
derive detailed measures of human performance and ask
how well our model predicts performance on those
measures.

Taking snapshots as we zoom-in leaves us with a set of
conflicting images. For many of our components our
measures of human and model behavior match fairly well.
For other components, they do not. We use the results of
these matches and mismatches to direct our attention to (a)
our assumptions regarding the task analysis that underlies
our model, (b) the theory-based assumptions that underlie
the model’s components, and (c) the mechanisms that
control the sequencing and interleaving of cognitive
subsystems to produce behavior that is adapted to its task
environment.

In the next section we describe the complex task
environment that provides the behavior for our comparisons.
That section is followed by a description of the actual
experiment. Data from our model and our humans are then
presented and examined under increasingly higher
magnifications. We conclude with a discussion of the
implications of our zoom lens approach for cognitive theory
as well as for cognitive research.

A Complex Task Environment

Argus Prime is a complex but tractable simulated task
environment (Gray, 2002) that we have used in a variety of
studies (see, e.g., Gray & Schoelles, 2003; Gray, Schoelles,
& Myers, 2004; Schoelles, 2002; Schoelles & Gray, 2001b).
With a small matter of programming, Argus is a flexible
simulation into which we have incorporated a variety of
nominally related tasks.

The version of Argus Prime discussed in this paper
combines our basic simulated radar-operator classification
task (Schoelles & Gray, 2001a) with a preferential choice
decision-making task. During the 12-min scenarios used for
this study, subjects altered between performing the



Classification Task and Decision-Making Task. The
Decision-Making Task presented subjects with a list of four
or six targets that they had already classified and asked them
to decide which of the target set had the highest threat value.
When the Decision-Making Task was on the screen the
targets on the radar side of the screen (see Figure 1) kept
moving, but subjects were unable to access the information
required to perform the Classification Task. Hence,
obtaining a high score on both tasks placed some time
pressure on the subject to do the Decision-Making Task
quickly as well as accurately.

Classification Task For the Classification Task the subject
must assess the threat value of each target in each sector of a
radar screen (depicted in Figure 1). The screen represents an
airborne radar console with ownship at the bottom. Arcs
divide the screen into four sectors; each sector is fifty miles
wide. The task is dynamic since the targets have a speed and
course. A session is scenario driven; that is, the initial time
of appearance, range, bearing, course, speed, and altitude of
each target are read from an experimenter-generated file.
The scenario can contain events that change a target’s
speed, course, or altitude. Current targets can fly off the
screen and new targets can appear so that 18-22 targets are
on the radar screen at any one time.

The subject selects (i.e., hooks) a target by moving the
cursor to its icon (i.e., track number) and clicking on it.
When a target has been hooked, an information window
appears (this is not shown in Figure 1, but would appear at
the upper-right of the display) that contains the track
number of the target hooked and the current value of target
attributes such as speed, bearing, altitude, and course. The
subject’s task is to combine these values into a total score,
using an algorithm that we have taught them, and to map the
total score onto a 7—point threat value scale. (This scale
appears at the bottom of the information window).

Targets must be classified once for each sector that they
enter. If a target leaves a sector before the subject can
classify it, it is considered incorrectly classified and a score
of zero is assigned. A running score that indicates
percentage of targets correctly classified is shown in the
upper-left of the display. For this study, each Argus Prime
scenario lasted 12-min. During this period a subject had the
opportunity to calculate the threat value of targets between
70 and 90 times.

Decision—Making Task (DMT) Each scenario proceeded
until the subject had classified 8 targets. At this point, a
Decision-Making Task presented the subject with 4 or 6
targets for which he or she had already calculated the threat
value. The subject’s task was to choose the target with the
highest threat value.

All groups were given the track number for each of the
Decision-Making Task alternatives in a target-column that
appeared in the lower right of the display (see Figure 1).
The subject’s task was to determine which target had the
highest threat value and select that target by clicking on its
number in the target-column. The Decision-Making Task
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Figure 1: Argus Prime Radar Screen (left) and DMT target
column (featuring 6 alternatives, to the right).

ended and the classification task resumed when the subject
clicked the CHOOSE button located below the target-column.

On making a correct choice, feedback was given via a
simulated explosion, the chosen aircraft was removed from
the radar screen, and the overall percent score for decision-
making on that scenario was increased. If the subject chose
the incorrect target, the subject’s overall percent score for
that scenario was reduced. A running average of Decision-
Making Task performance was presented to the right of the
classification score. After classifying or re-classifying 8
more aircraft, another Decision-Making Task was presented.
This sequence continued until the end of each scenario.

The key to performing the Decision-Making Task well is
to obtain an accurate threat value for each target in the
decision-making table. The threat value for a target could be
accessed in one of two ways. First, as the subject had
already classified the target, its threat value might be
accessed by a memory retrieval. Alternatively, if the mouse
cursor were moved to the target’s icon in the radar window,
its threat value would appear next to the target in a popup
window. In considering these two alternatives, it is
important to point out that although the Decision-Making
Task appeared after every 8 classifications, the targets in the
Decision-Making Task were not necessarily from the set
that had been classified most recently. Rather, the 8§ were
chosen at random from the set of all previously classified
targets with the constraint that the highest threat value in
each Decision-Making Task set be unique to a single target
(more than one target could share all but the highest threat
value).

In summary, for this complex task environment there are
two major subtasks: the Classification Task and Decision-
Making Task. Both tasks heavily rely on interactive
behavior and incorporate subtasks of visual search, memory
encoding and retrieval, and decision making. Information
for the Decision-Making subtask may be obtained by either
memory retrieval or by moving the mouse cursor to over the
target’s icon in the radar window. Hence, a key feature of
this version of Argus Prime is that knowledge obtained in



the course of performing one task component (the
Classification Task) is directly relevant to performing the
other task component (the Decision-Making Task).

Experimental Procedure' Subjects were randomly
assigned to either the 0-Second Lockout (0-Lock) or 2-
Second Lockout (2-Lock) condition. These two between-
subjects conditions differed in their cost of information
access. To obtain a threat value, the 0-Lock and 2-Lock
groups had to locate the target on the radar screen and move
the cursor to it. Similar to a tool-tip, the threat value then
appeared next to the target. For 0-Lock, the threat value
appeared as soon as the cursor moved to the target. For 2-
Lock, the threat value appeared after a 2-sec delay.

Model Description

The Argus Prime Model is written in ACT-R 6.0 and is fully
compliant with all changes in the ACT-R architecture. To
perform the task, the model uses the same task environment
software that the subjects use. The model consists of 276
productions of which 56 are specific to the Decision-
Making Task and 3 are required to recognize and switch
attention to the Decision-Making Task when the
Classification Task is interrupted. A run of the model is the
length of a scenario, which is 12 minutes. The model runs in
real time in order to maintain synchronization with the
dynamic Argus task environment.

The Argus Prime Model uses the standard ACT-R
parameters for the activation and decay of declarative
memory elements. It does not, however, learn the utilities of
productions in ACT-R’s procedural memory system. The
parameters of the vision and motor system are also the
standard ACT-R values.

The Decision-Making Task portion of the Argus Prime
Model is enabled when a production detects the appearance
of the Decision-Making Task table on the screen. The model
moves visual attention to the table (bottom-right of Figure
1) and finds and reads the first track number (from the top-
down) that it has not previously read. With equal probability
it tries to find the target on the screen or remember how it
classified this target. The search for the target on the screen
is a random search. Search is a three-step process. First, the
location of a track on the radar screen is determined.
Second, attention is moved to the track to read it. Third, the
number read is compared to the track number that is the
target of the search. (Remember that at all times the tracks
of from 18-22 targets appear on the radar side of the
display, and only 4 or 6 of these are potential matches to
those listed in the decision-making table.) If the number on
the track matches the target of the search then the cursor is
moved to the track and kept over it until the threat value
appears.

! The full study used three between-subjects conditions, only
two of which will be discussed here. (For more procedural details
see, Gray, Schoelles, & Myers, 2004).
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Both the model and humans know that each decision-
making table has one target that has the highest threat value.
They also know that the highest possible threat value is 7.
Hence, the model has the heuristic of choosing a target as
the highest threat value in a decision-making table if it has a
threat value of 7.

If the threat value is not 7 then a comparison is made as to
whether the current threat value is the highest seen in this
particular Decision-Making Task. The “highest-so-far”
information is stored in a slot in the current goal. If the
threat value just obtained is higher than the current highest,
it and its associated track number overwrite the current
highest threat value and track number. At this stage, if the
current highest threat value is a 6, then it tries to remember
if it classified any targets higher than 6 (i.e., 7). If it fails on
this retrieval the model will gamble that 6 is currently the
highest and choose this target even if not all the targets in
the table have been checked. Otherwise the model will try to
find a target in the table that it has not yet checked.

In summary, the model will process all targets in the
decision-making table unless it encounters a target with a
threat value of 6 or 7. If the threat value is 7, the model will
immediately know that this is the highest threat value target.
If the threat value is 6 the model will try to remember if it
has classified any 7s. If it cannot remember classifying a
target as a 7 it will conclude that the 6 is the highest
possible threat value and stop processing table items.

The model has two potential ways of accessing a target’s
threat value. It randomly decides to either try retrieving the
threat value from memory or obtaining the threat value from
a search of the radar screen. The search of the radar screen
is always successful, whereas memory retrieval might fail,
in which case a search of the radar screen is initiated.

Human & Model In Harmony

Eleven human subjects were run in each of our two lockout
conditions. Each subject completed 4 scenarios with just the
classification task followed by 8 scenarios that mixed the
Classification Task with the Decision-Making Task. In
contrast, the model was run 11 times in each condition.
Across conditions, no scenario was used by the model more
than twice.

Classification Task

Although we have much to say concerning how the model
compared to human performance in the Classification Task,
in this short report we focus on the Decision-Making Task
and limit our discussion of the Classification Task to one
overall measure of performance. Hence, we can report that
the model compares very well with human performance
with a mean score of 58% compared to the human mean of
61%. The 95% confidence interval (CI) for the human data
is 58% to 65%; hence, the model’s performance falls just
inside this interval.



Decision-Making Task

Overall Accuracy At the highest level of analysis, we can
compare mean score per scenario of the model and humans
on the percentage of correct decisions. Both groups were
overwhelmingly accurate in their decisions. Humans
showed a small and non-significant difference of 94%
accuracy in 0-lock and 92% for 2-lock [F(1, 20) =2.12,p =
.161] with a 95% CI of 92% to 97% for 0-Lock and 89% to
94% for 2-Lock. The Argus Prime Model was also highly
accurate with a mean of 92% for 0-Lock and 93% for 2-
Lock. Not only does the model do very well, but its
performance falls within the confidence interval of the
human data.

Another measure of overall performance is the
percentage of Decision-Making Tasks for which a decision
was made. Humans and models had a maximum of 60-sec
for each Decision-Making Task. After 60-sec, the Decision-
Making Task was scored as an error and the Classification
Task resumed. This 60-sec timeout imposed some time
pressure on both humans and model as neither could
deliberate without limit.

Our human subjects in the two lockout conditions made a
selection in 99.9% of all Decision-Making Tasks. The
model chose a target candidate 100% of the time.

Number of Decision-Making Tasks Another basic
measure of performance is the number of Decision-Making
Tasks the subject or model received. This number depends
on the speed with which the Classification Task is
performed as well as the speed with which the highest threat
valued target is chosen in the Decision-Making Task.

Humans show a small, but not significant difference
between lockout conditions of 5.75 (0-Lock) versus 5.48 (2-
Lock) DMTs per scenario [F(1, 20) = 0.351, p = .56]. There
was, however, a small but significant difference of number
of DMTs as a function of the number of targets, 2.86 for
DMT-4 versus 2.75 for DMT-6, [F(1, 20) = 7.87, p =
0.011].

The model matched the humans well on these measures
showing an average number of 6.09 DMTs in the 0-lock and
5.63 in the 2-lock conditions. These figures are within the
95% CI for this measure (5.2 to 6.3 for 0-Lock and 4.9 to
6.0 for 2-Lock). Likewise the model matches the humans on
this measure when we compare across Decision-Making
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Task size with 2.86 for DMT-4 and 2.75 for DMT-6. Again
this falls within the 95% CI for this measure of 2.6 to 3.1 for
0-Lock and 2.5 to 3.0 for 2-Lock.

We conclude from these comparisons that humans and
models did not differ in the number of Decision-Making
Tasks performed.

Speed A more exacting measure of performance is the
speed with which model and humans made their choices.
For humans the between-subjects comparison of lockout
conditions (see Figure 2a) was marginally significant with a
mean time per DMT of 16.45 sec for 0-Lock and 23.56 sec
for 2-Lock [F(1, 20) = 4.13, p = .056]. The model mirrored
human performance showing a mean of 15.59 sec for 0-
Lock and 22.34 sec for 2-Lock [F(1, 20) =42.55, p <.001].
Both of these times fall within the 95% CI (11.29 to 21.61
sec for 0-Lock and 18.40 to 28.72 sec for 2-Lock).

The human data also shows a significant main effect of
size (see Figure 2b) with DMT-4 at 17.41 sec being (not
surprisingly) faster than DMT-6 at 22.59 sec [F(1, 20) =
15.53, p = .001]. Again this difference is captured by the
model [F(1, 20) = 32.24, p < .001] with mean speeds of
15.96 sec (DMT-4) and 21.97 sec (DMT-6) that fall well
within the 95% CI for this measure (14.62 to 20.20 sec for
DMT-4 and 17.84 to 27.34 sec for DMT-6).

Summary of Human & Model in Harmony

As shown by the results reported in this section, the model
does a good job of replicating both overall and detailed
effects found in the human data. Clearly, we have reported
enough good fits to declare victory and to pat ourselves on
the back for having successfully modeled human
performance in a complex task environment. Although we
neither dismiss nor distain our success, we feel we can learn
more about human cognition by zooming in on a higher
resolution of performance.

Zooming in to Reveal Differences

The above measures represent the standard sorts of factors
on which human or model performance are typically
compared. In this section we zoom in further on human and
model performance in an attempt to find the points at which
they begin to diverge.

Model Model

== Humans 20

DMT-4

(a) Choice times (sec) by lockout.

(b) Choice times (sec) by DMT-size.

DMT-4 DMT-6
DMT-6

(c) Percentage of the targets checked.

Figure 2: Comparisons between human and model subjects. (Error bars denote 95% confidence intervals for human data.)



Percentage of Alternatives Checked

Going deeper than the number of Decision-Making Tasks
performed, we can ask of human and model what
percentage of the targets in the decision-making table were
checked? Humans apparently guess or rely on memory as
they check only 66% of the targets by moving to and
clicking on its trace on the radar screen. The model never
guesses and is, apparently, able to rely on its memory as
across both DMT-sizes it only checks 57% of the table
targets. Interestingly, the model and target diverge in that
the model checks about the same percentage of targets for
DMT-4 as DMT-6 (see Figure 2¢) whereas humans check a
significantly larger percentage of targets in the DMT-4
condition than in the DMT-6 condition [70% vs. 62%,
respectively, F(1, 20) = 18.46, p = .000; 95% CI: 60% to
82% for DMT-4 and 50% to 74% for DMT-6].

Nonetheless, the fact that the model only checks 57% of
all targets and achieves accuracy levels above 90% means
that we at least partially succeeded in our objective of
creating a model that not only successfully performs the
task, but does so by using potentially fallible memory
retrievals.

Accuracy

As mentioned above, the model captures the overall effect
of level of accuracy of the humans as well as the lack of
difference in accuracy between lockout conditions.
However, zooming in we find that the model mismatches
human behavior when we look at the effect of task size.
Whereas humans perform significantly better on DMT-4s
than on DMT-6s [96% vs. 90%, respectively, F(1, 20) =
15.1, MSE = 21.6, p = .001] the model shows a slight
difference in the opposite direction 92% vs. 94%. In
addition, on this measure the model’s result fall outside of
the 95% CIs for human data (93% to 98% for 0-Lock and
88% to 92% for 2-Lock).

A close examination of the human data revealed that for
one-third of the errors humans chose a target with a lower
threat value when one of the checked targets had a higher
value. In the other two-thirds of errors humans did not check
the target with the highest threat value; that is, they either
satisficed before getting it or relied on an erroneous
memory. In contrast, the model never forgets the highest-so-
far threat value and never retrieves an erroneous memory.
(It may fail to retrieve any memory, but in that case it
performs an overt search and check of the radar display.)
Clearly, a better handling of memory is needed to bring
model performance into line with human performance at
this detailed level of analysis.

Time Spent per Target

Earlier we looked at the overall speed with which decisions
were made. In this section we examine the durations of sub-
components. An important indicator of the methods used by
operators in a Decision-Making Task is the average time per
target check. We computed this time by dividing the total
sum of choice times by the number of targets checked
(including duplicate checks) and subtracting 2-sec from the
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target check times of the 2-lock group (due to the enforced
wait before the threat value was displayed). This procedure
makes the simplifying assumption that subjects did nothing
but checking targets on a Decision-Making Task; i.e., it
counts the time spent on visual search for targets as part of
the time per check.

An intriguing finding is that, even with lockout time
subtracted, humans spend twice as long on 2-Lock target
checks (7.2 sec) as on 0-Lock checks (3.1 sec). Gray et al.
(2004) interpreted this significant difference (p < .01) as a
strategic effort to adjust to the longer memory retention
requirements in this condition. Unfortunately, the model
currently has average target check times of 5.8-sec
regardless of condition and does thus not reflect the same
behavioral pattern.

Check and Check Again

Although humans and model check a similar number of the
table targets, the model differs from humans in its
percentage of duplicate checks; i.e., the proportion of all
checks that were to targets that had already been checked on
the current Decision-Making Task.

For humans, duplicate checks make up 19.3% of all
checks, whereas the proportion of duplicate checks for the
model is a mere 2.2%. Humans also display a sensitivity to
the costs of checking that the model does not. In the human
0-lock group, 32.9% of all checks were rechecks; that is,
checks of a target that had been already checked at least
once. In contrast, for the human 2-lock group, rechecks
constitute only 5.8% of all checks. As the costs for checking
in the 2-lock case are higher (due to the lockout) this is a
functional adaptation on part of the humans. By contrast, the
corresponding model data for duplicate checks are only
2.8% and 1.5% for the 0-lock and 2-lock conditions. Thus,
the model generally tends to not check targets repeatedly,
regardless of the checking costs.

Summary of Zooming In

Unlike the pattern in the previous section of the paper, the
data reviewed in this section reveal intriguing shortcomings
of the model. A consideration of these differences suggests
a profound lack of knowledge on our part as to how to
repair them without imperiling our impressive successes.

Summary and Conclusions

In addition to giving us a way to think about processes that
emerge at different timescales of human activity (Newell,
1990), Newell also warned us that an unremitting focus on
isolated components of cognition would never enable us to
see how these components fit together (Newell, 1973). We
argue that Newell was right and that the time to build
integrated models of cognitive systems is now. In some
sense, our position is neither bold nor novel as there are
many examples of other researchers engaged in much the
same enterprise (for a collection of examples, see Gray, in
press).



However, our call is a bit different than a call to build
models using an architecture of cognition. Ours is a call to
build models that faithfully reflect not only the cognitive,
perceptual, and motor operations of embodied cognition, but
that reflect detailed and accurate models of subsystems of
perception (such as visual search and audition) as well as
subsystems of cognition (such as memory and attention)
along with more complete models of motor movements.
Instead of building complex models for complexity’s sake
we argue for modeling increasingly complex tasks and then
examining the success and failure of the model on this
complex task through an array of wide-angle and zoom
lenses.

Our goal is to gain a better understanding of how the
human control system orchestrates and interleaves the
resources at its disposal. A failure of the model to accurately
capture increasingly detailed data should be regarded not as
a dead end but as an opportunity to increase our
understanding of one or more components and their
integration as part of the cognitive system.

We believe that our proposed approach can be fruitful in
the scientific sense of leading to interesting research and
productive advances in theory. Early attempts to model
Argus Prime have resulted in research focused on visual
search (Myers & Gray, 2005; Neth, Gray, & Myers, 2005),
task switching (Altmann & Gray, 2002), stable but
suboptimal performance (Fu & Gray, 2004, in press), as
well as to a theory of resource allocation at the under 1,000
millisecond level of analysis (Gray, Sims, Fu, & Schoelles,
2006).
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