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Introduction 
Availability of human memories for specific items is 
sensitive to frequency and recency. Sensitivity to these 
statistics has high adaptive value because they predict the 
likelihood of encountering the same items in the future 
(Anderson & Milson, 1989; Anderson & Schooler, 1991). 
This property of memory accounts for a range of cognitive 
phenomena and is implemented in various models (e. g., 
Anderson & Milson, 1989; Petrov & Anderson, 2005). The 
ACT-R theory has been particularly successful and 
influential (Anderson & Lebiere, 1989; Anderson, Bothell, 
Byrne, Douglass, Lebiere, & Qin, 2004). The declarative 
memory in ACT-R is organized in chunks, and each chunk 
has a base-level activation (BLA) reflecting the frequency 
and recency of its use. The equation that updates these 
quantities has been “the most successful and frequently used 
part of the ACT-R theory” (Anderson et al., 2004, p. 1042, 
emphasis added). One serious practical drawback, however, 
is that it is very expensive to compute. ACT-R models have 
ground to a halt because of its complexity. This article 
describes an efficient approximation that scales up well and 
preserves all desirable properties of the exact equation. 

Base-Level Learning in ACT-R 
The ACT-R theory postulates that the BLA of each chunk is 
a logarithm of a sum of powers (Equation 1; Anderson & 
Lebiere, 1998). Each new use of the chunk adds another 
term to the sum, which then decays independently with rate 
d. The total count so far is denoted by n, and ti is the time 
since the i-th use of the item. This equation gives rise to the 
activation dynamics illustrated by the dashed line in Figure 
1, top. Note the three distinctive features of this curve: sharp 
transient peak immediately after each use, decay in the 
absence of use, and gradual accretion with frequent use.  
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Equation 1 is analytically intractable and its implementa-
tion requires a complete record of the exact time stamps of 
each use of each chunk. Slowly but surely, this excessive 
storage saturates the program workspace and aborts the 
simulation. A memory-efficient approximation is needed. 
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Such an approximation exists and has been in use in the 
ACT-R community for years. It is based on the insight that 
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Figure 1: Top: Activation dynamics under exact base-level 
learning in ACT-R (Eq. 1) and approximations of different 
depths k (Eq. 3). Bottom: Approximation error, same data. 

distant events diminish in importance as new events are 
added to the record. Equation 2 (Anderson & Lebiere, 1998) 
ignores the history of the chunk and retains only two pieces 
of information: its total lifetime tn and number of uses n. 
The resulting learning curves are illustrated by the open 
circles in Figure 1. 

Equation 2 accounts for the slow, frequency-driven com-
ponent of the activation dynamics. Frequently used chunks 
grow stronger than infrequently used ones. It also gives rise 
to a weak decay effect when tn increases while n does not. 
However, Equation 2 underestimates the decay effect, parti-
cularly during quiescent periods following bursts of activity. 
This is because it implicitly assumes all events are evenly 
spaced, and thus “fills in” the quiescent periods. 

Equation 2 has a more serious flaw, however. It misses 
the rapid, recency-driven component manifested in sequen-
tial assimilation, priming, and other transient behavioral 
effects. It smoothes the activation dynamics too much 
because it ignores the timing of the most recent events. The 
improved approximation proposed in this article takes this 
critical information into account. 
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Figure 2: The approximation is robust to violations of the 
equal spacing assumption for depths k ≥ 1 (Equation 3). 

The New, Improved Approximation 
The main idea is to keep the exact timing of a few most 
recent events and ignore the details of the distant past. A 
depth parameter k determines the cutoff point. When a new 
use of the chunk occurs, it assumes index i = 1, all previous 
uses shift one index up, and time stamp tk+1 passes into 
oblivion. Thus, the system keeps only a small amount of 
information about each chunk: its total lifetime tn, the total 
number of uses n, and the most recent time lags t1 … tk. This 
requires fixed amount of storage for each chunk and leads to 
dramatic efficiency improvement and scaling up. 
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Equation 3 formalizes these ideas. See Appendix for deri-
vation details. The old approximation (Equation 2) is a 
special case for k = 0; the improvement becomes apparent at 
greater depths. Even with k = 1, Equation 3 accounts for the 
recency-driven component of the activation dynamics 
because the transient BLA spike and subsequent decay are 
driven predominantly by the most recent event. Overall, the 
approximation is nearly perfect even for k = 1 (Figures 1 
and 2). Greater depths should hardly ever be necessary.  
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Equation 4 optimizes Equation 3 for the important special 
case d =0.5, which is the default decay parameter in ACT-R. 

Finally, the brain also faces implementational constraints, 
and there is evidence of two separate memory mechanisms: 
activation-based and weight-based (O’Reilly & Munakata, 
2000). They map nicely to the two components of Equation 

 

3, which thus may be more than just an approximation. 
In conclusion, the new approximation captures all qualita-

tive properties of the base-level activation dynamics: sharp 
transient peak immediately after each use, decay in the 
absence of use, and gradual accretion with frequent use. It 
tracks the theoretical Equation 1 very closely, but does not 
suffer from its computational complexity. Thus, it can be 
very useful for large simulations, allowing the ACT-R archi-
tecture to scale up to more realistic memory sizes and more 
prolonged learning periods. It has already been used suc-
cessfully in a memory-based model of category rating and 
absolute identification (Petrov & Anderson, 2000, 2005). 

MATLAB software is available at http://alexpetrov.com. 
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Appendix 
Mathematical Derivation of Equation 3 

Split the sum in Equation 1 into “recent” and “distant” parts: 
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Assume equal spacing of the distant events: 

k i kt t ai+ ≈ +     for 1i n k= −… , where (6) 

( ) /( )n ka t t n k= − −  (7) 
Approximate the distant sum with an integral quadrature: 
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Equation 3 in the main text follows from Equations 1, 5, and 
9. The special case for d = 0.5 follows from Equation 3 and 
the factoring ( ) ( )( )n k n k n kt t t t t t− = − + . 


