
ESEGMAN: A substrate for ACT-R architecture and an Emacs Lisp application

Jong W. Kim (jongkim@psu.edu)
Department of Industrial and Manufacturing Engineering

Frank E. Ritter (frank.ritter@psu.edu)
College of Information Sciences and Technology

Richard J. Koubek (rkoubek@psu.edu)
Department of Industrial and Manufacturing Engineering

The Pennsylvania State University, University Park, PA 16802 USA

Introduction

Cognitive architectures provide a framework upon which to

build models that emulate human behavior. The model of

the user is studied to provide a theoretical and practical

understanding of user behaviors and usability of interfaces.

However, there are restrictions placed on the cognitive

models regarding access to an external environment.

Researchers have studied how to embody a computational

cognitive model to interact with a simulated task

environment. For example, the Argus system supports an

embodied cognitive model interacting with a radar-like

target classification task (Schoelles & Gray, 2001; Gray,

2002). In the Argus system, the model and the human

subjects use the same interface. It is useful for the

development of models including human cognition, human

performance or AI agents to have more general access to

man-made tasks, task environments, and interfaces.

In this paper, we propose the Emacs substrate system,

ESEGMAN (Emacs SubstratE: Gates toward MAN-made

world) to help simulate user performance. User performance

studies are easy to run with Emacs (including text only web

browsing, spreadsheet use, and email use). A model can be

connected to the same tasks with a high likelihood of the

model being able to see and do the tasks that a user can see

and do.

The ESEGMAN World

The ESEGMAN world consists of a cognitive model, a

substrate, and a simulated spreadsheet task environment.

ESEGMAN instruments the graphic interface system of

Emacs. Emacs is an extendable editor that basically

functions as an operating system for file editing and

related information processing. In the ESEGMAN world,

ESSEGMAN embodies a cognitive model interacting

with a simulated task. This study opens a possibility of a

new cognitive modeling paradigm and extends ACT-R’s

perception and motor capabilities.

Theoretical Backgrounds

Cognitive models generally fail to interact with an external

task environment (Ritter et al., 2000). To enable cognitive

models to perform interactive tasks, it is necessary for the

models to have visual perception and motor action

capabilities. These capabilities allow a cognitive model to

perceive what is on the screen and to make some types or

mouse movements.

The model’s visual perception capabilities should have

similar mechanisms to humans. One difference for

interactive tasks is that the model’s perception in two

dimensions is adequate with respect to the interaction with a

spreadsheet application in this study.

The model’s motor action capabilities should also

correspond to the human’s motor action mechanisms. A

cognitive model would use a mouse or a keyboard when the

model interacts with an interface. Possible motor actions

include typing a letter, moving a mouse, clicking a mouse

button, or moving the eyes, etc.

In general, there are two fundamental approaches to

provide models with access to a simulated task environment.

One approach is to instrument a graphic language such as

MCL, Tcl/Tk, Java, or SL-GMS. For example, this

approach is taken by ACT-R/PM (Byrne & Anderson, 1998)

and simulated hands and eyes models (Ritter, Baxter, Jones,

& Young, 2000). These models know what objects to pass

from an interface and how to input simulated user

commands.

The other approach is to work with the bitmap taken from

the screen and parse the screen into objects. This is very

robust approach, once done, because all interfaces within

the instrumented language become available to the model.

For example, SegMan (St. Amant et al., 2005) provides a

fairly robust approach in that it allows any windows

interface to be seen by models (e.g., ACT-R or occasional

Soar models). SegMan, however, has some limitations. It

can be somewhat difficult to use and extend. It does not yet

recognize all the objects that people do.

The ESEGMAN World Architecture

As shown in Figure 1, the ESEGMAN world provides a

surrounding where a cognitive model subject and human

subjects perform spreadsheet tasks in a laboratory setting as

part of a study on learning and forgetting.

The model is built on ACT-R 6 cognitive architecture. A

model agent interacts with the GNU Emacs spreadsheet

called Dismal (Ritter & Wood, 2005). In order for the model

to directly interact with the task environment (Dismal), a

substrate (ESEGMAN) represented by the eye and hand in

the Figure 1 was implemented.

In the real world, humans can directly perform the Dismal

spreadsheet tasks. Human performance is recorded by using

RUI denoted by Recording User Input (Kukreja et al., in

press).

Figure 1: ESEGMAN architecture.

Mechanisms of ESEGMAN

ESEGMAN is layered on the operation of Emacs and allows

a model to see and to touch a task environment. Dismal

spreadsheet was implemented on the Emacs Lisp language.

ESEGMAN is built on both Common Lisp and Emacs Lisp

languages. Thus, ESEGMAN provides an ACT-R model

with a gate to interact with a man-made world of

spreadsheet tasks.

ESEGMAN works in the following way. An Emacs shell

process is spawned, and a model is loaded within that

process. For example, a shell is started in Emacs to invoke

OpenMCL that is a Lisp implementation. Then, ACT-R 6 is

loaded into OpenMCL. An ACT-R model can send

commands to ESEGMAN, such as to move the mouse, to

type a letter, or to get the contents of Dismal as fovea.

In Emacs, there is a set of functions to take the output

from the shell and insert them into the associated buffer.

This approach allows a natural place for the ESEGMAN to

inspect what is sent, and if a command is sent, to execute it.

If the command is to type a letter or to execute a

keystroke command, this can be done directly using the

extension language of Emacs Lisp. If the command is to

move the mouse, a model mouse pointer is moved, probably

shown in the mode line of the buffer being used by the

model. If the command is to execute a mouse action, the

corresponding process as for keystrokes is executed.

When the model wants to look at the screen, ESEGMAN

takes the current fovea location and sets up a data structure

to be processed and sends this back to the ACT-R model.

ACT-R, after sending the fovea look command, has a read

that follows the incoming information and puts it into the

ACT-R's visual iconic memory. ESEGMAN can create a

file, or it can pass back through the process to an associated

buffer.

Conclusion and Further Research

Gray (2002) stated that simulated task environments are one

solution to the researcher’s dilemma that there is a tradeoff

between too much complexity in field research and little

complexity in laboratory research. The ESEGMAN world

provides a continuum of real spreadsheet tasks between the

human and model subjects in a laboratory setting. Also, it

provides easy data collection and appears to require less

than an hour of training for experiments while providing

models complete access to a complex task environment.

Various types of cognitive models under the ACT-R 6

architecture including knowledge acquisition or degradation

on a spreadsheet task can be developed and utilized to

provide a better understanding of user behavior.

Acknowledgments

Dan Bothell at Carnegie Mellon University provided useful
comments on the current ACT-R 6 architecture and its
perceptual/motor mechanisms. William Stevenson provided
comments that improved this paper.

References

Byrne, M. D., & Anderson, J. R. (1998). Perception and
action. In J. R. Anderson & C. Lebiere (Eds.), The Atomic
Components of Thought (pp. 167-200). Mahwah, NJ:
Lawrence Erlbaum.

Gray, W. D. (2002). Simulated task environments: The role
of high-fidelity simulations, scaled worlds, synthetic
environments, and microworlds in basic and applied
cognitive research. Cognitive Science Q., 2(2), 205-227.

Kukreja, U., Stevenson, W. E., & Ritter, F. E. (in press).
RUI: Recording user input from interfaces under Window
and Mac OS X. Behavior Research Methods, Instruments,
& Computers.

Ritter, F. E., & Wood, A. B. (2005). Dismal: A spreadsheet
for sequential data analysis and HCI experimentation.
Behavior Research Methods, Instruments, & Computers,
37(1), 71-81.

Ritter, F. E., Baxter, G. D., Jones, G., & Young, R. M.
(2000). Supporting cognitive models as users. ACM
Transactions on Computer-Human Interaction, 7(2), 141-
173.

Schoelles, M. J., & Gray, W. D. (2001). Argus: A suite of
tools for research in complex cognition. Behavior
Research Methods, Instruments, & Computers, 33(2),
130-140.

St. Amant, R., Riedl, M. O., Ritter, F. E., & Reifers, A.
(2005). Image processing in cognitive models with
SegMan. Paper presented at the HCI International 2005,
Las Vegas, Nevada.

ESEGMAN-World Real-World

Emacs

Emacs Lisp Lisp
(OpenMCL)

Dismal

(Emacs Lisp
Spreadsheet)

RUI:

Recording
User Input

Human ACT-R

