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Abstract

An increasing body of evidence has shown that attention is a multi-type and multilevel cognitive faculty. The

dominant computational modeling approaches to attention have often focused on one specific type of attention at one

specific level. In particular, various connectionist modeling techniques at the subsymbolic level have been widely

adopted. In this paper, we report a symbolic computational model of the Attentional Network Test, which simulta-

neously involves different types of attention (alerting, orienting, and executive control), each subserved by distinctive

attentional networks in the brain. The model was developed in ACT-R, a rule-based cognitive architecture. The results

show that the model, by sequentially firing rules at a rate of about one every 40 ms, was able to capture the effect of each

attentional network. The model implies that while the attentional networks can be distinguished at both neuroana-

tomical and behavioral levels, different attentional networks may adopt similar computational operations at least at a

symbolic rule level.

� 2004 Elsevier B.V. All rights reserved.
1. Introduction

Although ‘‘everybody knows what attention is’’

(James, 1890), the nature of attention remains

elusive after more than one hundred years of active

research and hundreds of publications in this

subject. This is hardly surprising given the com-
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plexity of the phenomenon itself. A large body of

evidence, in the broad areas of cognitive psychol-

ogy and cognitive neuroscience, has demonstrated

that attention is not a unitary but a diversified

faculty of the human cognitive system (Parasur-

aman & Davies, 1984; Posner & Raichle, 1994) – it

is subserved by multiple interrelated attentional

networks in the brain and manifests itself in a
variety of types and at different levels in almost

every aspect of human behavior, from perception

and motor control to working memory, skill ac-

quisition, response selection, and consciousness
ed.
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(e.g., Luck, Woodman, & Vogel, 2000; Pashler,

1998; Posner, DiGirolamo, & Fernandez-Duque,

1997).

Partly because of this complexity, traditional

computational modeling approaches to human

attention have typically focused on one specific
type of attention at one specific level. In particular,

various connectionist modeling techniques at the

subsymbolic level have been widely adopted

(Churchland & Sejnowski, 1992; Rumelhart &

McClelland, 1986). Examples include Cohen and

colleagues� well-known connectionist model of

executive control of attention for the Stroop task

(Cohen, Dunbar, & McClelland, 1990) and Mo-
zer�s connectionist modeling work of selective

spatial attention in object recognition (Mozer,

1991). For more recent development and reviews

in these lines of research, see (Botvinick, Braver,

Barch, Carter, & Cohen, 2001; Mozer & Sitton,

1998; O�Reilly & Munakata, 2000).

While it has been very fruitful, this practice is

problematic mainly due to two reasons. First, by
focusing on only a few specific types of attention, it

fails to adequately appreciate the possible inter-

actions among different varieties of attention and

different attentional networks. Second by empha-

sizing only the subsymbolic level of analysis, it

encounters difficulties in understanding the link

between neural information processing and the

operation of attention at the symbolic/cognitive
level, which is psychologically as real as the un-

derlying neurophysiological mechanisms of atten-

tion (e.g., Newell, 1990).

In this article, we attempt to address these is-

sues by reporting a symbolic computational model

of attention that simultaneously simulated the es-

sential operations of multiple attentional net-

works. The model was developed in ACT-R, a
production rule based hybrid cognitive architec-

ture (Anderson, 1993; Anderson & Lebiere, 1998).

We believe that such a model offers an opportunity

for us to explore the psychologically plausible

symbolic foundations of attention and, more im-

portantly, to compare/contrast it with neurally-

based connectionist models of attention.

It should be noted that developing symbolic
models of attention is not new. Byrne and An-

derson (1998) augmented ACT-R with a set of
perceptual-motor modules, which implemented

some rudimentary visuospatial attention func-

tions. Altmann and Davidson (2001) and Lovett

(2002) have developed ACT-R models of the

Stroop task, in which executive control of atten-

tion plays a major role. Our model differs from
these models in two aspects. First, our model si-

multaneously simulates multiple attentional net-

works, thus capturing the operational features of

different types of attention, including alerting,

orienting, and executive control. Second, both

Altmann and Davidson�s and Lovett�s models re-

lied extensively on the subsymbolic mechanisms of

ACT-R to implement parallel processing and ex-
ecutive control. In our model, symbolic operations

at the production rule level are emphasized.

This article is structured as follows. We first

briefly introduce the attentional networks account

of human attention and an experimental paradigm

that was designed to simultaneously measure the

performance of multiple attentional networks. We

then briefly introduce ACT-R. Finally, an ACT-R
model of human attentional networks is reported

and discussed.
2. Human attentional networks

Recent advances in cognitive psychology and

cognitive neuroscience have suggested that there
exist multiple attentional networks in the brain,

each of which subserves a different type of atten-

tion (Fan, Raz, & Posner, 2003c; Posner & Deh-

aene, 2000; Posner & Petersen, 1990; Posner &

Raichle, 1994). At least three attentional networks,

for alerting, orienting, and executive control, have

been distinguished at both cognitive and neuro-

anatomical levels. Specifically, alerting involves a
change in the internal state to become ready for

any incoming task-related events. Alerting is an

important source of attention in the sense that

maintaining an adequate level of alertness is criti-

cal for optimal performance. Neuroimaging evi-

dence has revealed that the alerting network

consists of some frontal and parietal areas partic-

ularly of the right hemisphere. Lesions of these
areas reduce alertness. Orienting, closely related to

the conventional selective visuospatial attention,
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involves selectively focusing on one or a few items

out of many candidate inputs. Apparently, ori-

enting can be voluntary (top-down and controlled)

or involuntary (bottom-up and automatic), overt

(with head/eye movement) or covert (without

head/eye movement), location-based (orienting to
spatial locations) or object-based (orienting to

objects). Evidence has shown that the orienting

network includes parts of the superior and inferior

parietal lobe, frontal eye fields and such subcorti-

cal areas as the superior colliculus of the midbrain

and the pulvinar and reticular nucleus of the

thalamus. Finally, executive control of attention is

related to monitoring and resolving conflicts in the
presence of competing information. Executive

control is often needed in higher level mental op-

erations including planning, decision making, er-

ror detection, novel or not well-learned responses,

and overcoming habitual actions. Converging ev-

idence from neuroimaging and neuropathological

studies has suggested that the executive control

network consists of the midline frontal areas (an-
terior cingulate cortex) and lateral prefrontal cor-

tex. See Posner and Dehaene (2000) for a more

detailed description of these attentional networks.

An experimental paradigm called the Atten-

tional Network Test (ANT) was recently devel-
Fig. 1. A sketch of the
oped to simultaneously measure the performance

of the three attentional networks and evaluate

their interrelationships (Fan, MaCandliss, Som-

mer, Raz, & Posner, 2002). It is essentially a

combination of a spatial cueing task (Posner,

1980) and a flanker task (Eriksen & Eriksen, 1974),
as illustrated in Fig. 1. In each ANT trial, the

participants look at a fixation point in the center

of a computer screen and wait for the stimulus to

appear. The stimulus consists of a row of five

horizontal arrows and the participants� task is to

report the direction (left or right) that the center

arrow (the target) points to by pressing a corre-

sponding key as quickly as possible. The reaction
time (RT) is recorded. The four arrows sur-

rounding the target, with two on each side, are

called the flankers. These flanker arrows point ei-

ther in the same direction as that of the target (the

congruent condition), or in the opposite direction

(the incongruent condition). An additional condi-

tion (the neutral condition) is also included in

which the flankers are four straight lines with no
arrowheads. One manipulation is that the stimulus

row is not presented at the fixation location. In-

stead, it can be presented at two locations, either

above a fixation point (top) or below it (bottom).

Therefore, to identify the direction of the target,
design of ANT.
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presumably the participants have to shift their

attention either upward or downward to the

stimulus row. Yet another manipulation is the cue

condition. That is, the stimulus row may be pre-

ceded by a cue (the cued condition) or may not

(the no-cue condition). In particular, when there is
a cue, this cue may be presented at the center fix-

ation location (the center-cue condition), at the

top or bottom location where the stimulus row is

to appear (the spatial-cue condition), or at both

top and bottom locations (the double-cue condi-

tion). Therefore, while a spatial-cue precisely pre-

dicts where the stimulus is to appear, in both the

center-cue condition and the double-cue condition
the participant cannot infer that information from

the cue.

The ANT paradigm adopts the following for-

mula to measure the efficiency of each of the three

attentional networks:

Alerting efficiency

¼RT(no-cue))RT(double-cue),

Orienting efficiency
¼RT(center-cue))RT(spatial-cue),

Executive control efficiency

¼RT(incongruent))RT(congruent).

The underlying rationale is as follows. First,

since the appearance of a cue in the double-cue

condition precisely alerts the participants that the

stimulus row is going to occur after 500 ms and

there is no such alerting in the no-cue condition, the
RT difference between the no-cue condition and the

double-cue condition can be used as a measure of

the alerting efficiency. 1 Second, in both the center-

cue condition and the spatial-cue condition the

participants are alerted when the stimulus row is

going to occur. The difference is where it is going to

occur: while the spatial-cue precisely tells the par-

ticipants where the stimulus row is going to appear,
1 Note that both the double-cue and center-cue conditions

alert the participants that the stimulus row is going to occur but

do not tell where. The reason that the double-cue condition

instead of the center-cue condition is used to define the alerting

efficiency is that the double-cue condition involves diffused

attention, which is more similar to the situation in the no-cue

condition. Similar reasoning underlies the definition of the

orienting effect: both the center-cue and spatial-cue conditions

involve non-diffused cued attention.
the center-cue does not. Presumably, knowing the

stimulus location before the stimulus appears al-

lows the participants to be better prepared for re-

sponse in that they can shift attention in advance to

the desired location. As a result, the RT difference

between the center-cue condition and spatial-cue
condition serves a measure of the orienting effi-

ciency. Finally, compared to the congruent condi-

tion, the presence of incongruent flankers in the

incongruent condition results in interference in re-

sponse. Evidence has shown that this type of in-

terference shares the largely identical brain

foundations with that in the Stroop effect and re-

quires similar executive control of attention to re-
solve (see Fan, Flombaum, McCandliss, Thomas,

& Posner, 2003a). Therefore, the executive control

cost is measured as the RT difference between the

incongruent and congruent conditions.

Fan et al. (2002) tested 40 normal adult partic-

ipants using the ANT paradigm. They adopted a

balanced within-subject factorial design and pre-

sented 3 blocks of trials to each participant with 96
trials in each block (3 flanker conditions� 4 cue

conditions� 2 possible stimulus locations� 2 pos-

sible target arrow directions� 2 repetitions). Their

reaction time results led to the efficiency measures

of 47� 18 ms, 51� 21 ms, and 84� 25 ms, for

alerting, orienting, and executive control, respec-

tively. A further correlation test showed that the

effects of the three attentional networks were sta-
tistically independent.

ANT as a general and robust framework for

measuring attentional efficiency has been evalu-

ated in a variety of studies. For example, Rueda

et al. (in press) adopted the ANT paradigm to

study human attentional development. They

measured the attentional efficiency of children in

different age groups (from 6 to 10 years old) and
compared the results with adults. They found that

each network showed a different developmental

course. ANT has also been used in various patient

populations, including attention deficit hyperac-

tivity disorder (ADHD, Booth, Carlson, & Tuck-

er, 2001), and borderline personality disorders

(Posner et al., 2002). More recently, the attentional

efficiency measures from ANT have been linked to
neuroimaging results and genetic variations (Fan,

Fossella, Sommer, Wu, & Posner, 2003b).
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3. ACT-R

ACT-R is a production rule based cognitive

modeling architecture developed by John Ander-

son and colleagues over a period of nearly two
decades (Anderson, 1983, 1990, 1993; Anderson &

Bower, 1973; Anderson & Lebiere, 1998). In es-

sence, ACT-R explains human cognition by pro-

posing a model of the knowledge structures and

knowledge deployment that underlie cognition.

Although ACT-R consists of a nontrivial sub-

symbolic component for computations involving

activation and association, it relies extensively on
various symbolic structures for knowledge repre-

sentation. For example, ACT-R makes a funda-

mental distinction between declarative and

procedural knowledge (see also Schacter & Tul-

ving, 1994). Declarative knowledge corresponds to

things people are aware of and can usually de-

scribe to others. Procedural knowledge is knowl-

edge that people display in behavior but are not
conscious of. Declarative knowledge in ACT-R is

represented in terms of chunks. Procedural

knowledge is represented in terms of production

rules, which are condition-action pairs. Both

chunks and production rules are fundamental

symbolic structures in ACT-R and are regarded as

the atomic components of thought in the sense that

they are as far down as one can go in the symbolic
decomposition of cognition. In ACT-R, on aver-

age every 50 ms, one production rule is chosen to

fire, a few declarative chunks are processed, and

cognition advances one step. Therefore, it is

claimed that ACT-R captures the symbolic grain

size of cognition.

Canonical ACT-R is mainly a theory of higher-

level cognition, excelling in modeling phenomena
in human memory, learning, and problem solving.

One recent advance in ACT-R is the release of

ACT-R 5.0, which intends to close the gap be-

tween ACT-R and the external environment by

augmenting ACT-R with a set of perceptual-motor

modules (Byrne & Anderson, 1998). To implement

the visual system, ACT-R 5.0 implements some

rudimentary attention functions. For example,
there is a move-attention command that higher

cognition can send to the visual system. This

command allows the visual system to shift atten-
tion to a designated location in the environment

and then start visual recognition. The time cost of

this command is specified by a parameter, which is

typically set to be 85 ms, a reasonable setting based

on many previous studies (see Egeth & Yantis,

1997).
Although ACT-R 5.0 represents important

progress in the symbolic modeling of attention,

one limitation is that it only handles the spatial

orienting type of attention. It is not clear how

ACT-R 5.0 can be used to model other types of

attention such as alerting and executive control at

the symbolic rule level.
4. ANT on ACT-R

4.1. The model

We developed a computational model for the

ANT task in the framework of ACT-R 5.0. Our

purpose is two-fold. First, we want to explore how
alerting and executive control of attention can be

modeled symbolically in ACT-R 5.0 and how the

three types of attention work together to produce

the cognitive performance. In particular, we hope

to show how the effects of different attentional

networks can be explained by just firing different

sets of production rules but without resorting to

various subsymbolic mechanisms. Second, such a
model offers a possibility for us to cross-validate

those models based on various connectionist

modeling results and neuroimaging data, and by

doing so we hope that we can probe the possible

connections about the function of attention among

different levels of description.

We started by analyzing the major functional

components in the ANT task. Based on the design
presented in Fig. 1, we distinguished 6 stages in

performing a generic ANT trial (see Fig. 2):

1. Fixation and cue expectation. In this stage, the

participant fixates at the fixation point and pre-

pares for something to occur. Note that at this

time the expectation of the participant was un-

certain – either a cue (in the cued conditions)

or a stimulus row (in the no-cue condition)
could appear. As a result, we hypothesize that

the participant has to engage in an uncertain



Fig. 2. A functional decomposition of the ANT task. The number in parentheses in each stage represents the number of production

rules that are used to implement these functions.
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preparatory state that is appropriate for either
possibility.

2. Cue or stimulus. This second stage starts when a

visual object appears, which can be either a cue

(in the cued conditions) or a stimulus row (in

the no-cue condition). A decision has to be made

based on what appears. If it is a cue, go to stage 3

for cue processing. If it is a stimulus row, go di-

rectly to stage 5 for stimulus processing.
3. Cue processing. In this stage the cue is pro-

cessed and attention is shifted to the corre-
sponding cued location. More specifically, for
the center-cue, attention remains at the center

fixation location. For the spatial-cue, attention

is moved to the cued location (top or bottom)

where a stimulus row is to appear. For the

double-cue condition, instead of assuming that

attention is diffused to both the cued locations,

we hypothesize that attention shifts randomly

to one of the cued locations. We will discuss
this issue in more detail in the model discus-

sion section.



2 Note that the RT of 620 ms shown in this trace is different

from the RT of the same condition in Table 1, which is 580 ms.

The reason is that 580 ms is an average result of many trials. In

some trials, the RT may be lower depending on the outcome of

conflict resolution.
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4. Stimulus expectation. In this stage the partici-

pant is expecting a stimulus to appear, with at-

tention remaining at the cued location(s). Note

that in this stage the participant has engaged in

a preparatory state that is particularly suitable
for stimulus processing.

5. Stimulus processing. In this stage the stimulus

has to be processed and the direction of the tar-

get arrow identified. Specifically, in the spatial-

cue condition, since attention has already been

allocated to the location where the stimulus ap-

pears, presumably a more accurate and rapid

stimulus processing can occur. In the center-
cue condition, an additional attentional move-

ment needs to be initiated to shift attention to

the stimulus location. Depending upon the re-

sult from stage 3, similar operations need to

be performed in the double-cue condition.

Again, we leave the details of this condition to

the model discussion section.

6. Response. In this final stage, the participant
responds by initiating a key pressing process

based on the result from the previous stage.

We implemented our model by mapping these

functional components into ACT-R production

rules. We used 36 rules to fully implement these

functions and cover all the conditions. The dis-

tribution of the rules in each stage is also shown

in Fig. 2. The name and a brief description of
each rule are provided in Appendix A.

With these rules our model could perform the

ANT task and interact with the same experi-

mental environment that human participants

use. In a typical simulation trial, visual objects,

including the fixation, the cue(s), and the stim-

ulus, are presented in a computer window in a

timed sequence according to the design as shown

in Fig. 1. The model can ‘‘see’’ what is currently

in the window through its visual system. At any

time point, based on the goal and what the

model currently ‘‘sees’’, one of the best matching

rules is selected to fire, which may lead to a

chain of more rule firings. In the current model

each rule firing is set to cost 40 ms instead of

the default 50 ms (see the model discussion

section for more details). The trial ends when

the model makes a response by ‘‘pressing’’ a

response key. The time from the stimulus pre-
sentation to the key-press is then recorded as the

reaction time.

As an example, a running trace generated when

the model performs a center-cue incongruent ANT

trial is listed in Appendix B. It shows that the trial

starts at time 0 and the fixation lasts for 1255 ms,
during which two production rules have fired. A

center cue appears at time 1255 and disappears at

time 1355 (for a duration of 100 ms). Two pro-

duction rules have fired during this cue processing

period. At time 1755 (after a 400 ms wait) the

stimulus appears. It then takes eight production

rules firing in sequence for the model to make a

response and initiate a key-press at time 2165. The
key-press is not finished until time 2375, resulting

in a reaction time of 620 ms (2375) 1755). 2

The ACT-R code of the model can be down-

loaded online from http://www.sahs.uth.tmc.edu/

hwang/antmodeling.htm.

4.2. Model evaluation

We evaluated the performance of the model by

using the model as a simulated human participant

to perform the ANT experiment. The experimental

design was exactly same as that used by Fan et al.

(2002), with 3 blocks of 96 randomly mixed trials.

The RT results of testing 100 ‘‘simulated subjects’’

are summarized in Table 1 and Fig. 3, along with

the experimental results from Fan et al. (2002). A
correlation analysis shows very high correlations

(0.99 for RTs and 0.97 for error rates) between the

simulation and experimental results. From the re-

sults in Table 1, we estimated the effects of the

three attentional networks, which are shown in

Table 2, together with Fan et al. (2002)�s results. It
shows a close match between the two sets of data,

with a notable exception that the simulated stan-
dard deviations are consistently smaller than the

empirical ones. The reason is that we did not add

any between-subject variance in our model. As a

http://www.sahs.uth.tmc.edu/hwang/antmodeling.htm
http://www.sahs.uth.tmc.edu/hwang/antmodeling.htm


Table 1

Means RT and error rates under each condition

Cue type

Congruency No-cue Center-cue Double-cue Spatial-cue

(a) Mean RTs� Standard deviations in ms from the experiment and (the model simulation)

Neutral 529� 47 (527� 3) 483� 46 (487� 3) 472� 44 (467� 5) 442� 39 (441� 4)

Congruent 530� 49 (526� 4) 490� 48 (486� 3) 479� 45 (466� 6) 446� 41 (441� 4)

Incongruent 605� 59 (621� 14) 585� 57 (580� 14) 574� 57 (562� 15) 515� 58 (522� 16)

(b) Error rates in % from the experiment and (the model simulation)

Neutral 1.17 (0.96) 0.93 (0.92) 1.56 (0.71) 0.78 (0.79)

Congruent 0.73 (0.75) 0.54 (1.00) 0.59 (0.79) 0.44 (0.83)

Incongruent 3.49 (3.25) 4.88 (3.79) 4.27 (3.50) 3.51 (2.67)

Fig. 3. Mean RTs in various conditions from (a) the experi-

mental study and (b) our model simulation.

Table 2

Effects of attentional networks

Attentional networks

Effects (ms)

(mean� SD)

Alerting Orienting Executive

control

Experiment 47� 18 51� 21 84� 25

Simulation 55� 7.4 45� 7.0 86� 7.4
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result, these simulated variances actually reflected
those within-subject variations in performing the

ANT task. Although we can add some between-

subject noise to get a better fit of the variances, it

leads to a more complicated model.

One of the key results in Fan et al. (2002)

concerns the interrelationship among the three

attentional networks. They found that the effi-

ciency measures of the three attentional networks
were independent of each other based upon the

statistics of correlations. Similar independences

were found in the simulation results, which are

shown in Table 3, along with empirical data from

Fan et al. (2002). It is clear that the two sets of

data reveal similar correlation structures among

the measures. An examination of the model sug-

gests that the independence resulted from the dif-
Table 3

Correlations between attentional networksa

Results Alerting Orienting Executive

control

Orienting

Experiment 0.08

Simulation 0.04

Executive control

Experiment 0.05 )0.12
Simulation )0.07 )0.14

Mean RT

Experiment 0.09 0.29 0.44b

Simulation )0.14 )0.15 0.80b

aCorrelations are calculated based on the relevant measures

of all participants (or simulated participants).
b Correlation is significant at the 0.01 level.
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ferent sets of rules underlying different testing

conditions. The significant positive correlation

between the executive control effect and the overall

mean RT, shown in both the experiment and the

simulation, is interesting. It probably reflects the

strong influence of the RTs in the incongruent
condition on the overall mean RT. Overall these

results suggest that the model captured well the

various attentional effects that the ANT task was

designed to measure.

4.3. Model discussion

What are the mechanisms underlying the mod-
el�s attention-related performance? Here we briefly

report several major features of the model that we

think are critically responsible for the performance.

First, to perform any one ANT trial, in stage 5

(stimulus processing), one key-press process (for

responding) and at least one move-attention pro-

cess (for encoding the target) are necessary. Based

on well-established evidence ACT-R presets the
time cost of these processes to be 210 and 85 ms,

respectively. We did not change these settings.

Subtracting these costs from the RT measures

gives us a rough range of time that the production

rules have to explain. Note that although the

model consists of 36 production rules, in any one

trial not all of them will fire (or are eligible to fire)

because they are programmed to cover all different
conditions. When multiple rules are applicable in a

situation, our model relies on ACT-R�s built-in

conflict resolution mechanisms to choose one to

fire.

Taken together, these settings allow us to predict

how many production rules are recruited in each

trial. More specifically, the model uses, depending

upon the conditions, about 4–8 production rules to
perform a trial, for total costs of about 160–320 ms.

The trace listed in Appendix B demonstrates this.

It shows that after the stimulus appears, eight

production rules fire in sequence (notice-stimulus-

with-centercue-and-shift, attend-to-at-large-target,

attended-item-is-left-to-the-target, refocus-again-if-

incongruent, harvest-target, goahead-responding-if-

it-is-the-target, decide-left, respond), resulting in
two move-attention and one key-press commands.

The final reaction time is 620 ms.
Second, although the experimental results in

Fan et al. (2002) show a performance with very

high accuracy, participants made errors, in all

conditions. How could the model make errors? We

speculated that error could come in two major

sources: random noise in the response and the
distraction caused by the incongruent flankers.

While the first source might be responsible for the

baseline (neutral condition) error rate, which is

about 1.11%, the second source might account for

the higher error rate in the incongruent conditions,

which is about 4.04%. We modeled the first source

of error through two production rules (random-left

and random-right), which say to respond left (or
right) regardless of the direction of the target ar-

row. They compete with the decide-left or decide-

right rule to determine the response in each trial,

with their chances of winning being very low (the

odds are set to be 1:20). The second source is

modeled through a production called hurryup-

responding-no-matter-whether-target-or-not. This

rule rushes to respond as soon as an arrow, which
may not be the center target arrow, is encoded.

This rule competes, again with relatively low

winning probability, with more cautious rules that

emphasize accuracy (e.g., checking and refocusing)

and causes errors if it wins in the incongruent

condition (the odds are 1:3). As shown in Table 1,

the model error rates are about 0.85 and 3.30, for

the baseline average and the incongruent condition
respectively, indicating a good match to the

experimental data.

Third, how has the alerting effect been ex-

plained in the model? The empirical measure of 47

ms is about the time cost of one ACT-R produc-

tion rule. This is indeed one major mechanism

underlying how our model generated the alerting

effect. There is one critical production rule that can
fire in the no-cue condition but not in any other

cued condition. This rule is called not-cue-so-

switch-state-and-shift-attention (rule 4 in Appendix

A). As we mentioned earlier, since either a cue or a

stimulus row could occur following stage 1, the

participant had to engage in an uncertain prepa-

ratory state. This was different from the specific

and certain preparatory state (for stimulus-pro-
cessing) following stage 4 in the cued conditions.

This rule summarizes the cost associated with the
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state change (from expecting either a cue or a

stimulus to specifically expecting a stimulus) and is

responsible for a major part of the alerting effect. 3

It is important to note that this alerting effect did

not come from the time saving due to an antici-

patory shift of attention but from an expectancy
state switching. We believe that this account for

the alerting effect captures the essential character-

istics of alerting as a change of preparatory state

(from a uncertain state to a better prepared state),

which may often facilitate later processes.

Fourth, the orienting effect reflects the differ-

ence between the center-cue condition and the

spatial-cue condition, with an empirical measure
of about 51 ms. Presumably this is due to the time

saved from knowing in advance where the stimulus

is going to appear. In our model this difference is,

again, modeled by a production rule named notice-

stimulus-with-centercue-and-shift (rule 17 in Ap-

pendix A), which basically says that if a stimulus

appears while attention is on the center location,

try to shift attention to the stimulus. We assume
that in the spatial-cue condition attention has al-

ready been allocated to the correct spatial location

before the stimulus appears, whereas in the center-

cue condition the firing of this additional produc-

tion rule is necessary to bring the system to a

comparable level of stimulus processing. This ad-

ditional step costs 40 ms and is the major source of

the orienting effect.
Fifth, the effect of executive control reflects the

effect of the flankers on the task performance. The

empirical measure is about 84 ms. In our model this

effect is modeled using two mechanisms. First, the

result of move-attention is not perfect. When at-

tention is directed to one location, an object nearby

may be selected, especially when the scene is

crowded or the objects are similar (Pashler, 1998).
This kind of imprecision is one fundamental reason
3 Note that the cost of the production rule (40 ms) does not

match the simulated alerting effect (55 ms, see Table 2). The

reason is that the simulated effect is an average number that

incorporates multiple sources although the cost of the produc-

tion rules accounts for the major part of the effect. Similar

mechanisms apply to the orienting and executive control effects

discussed next.
for the flanker effect. Second, there are three pro-

duction rules that specifically distinguish between

the incongruent and congruent condition in the

cases when a distracter arrow, but not the center

target, is focused on. When this situation arises, we

hypothesize that instead of performing an auto-
matic but expensive (costly) re-focusing, a simpler

congruency detection is conducted. Specifically, if a

congruent condition is detected, the system moves

on to respond since a re-focusing is not necessary.

This is implemented by the rule named goahead-

responding-if-congruent (rule 28 in Appendix A). If

an incongruent condition is detected, the system

can either move on to do a direct re-encoding
(harvest-target-directly-if-incongruent, rule 30 in

Appendix A, equivalent to a simple direction re-

versal) or perform a re-focusing again (refocus-

again-if-incongruent, rule 29 in Appendix A).

Compared to the congruent condition, the first

strategy costs an additional 85 ms (a direct move-

attention) and the second strategy costs an

additional 125 ms (one additional rule firing for
refocusing first and then a move-attention). With

the second strategy a little more likely to be selected

than the first one (the odds are set to be about 2:1),

this leads to an additional cost of about 111 ms on

average for the incongruent conditions. It is this

cost, accrued quite often since there are four times

more flankers than the target, that is mainly re-

sponsible for the executive control effect.
One interesting empirical result from Fan et al.

(2002)�s study is the small but reliable difference

(11 ms) between the center and double-cue condi-

tions. This can be conveniently explained by a

diffused attention assumption. More specifically,

the center-cue induces the participant to focus at-

tention on the fixation location while the double-

cue makes the participant diffuse attention at both
the top and bottom locations. As a result, com-

pared to the center-cue condition where the stim-

ulus location receives no priming, the stimulus

location in the double-cue condition is primed a

small amount, which may speed up later stimulus

processing. This explanation, however, provides a

challenge to a symbolic model of attention. How

can attention be diffused symbolically when we
only have in hand a move-attention command,

which presumably shifts the focus of attention to a
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pre-specified spatial location? While a parallel

global spatial priming process is plausible from a

neural computing perspective, we argue that it is

equally plausible to speculate a series of symbolic

move-attention operations occurring quickly and

sequentially. This speculation also captures psy-

chologically how we focus our spatial attention in

our everyday life (keep your attention here!). Our

model uses this mechanism to account for what

occurs in the double-cue condition. Instead of us-

ing a diffused attention mechanism, we assume

that attention is moved twice, each time to one of

the two cues. The final location is where attention

resides to wait for the stimulus to appear. This is
like a betting strategy. If the betting is correct (i.e.,

the stimulus appears in the final waiting location),

a situation similar to that in the spatial-cue con-

dition arises. If the betting is wrong (i.e., the

stimulus actually appears in the location opposite

to where one is waiting), a situation similar to the

center-cue arises – an additional attentional

shifting (notice-stimulus-with-doublecue-and-shift)
has to be performed when the stimulus appears.

Since the betting is random, on average this gives

rise to half of the cost of a production rule firing,

which is about 20 ms. The simulation result is

19� 8 ms.

Finally, we would like to point out that our

model manipulates five free parameters to obtain

the goodness of fit. The first four fine-tune ACT-
R�s standard conflict resolution mechanisms and

are mainly responsible for fitting the error rates,

Specifically, two parameters – the odds of winning

the conflict resolution for rule random-left random-

right (1:20) and rule hurryup-responding-no-matter-

whether-target-or-not (1:3) – are implemented in

the model by setting their :p values, which in ACT-

R designate the probabilities that their firings will
lead to eventual task success. The other two pa-

rameters, which are expected gain noise (egs¼ 3)

and utility threshold (ut¼)100), are set to add

some random noise in ACT-R�s conflict resolution
so that the model can sometimes fire wrong rules

and make mistakes in response. The fifth param-

eter, the firing time of each rule, is more critically

responsible for fitting the RTs and attentional ef-
ficiencies. We have shortened the cost of each rule

firing from ACT-R�s default 50 to 40 ms. One
criticism of our model is that this parameter is

widely accepted as one of a few of ACT-R�s fun-

damental architectural primitives and changing it

is indicative of a misuse of the architecture. Here,

we offer two main justifications for this parameter

change. First, the ANT task is extremely simple
and has tight temporal constraints, which may

speed up the rate of rule firing. Second and more

importantly, this parameter should not be taken

for granted. In particular, as long as the change is

within a limited range and consistent across all the

productions rules in a model, it may not be a

misuse of the architecture. One underlying justifi-

cation for the default setting, offered by EPIC,
another rule-based cognitive architecture that ex-

cels in modeling human perceptual-motor perfor-

mance (Meyer & Kieras, 1997a, 1997b), is that 50

ms conforms well with the mean period between

zero crossings in the brain�s 10 Hz a rhythm (e.g.,

Callaway & Yeager, 1960). Note, however, that

the a rhythm is typically not fixed at 10 Hz but

varies within a range (e.g., 7–13 Hz). From this
perspective, shortening the rule firing cost to 40 ms

conforms well with a slightly faster 12.5 Hz brain

rhythm, still within the a wave�s range but con-

sistent with the tight temporal constraints of the

task. Clearly, further investigations are necessary

to evaluate our modification and clarify the im-

plication of the parameter.
5. General discussion

Though attention is a complex multilevel cog-

nitive function, the dominant approaches to com-

putational modeling of attention have emphasized

its close association with lower level processes such

as perception and thus often adopted some con-
nectionist and neural modeling techniques. In ad-

dition, typically only one type of attention is

focused on. In this article, we reported a symbolic

computational model of the ANT task, which in-

corporates the work of multiple attentional net-

works including alerting, orienting, and executive

control. The model was developed in ACT-R.

Using basic symbolic knowledge modeling struc-
tures such as rules and strategies, all of which often

have clear and straightforward psychological
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meaning, we were able to show that the operation

of attentional networks could be understood at a

symbolic level. In this section we would like to

briefly discuss some implications of developing

such a model.

First, our model demonstrates that as a multi-
level construct attention can be modeled at both

the subsymbolic and symbolic levels, and more

importantly, that there might exist different

mechanisms underlying the operation of attention

at each level. For example, one distinct feature of

our model is that it is a strict serial processing

model: rules fire in sequence with one firing leading

to another. This is different from various connec-
tionist models, which extensively adopt parallel

and distributed processing. While parallel distrib-

uted processing is certainly plausible at the neural

and neural networks levels, serial processing is

psychologically justifiable due to the limited ca-

pacity of human working memory (Baddeley,

1986; Baddeley & Logie, 1999). Being able to

model the same behavioral regularities at both
levels using different mechanisms offers another

strong support for the multilevel nature of

attention.

The concept of the production rule is funda-

mental to our model of attention. Rules fire in

sequence and operate at a rate of about 50 ms (40

ms in the current model) per production rule. As

argued by ACT-R, production rules define the
atomic components of thought at the symbolic

level. With this claim in mind, when we examine

the efficiency measures of attentional networks

reported in Fan et al. (2002) it seems that they

make good sense at a rule level: these measures

(51, 47, and 84 ms, for alerting, orienting, and

executive control, respectively. See Table 2.) are

just in the range of a few rule firings time period.
Perhaps all we need is about one (for alerting and

orienting) or two (for executive control) additional

rule firings to explain symbolically the work of

attentional networks. This is indeed what our

model demonstrated.

While our model simulates the ANT results

reasonably well, one question is whether there is

any independent justification for the particular set
of production rules used in our model. We address

this question in two ways. First, as we reported
earlier, a functional analysis of the ANT task was

performed before we developed the model. Such

an analysis identified a list of psychologically

meaningful functional components underlying the

ANT task, which motivated and constrained the

selection of production rules in the model. Second,
our model can make nontrivial predictions and be

applied to account for phenomena beyond the

normal ANT task reported in this article. An ex-

ample is attentional deficiency. The model predicts

that if the rule not-cue-so-switch-state-and-shift-

attention (rule 4 in Appendix A) is somehow

nonfunctional (e.g., there is no such a rule or it

takes a long time to fire), the alerting operation
will be affected. A recent study (Booth et al., 2001)

using ANT on ADHD children shows that these

children revealed a damaged alerting function (i.e.,

a larger alerting effect), which may suggest that

these children possessed a dysfunctional rule 4. By

altering the operation of rule 4, we may quanti-

tatively simulate these ADHD children�s atten-

tional performance. Another interesting prediction
our model can make is about the effect of executive

control. If the strength of the rule hurryup-re-

sponding-no-matter-whether-target-or-not (rule 25

in Appendix A) is increased due to certain psy-

chological and/or pathological conditions, for ex-

ample in schizophrenic patients, then the model

would predict a deficit executive control due to a

lower neural activities in the executive control at-
tentional networks. It seems that these rules pro-

vide an interesting symbolic summary of the

function of the underlying networks.

While a large body of evidence from neuroi-

maging and neuropathology has suggested that

these distinct types of attention are subserved by

independent attentional networks (see Fan et al.,

2003c, for a review), our model provides some
interesting implications about the operations of

the attentional networks and the interrelationship

among the different types of attention. The cur-

rent model suggests that alerting can be explained

by a rule that captures and performs a prepara-

tory state change, orienting can be explained by a

rule that moves attention before the appearance

of the stimulus, and executive control can be
explained by a set of rules that detect and resolve

a conflict. Therefore, the neuroanatomical inde-



pears’’

2. P encode-fixation-and-waiting

‘‘Encode the fixation and start expecting
for a cue’’

Stage 2. Cue or stimulus?

3. P notice-something-appeared

‘‘Some visual object appears on the

screen’’

4. P not-cue-so-switch-state-and-shift-

attention

‘‘Resist the surprise and shift attention to
the stimulus’’

Stage 3. Cue Processing

5. P notice-a-center-cue

‘‘notice a center cue’’

6. P notice-a-top-cue

‘‘notice a top cue’’

7. P notice-a-bottom-cue

‘‘notice a bottom cue’’
8. P given-a-top-cue-find-a-bottom-cue

‘‘check if it is in fact a double cue’’

9. P given-a-bottom-find-a-top-cue

‘‘check if it is in fact a double cue’’

10. P find-no-more-cue-so-spatialcue

‘‘No more cue so it is a spatial cue’’

11. P find-more-cue-so-doublecue

‘‘It is a double cue indeed’’
Stage 4. Stimulus expectation
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pendence of different attentional networks is

simulated at a symbolic rule level by the inter-

action of different sets of rules fired in different

task conditions. In this sense, it seems that at

least at a symbolic rule level different attentional

networks may adopt similar computational
mechanisms.

Finally, modeling attention at a symbolic rule

level through serial processing mechanisms raises

an interesting question about the role of attention

in cognitive architectures. As ACT-R moves to-

wards a modular architecture (Anderson, Bothel,

Byrne, & Lebiere, submitted), it seems that atten-

tion may be more properly modeled as an add-on
module like other perceptual-motor modules (e.g.,

Byrne & Anderson, 1998). However, while a pe-

ripheral module may be appropriate for modeling

the visuospatial type of attention (orienting), it

appears unsuitable for alerting and executive

control types of attention due to their intriguing

relationship with central cognition. To us, pro-

duction rules summarize nicely the conscious ef-
forts and psychological reality associated with

being alerted and resolving conflicts, as we dem-

onstrated in our model. However, the need to re-

duce the cost of each rule firing from the ACT-R

default of 50 ms to 40 ms in this model raises

questions about the adequacy of adopting a purely

serial symbolic approach to modeling attention. In

general we envision that to model the full range of
human attentional functions in ACT-R we may

have to combine modular, subsymbolic, and rule-

level approaches.

12. P anticipating-the-stimulus

‘‘Wait and anticipate the stimulus’’

Stage 5. Stimulus processing

13. P notice-stimulus-at-cued-top-location-and-

attend

‘‘Notice an arrow at the cued top

location so encode it’’
14. P notice-stimulus-at-cued-top-location-but-

a-neutral-item-is-selected

‘‘Notice a neutral item at the cued top

location so refocus on the center item’’

15. P notice-stimulus-at-cued-bottom-location-

and-attend

‘‘Notice an arrow at the cued top

location so encode it’’
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Appendix A. The production rules used in the model

Stage 1. Fixation and cue expectation

1. P notice-fixation

‘‘An ANT trial starts when a fixation ap-
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16. P notice-stimulus-at-cued-bottom-location-

but-a-neutral-item-is-selected

‘‘Notice a neutral item at the cued top

location so refocus on the center item’’

17. P notice-stimulus-with-centercue-and-shift

‘‘The stimulus row appears while attention
is on the center location so shift attention

to it’’

18. P notice-stimulus-with-doublecue-and-shift

‘‘The stimulus row appears in a location

that is different from the current attended

location in the doublecue condition so shift

attention to it’’

19. P notice-stimulus-with-doublecue-and-an
-arrow-is-focused-on-so-attend

‘‘The stimulus row appears in a location

that is same as the current attended

location in the doublecue condition so en-

code the arrow’’

20. P notice-stimulus-with-doublecue-but-a-

neutral-item-is-focused-on-so-shift

‘‘The stimulus row appears in a location
that is same as the current attended

location in the doublecue condition but it

seems a neutral distracter is selected so

refocus’’

21. P attend-to-at-large-target

‘‘Encode the arrow that is currently

focused on’’

22. P shift-to-at-large-target-from-a-neutral-
item

‘‘If the currently focused on item is a

neutral distract, refocus’’

23. P harvest-target

‘‘Encode the target after refocusing’’

24. P goahead-responding-if-it-is-the-target

‘‘If the encoded item is the center arrow,

goahead to respond’’
25. P hurryup-responding-no-matter-whether-

target-or-not

‘‘As long as the encoded item is an arrow,

hurry up to respond’’

26. P attended-item-is-right-to-the-target

‘‘Hold on, the currently attended arrow is to

the right of the target’’

27. P attended-item-is-left-to-the-target
‘‘Hold on, the currently attended arrow is to

the left of the target’’

28. P goahead-responding-if-congruent

‘‘But move on to respond since they are

congruent’’

29. P refocus-again-if-incongruent

‘‘Refocus on the center location’’

30. P harvest-target-directly-if-incongruent
‘‘Encode the center arrow directly since its

location is available’’

Stage 6. Response

31. P decide-left

‘‘Decide to make a left response since the

target is a left arrow’’

32. P decide-right

‘‘Decide to make a right response since the
target is a right arrow’’

33. P random-left

‘‘Randomly decide to make a left response’’

34. P random-right

‘‘Randomly decide to make a right

response’’

35. P respond

‘‘Respond by pressing the decided key’’
36. P refixating-and-wait-for-next-trial

‘‘refocusing on the fixation and be ready

for the next trial’’
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Appendix B. The trace in a center-cued incongruent

trial

? (do-trial :cue centercue :flanker incongruent)

;; show fixation at 0 and for 1255 ms

Time 0.000: Notice-Fixation Selected

Time 0.040: Notice-Fixation Fired

Time 0.040: Module :vision running command

move-attention

Time 0.125: Module :vision running command
focus-on

Time 0.125: Encode-Fixation-And-Waiting Se-

lected

Time 0.165: Encode-Fixation-And-Waiting

Fired

Time 1.255: � Running stopped because time

limit reached.

;; show cue (or nocue) at 1255

Time 1.255: Notice-A-Center-Cue Selected

Time 1.295: Notice-A-Center-Cue Fired
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Time 1.295: Module :vision running command

move-attention

Time 1.295: Anticipating-The-Stimulus Selected

Time 1.335: Anticipating-The-Stimulus Fired

Time 1.355: � Running stopped because time
limit reached.

;; the cue disappears and continue fixating at 1355

Time 1.380: Module :vision running command

focus-on

Time 1.755: � Running stopped because time

limit reached.

;; the stimulus appears at 1755

Time 1.755: Notice-Stimulus-With-Centercue-
And-Shift Selected

Time 1.795: Notice-Stimulus-With-Centercue-

And-Shift Fired

Time 1.795: Module :vision running command

find-location

Time 1.795: Attend-To-At-Large-Target Selected

Time 1.835: Attend-To-At-Large-Target Fired

Time 1.835: Module :vision running command
move-attention

Time 1.835: Attended-Item-Is-Left-To-The-Tar-

get Selected

Time 1.875: Attended-Item-Is-Left-To-The-Tar-

get Fired

Time 1.875: Module :vision running command

find-location

Time 1.920: Module :vision running command
focus-on

Time 1.920: Refocus-Again-If-Incongruent Se-

lected

Time 1.960: Refocus-Again-If-Incongruent Fired

Time 1.960: Module :vision running command

find-location

Time 1.960: Harvest-Target Selected

Time 2.000: Harvest-Target Fired
Time 2.000: Module :vision running command

move-attention

Time 2.000: Goahead-Responding-If-It-Is-The-

Target Selected

Time 2.040: Goahead-Responding-If-It-Is-The-

Target Fired

Time 2.085: Module :vision running command

focus-on
Time 2.085: Decide-Left Selected

Time 2.125: Decide-Left Fired

Time 2.125: Respond Selected
Time 2.165: Respond Fired

Time 2.165: Module :motor running command

press-key

Time 2.165: Module :vision running command

find-location
Time 2.165: Refixating-And-Wait-For-Next-

Trial Selected

Time 2.205: Refixating-And-Wait-For-Next-

Trial Fired

Time 2.205: Module :vision running command

move-attention

Time 2.290: Module :vision running command

focus-on
Time 2.315: Module :motor running command

preparation-complete

Time 2.365: Module :motor running command

initiation-complete

Time 2.375: Device running command output-

key

Time 2.465: Module :motor running command

finish-movement
Time 2.465: Checking for silent events.

Time 2.465: � Nothing to run: No productions, no

events.

;; response at 2375, RT ¼ 620 ms

Time 4.090: * Running stopped because time limit

reached.

;; trial ends at 4090
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