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Introduction 

While computational cognitive modelling within unified 

theories of cognition (UTC, Newell 1990) has made im-

pressive strides throughout the last two decades, it still 

hosts little research on language. (Notable but rare excep-

tions are Lewis 1993 and Budiu & Anderson 2004.) If 

language is what makes humans human, it is difficult to 

see how our cognitive models can come close to a com-

prehensive understanding of human cognition and intelli-

gence without graceful inclusion of language. 

On the other hand there is the large field of computa-

tional linguistics (CL), which successfully builds compu-

tational models of language – albeit mostly non-cognitive 

models. Each field exists independently of the other, 

largely because of different traditions and tools: CL being 

a child of AI and linguistics and UTC a child of AI and 

psychology. And while CL mainly uses logic-based ap-

proaches to explain language as a system, UTCs tend to 

be production systems to simulate cognitive phenomena 

other than language, e.g. memory, reasoning, categorisa-

tion. Although one could expect psycholinguistics to fill 

this gap, this discipline only rarely concerns itself with 

modelling, and if it does, it usually uses one-off models. 

In this situation it is desirable to bridge the gap between 

CL and UTCs by finding a method to transfer research re-

sults from CL to UTCs. The assumption underlying this 

attempt is that non-cognitive models of language do shed 

light on the cognition of language; an assumption that is 

supported, for example, by Reiter’s (1994) analysis, 

which shows a large degree of congruence between cogni-

tive and non-cognitive models of language, and by the 

successes of CL models to account for cognition, e.g. La-

tent Semantic Analysis (Landauer, Foltz & Laham 1996). 

Referential Nets and ACT-R 

To provide well-formed linguistic representations, which 

can serve the comprehensive ACT-R approach (Anderson 

& Lebiere 1998), I will present a preliminary account how 

referential nets can be translated into the chunk-based 

representations of ACT-R’s declarative memory. (Habel 

1986 defines referential nets; Guhe, Habel & Tschander 

2003 and Guhe in press use referential nets in a cognitive 

model of language). Referential nets are related to Dis-

course Representation Theory (DRT, Kamp & Reyle 

1993), but can model all levels of language, particularly 

the semantic, conceptual and discourse levels. Emphasis-

ing the referential nature of language over the truth-values 

of utterances, they give a better fit to the representations 

used in UTCs. 

On a general level, referential nets fit well to ACT-R’s 

chunks. The main means of structuring referential nets are 

referential objects (refOs), which represent the knowledge 

about an entity, while the main means in ACT-R are 

chunks representing facts. For example, like chunks, refOs 

can be merged and they can account for inconsistent 

knowledge, as inferences are only made locally, not glob-

ally. More important, both chunks and expressions in ref-

erential nets are typed. The main problem for the transla-

tion is that referential nets combine these expressions in a 

principled manner, which is difficult to realise in ACT-R. 

Chunks in ACT-R are lists of slot–value pairs, e.g.: 

(fact3+4 ISA addition-fact 
   addend1 three 
   addend2 four 
   sum seven) 

represents the fact that 3 + 4 = 7 (Anderson & Lebiere 

1998: 23). The corresponding chunk-type is: 

(chunk-type addition-fact addend1 addend2 sum) 

Thus, all chunks of type addition-fact have three slots: 

addend1, addend2 and sum. 

RefOs are terms (in the sense of formal logic) and are 

specified by typed expressions. These expressions are ei-

ther attributes or designations. An example of a refO is: 

 

RefO r1 is specified by two attributes (written to the left 

of the refO term) and three designations (written to the 

right). Designations can be names (‘DAVID’), functional 

expressions (father_of(‘RUTH’)) and descriptions ( x 

wife(‘SARAH’, x), meaning ‘Sarah is the wife of the entity 

represented by r1’). 

Translation 

Translating the above expressions is straightforward. 

Since all expressions in referential nets are typed, names, 

for example, can simply be defined as chunks of the type: 

(chunk-type name-fact name) 

‘DAVID’ then corresponds to the chunk: 

(name-fact1 ISA name-fact name david) 

Descriptions, e.g. x wife(‘SARAH’, x), require more 

work. In addition to types, referential nets also have sorts 

(corresponding to ACT-R’s isa-hierarchy, omitted here 

due to space limitations). The basis of descriptions are 

sorted predicate–argument structures; so, the sort of wife 

is <person, person>. This corresponds to the chunk-type: 

(chunk-type wife person1 person2) 

Abstracted versions of descriptions like the one given 

above can be captured by chunks of the following type: 

(chunk-type abs-designation op var predicate) 

where op is a description operator ( , , some-t, all-t), var 

is the abstraction variable and predicate refers to a chunk 



containing the predicate, here: a wife chunk. (Using vari-

able slot names is not standard but possible in ACT-R.) 

While this part of the translation is straightforward, two 

other issues cause problems. The first one is that attributes 

can have values, which can be lists. For example, the 

above refO representing David could stand for a scientist 

belonging to two research groups, represented by the list 

attribute member_of([‘GRP1’, ‘GRP2’]). In order to rep-

resent this as chunks, the list must be spilt up into multiple 

attributes: member_of(‘GRP1’), member_of(‘GRP2’). 

The second and more severe problem is to translate the 

assignment of expressions to referential objects, e.g. to 

represent that human is an attribute of r1. This is prob-

lematic, because refOs are not restricted in their number 

and kind of attributes or designations. Thus, although re-

fOs and chunks fulfil similar roles in organising and struc-

turing the representation (memory), they differ in that 

chunks are typed expressions, while refOs are simply 

terms, i.e. they are proxies of entities. 

For simplicity, at this point I will discuss only the as-

signment of attributes to refOs. Assigning designations 

(which actually can also have attributes) to refOs works 

analogously. The two ways to realise these assignments in 

ACT-R make different predictions in the resulting models. 

The first solution is to define a general chunk-type and 

distribute the information over multiple chunks: 

(chunk-type attrib-assign refo attrib) 
(att1 ISA attrib-assign refo r1 attrib human) 
(att2 ISA attrib-assign refo r1 attrib male) 

Under this solution, the knowledge about the entity repre-

sented by r1 cannot be accessed at once. Instead multiple 

chunk retrievals have to be performed until the required 

information has been found. 

The second solution is to store the attributes in a list and 

have just one chunk per refO, which means that all attrib-

utes are available at once: 

(chunk-type att-assig refo att) 
(assig1 ISA att-assig refo r1 att '(human male)) 

The difference between the solutions is substantial, be-

cause solution 1 predicts that accessing knowledge about 

a refO can take considerable time, while solution 2 fin-

ishes the comparison within a single ACT-R cycle.  

While the ACT-R theory does not permit lists as slot 

values (and, thus, predicts behaviour according to solution 

1), referential nets allow immediate access to all informa-

tion about a refO (predicting solution 2). An indication 

that solution 2 is cognitively valid is the model INC (in-

cremental conceptualiser, Guhe et al 2003), which pro-

duces reliable simulations of humans performing the task 

of conceptualisation for language production. The proc-

essing of concepts is a good example for determining the 

correct solution because of the predicted processing times: 

solution 1 predicts longer processing times for bigger re-

fOs: at least one ACT-R cycle per attribute. (See Guhe in 

press on why refOs are appropriate to represent concepts.) 

Empirical support for this prediction of solution 1 is lack-

ing: there is no evidence that familiar concepts (i.e. con-

cepts about which much is known) take longer to process.  

In ACT-R 6, the theory’s current implementation, the 

function computing the similarity between two chunks has 

had to be extended to allow for lists. In a prototype im-

plementation I have realised the similarity function as 

computing the number of shared attributes over the num-

ber of all attributes (cf. Guhe in press), e.g. 

'(human male) x '(human) = 1/2 
'(human male) x '(human woman) = 1/3 

(The computation is in fact more complex: (1) attributes 

can contain arguments (memb_of_family (‘SMITH’)); (2) 

these arguments can be lists (member_of([‘GRP1’, 

‘GRP2’])); (3) designations must be compared, as well.) 

Discussion 

In this short paper I have glossed over many more prob-

lems, e.g. the fact that arguments of expressions can also 

be refOs, so that comparing expressions requires compar-

ing the refOs referred to, as well. In conclusion, however, 

it seems possible to translate referential nets into ACT-R 

chunks, differing predictions notwithstanding. Since 

ACT-R 6 provides a framework for implementing simul-

taneous access to all of a refO’s information, it will sup-

port more detailed comparisons within working models. A 

partial reimplementation of INC, for example, will be one 

future step on this path. 

On a final note, the difficulties caused by the limitations 

of ACT-R’s chunks equally affect the schema-based for-

malism DRT: as schemas are the main means of structur-

ing these representations, they must be realised as chunks. 

Yet, schemas are also not limited in the number or kind of 

expressions they can accommodate. Thus, the problems 

discussed here are not limited to referential nets but seem 

to indicate general obstacles in transferring CL represen-

tations into ACT-R.  
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