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Abstract

Previous research has suggested that making certain items 
visually salient, or highlighting, can speed performance in a 
visual search task. But designers of interfaces cannot always 
easily anticipate a user’s target, and highlighting items 
other than the target can be associated with performance 
decrements. An experiment performed suggested that 
people attend to highlighting less than what an optimal 
model of visual search in highlighted displays predicts. 
Users’ sensitivity to highlighting’s predictiveness depends 
upon the proportion of trials in which highlighting actually 
predicts target location. We constructed an ACT-R model that 
reproduces the major effects of the experiment and which 
suggests that learning occurs at a very low level of this task. 

Introduction
Certain properties of our visual system make it so that certain 
features, if easily distinguishable from the rest of the visual 
field, can be especially salient. This visual salience can be 
harnessed in the form of highlighting to make the visual search 
component of an information search task more efficient. Yet 
it is not always easy for the designers of visual interfaces to 
anticipate the particular target a user may be searching for in 
a particular context, and it is not clear what the detriments of 
misleading highlighting may be. 

Most investigators agree that certain fundamental features 
of visual stimuli (such as color, brightness, and movement) 
are processed in parallel relatively early in the visual pathway 
of humans (Treisman & Gelade, 1980; Wolfe, 1994). Given a 
visual search task, the item that can be distinguished by one 
of those basic features tends to “pop out” from the field of 
other stimuli. For example, when searching through a field 
of green T’s, the time to find a red T remains roughly the 
same no matter how many distractor green T’s are present. 
If, however, the target item can only be distinguished by a 
conjunction of features (such as a certain color and brightness 
combination), then visual search will be slower and more 
effortful. 

Wolfe’s Guided Search 2.0 (1994) theory of visual attention 
postulates a bottom-up process which filters stimuli through 
broadly-tuned “categorical” channels. Each of these channels 
processes a certain dimension of visual stimuli, such as color 
or orientation. The output of these channels, based on local 
differences in the stimuli, is then integrated with top-down 
task demands to compute a feature map for each stimulus 
dimension. The top-down commands to the feature maps 
activate locations possessing specific categorical attributes 
relevant to task demands, such as “activate ‘red’ objects.” 
The weighted sum of these feature maps forms the activation 
map, with the weightings being based upon task demands. 

Attention deploys limited capacity resources to locations 
in order of decreasing activation. Visual salience, then, is this 

combination of bottom-up local difference calculations and 
top-down, task demand-driven commands. Wolfe actually 
instantiated his Guided Search 2.0 theory as a computational 
model of multiple types of visual search tasks. And although 
Guided Search 2.0 does take into account “top-down” 
guidance of visual search, it says nothing about learning. That 
is, how might a human learn about the relative helpfulness 
of visual cues, and how might that learning be reflected in 
human performance? 

Highlighting by color can be an effective means to harness 
the computational power of the visual system to aid visual 
search. Fisher and Tan (1989) performed two experiments 
assessing the effects of highlighting types and validity on 
search times. Subjects searched for a target digit in a horizontal 
array of five digits, one of which was the target. The target 
was always the digit 1, 2, 3, or 4 (chosen at random), and the 
distractors were always the digits 5 through 9. Experiment 1 
had four highlighting conditions: control (no highlighting), 
highlighting by color, by reverse video, and by blinking. 
Additionally, when highlighting was present, the target was 
highlighted on 50% of the trials, and one of the distractors was 
highlighted the other 50% of the time. The term “validity” 
will henceforth be used to describe the proportion of trials on 
which the highlighting correctly indicated the target. Their 
experiment 2 was identical, except that highlighting was 
100% valid. 

Fisher and Tan reported that highlighting by the most 
effective means, color, did not help participants find the target 
faster than they found it in control trials when highlighting 
validity was at 50% (highlighting by other means made 
subjects slower). Yet when highlighting was 100% valid, 
subjects did find the target digit 192 ms faster in the color 
condition than in the control condition. Furthermore, when 
highlighting validity was 100%, subjects were 90 ms faster 
on trials with valid color highlighting than they were on trials 
with valid color highlighting at 50% validity. The authors 
speculated that the difference in performance occurred because 
subjects did not always initially attend to the highlighted digit 
in Experiment 1, but did so in Experiment 2 when they saw 
that highlighting was more predictive of the items’ status as 
target or distractor. Apparently participants had been making 
estimates of the relative costs of attending to the highlighting 
or disregarding it. It was not clear from Fisher and Tan’s 
results what would occur at other levels of validity and so an 
experiment replicated and extended their results.

One other thing to consider is that people’s low-level 
strategy selection is sensitive to the cost structure of 
their environment (Gray & Fu, 2004). While Gray and Fu 
manipulated the cost structure of their subjects’ environment 
by varying the time cost associated with certain actions, we 
instead manipulated the probability of information being 
helpful. It is not clear exactly how Gray & Fu’s results would 
generalize to our experiment’s probabilistic environment.



The Experiment
The Experiment replicated Fisher and Tan’s paradigm, except 
that only color (red) highlighting was examined and it was 
examined at additional levels of validity. Fisher and Tan 
found that subjects were fastest for targets in the middle and 
roughly equally slow on both ends. This is unsurprising since 
subjects began each trial with a center fixation. Therefore 
effects of position were not examined, though target position 
was randomized. Two experiments were actually run, but will 
be presented in combination.

Method
Participants One hundred eighty Rice University 
undergraduates (57% female) participated to fulfill experiment 
participation requirements for their psychology classes. The 
participants had a mean age of 19.2 years (1.3). There were 
20 subjects per condition.

Design The experiment used a mixed design, with trial type 
as a within subjects variable: control (no highlighting), valid 
highlighting, and invalid highlighting. Additionally, subjects 
were assigned to one of nine validity proportion conditions: 
0%, 12.5%, 25%, 37.5%, 50%, 67.5%, 75%, 82.5%, or 100% 
highlighting validity. Half of all trials each subject received 
was of the control type. A person in the 75% highlighting 
validity percentage condition, for example, would receive half 
control trials and half highlighted trials. Of the highlighted 
trials, 75% of those would have valid highlighting, 25% 
would have invalid highlighting.
Procedure The subjects’ task was to, as quickly as possible 
without making any mistakes, find the number in the display 
that was less than five and immediately press the corresponding 
key on the number row at the top of the keyboard. At the 
start of the trial, subjects viewed crosshairs for 500 ms at the 
intended fixation point in the center of the computer screen. 
They subsequently viewed a horizontal array of five different 
numerals. The numerals were printed in black (red for 
highlighted items) 14-point Times New Roman font on a 17-
inch CRT computer monitor at a resolution of 1024 by 768 
pixels. At a typical viewing distance of approximately 60 cm, 
the entire array subtended a visual angle of approximately 8° 
from left side of the left-most digit to the left side of the right-
most digit. There was approximately 2° of visual angle from 
the left side of one digit to the left side of an adjacent digit. 

One digit from the potential target set, {1 2 3 4} was chosen 
at random, while four distractors from the distractor set {5 6 
7 8 9} were also chosen at random. One target was present 
during every trial. The target and distractors were sorted 
randomly. The array would disappear upon the subject’s key 
press, and one second later the next trial would begin. In 
the event of an incorrect response, the computer beeped and 
paused the experiment for two seconds. This time penalty 
discouraged simple guessing. There were six blocks of 64 
trials each. 

Results and Discussion 
Figure 1 summarizes the means for each validity percentage 
condition by trial type. There was an interaction of trial 
type and validity percentage condition such that as validity 
increased, subjects became faster on valid trials and slower 

on invalid trials, F(12, 258) = 16.22, p < 0.001. But there was 
no main effect of validity condition on response times (RT) 
for the control trial type, F(6, 129) = 1.14, p = 0.341. 

Collapsing across validity percentage conditions, subjects 
responded to valid trials on average 51 ms faster than control 
trials, for which they were 75 ms faster than invalid trials 
(linear F(1, 129) = 418.32, p < 0.001). Another way to look 
at these data is to consider how sensitive subjects were to the 
highlighting. If subjects always attended the highlighted item 
first, then they should show fast RTs to valid trials and slow 
RTs to invalid trials. If they ignored the highlighting, then 
these two RTs should be about the same. Thus “sensitivity” 
was defined as the RT for invalid trials minus the RT for valid 
trials. Subjects did indeed show higher sensitivity at higher 
levels of validity. Note in Figure 1 how the lines for valid and 
invalid trials diverge going from the 0% validity percentage 
condition to the 100% validity percentage condition. 
Furthermore, participants sensitized within the first block. 

Figure 2 plots the effect of validity percentage condition 
on sensitivity in block 1 only. Note how the effect of validity 
on sensitivity is ordinal: sensitivity increases as validity 
increases. Within block 1, subjects in the 87.5% validity 
percentage condition were 201 ms more sensitive to trial 
validity than were subjects in the 12.5% condition, an over 
four-fold difference. ANOVA with linear contrast indicated 
an increasing effect of validity percentage condition such that 
subjects were more sensitive to trial type the more often they 
encountered validly highlighted trials, F(1, 129) = 45.362, 
p < 0.001. Furthermore, this trend held for all trial blocks, 
linear F(1, 129) = 54.06, p < 0.001, though sensitivity did 
decline overall from block one to block six, linear F(1, 129) 
= 12.90, p < 0.001. 

The analysis of subjects’ sensitivity to highlighting 
indicates that subjects learned rapidly whether or not they 
could take advantage of highlighting in their visual search. 
The more valid the highlighting was, the more subjects used 
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Figure 1. Mean RT as a function of validity percentage 
condition.



it and the faster their RTs for valid trials became–and this was 
true even in the first block. However, as validity increased, 
so did the cost of using highlighting on the occasions that it 
was invalid. 

The Algebraic Model of Optimality
Fisher and colleagues (1989) constructed an algebraic model 
of visual search in an attempt to determine average search time 
for a target in displays with or without highlighted options. 
The model computes expected search times given total set 
size, highlighted subset size, probability of the target being in 
the highlighted or unhighlighted subsets, and probability that 
the subject searches first in the highlighted or unhighlighted 
subset.  Readers are encouraged to refer to Fisher et al.’s 
article for a detailed description of the model. The authors 
concluded that only a model that captures validity probability 
can account for observed variance of RT as a function of 
highlighting validity probability. When the display consists of 
a set of discrete options, as in our experiment, then the average 
display search time is a probability mixture of the time to find 
the target when the highlighted options are searched first and 
the time to find the target when the unhighlighted options 
are searched first. Their model assumes users exhaustively 
search through one subset before searching the other.

Our instantiation of the Fisher et al. model assumes 50 ms 
to decide to attend highlighting at the beginning of a trial, 
85 ms to shift visual attention, 100 ms to decide to attend a 
new location, and 150 ms to issue a response. These latencies 
are based on ACT-R’s predictions of how long these actions 
should take. Figure 3 plots the predicted mean RTs of Fisher 
et al.’s optimal model of visual search in the 5 x 1 array 
paradigm for trials with valid and invalid highlighting. Also 
shown is data collected from human subjects. Note that the 
optimal model predicts a highlighting sensitivity in excess 
of 300 ms for even the low validity percentage conditions, 
whereas the humans showed sensitivity in these conditions 
more on the order of 40 or 50 ms. Note also how the predicted 
RTs for valid trials are approximately 350 ms less than those 
obtained. Predicted RTs for invalid trials also were reliably 
less than those obtained from humans, t(14) = 2.409, p 
= 0.030, and the human RTs increased at a faster rate as a 

function of increasing validity level, ANOVA with linear 
contrast on highlighting validity F(1,14) = 5.803, p = 0.030.

The optimal model computes PH, the probability that the 
subject first examines the highlighted subset. Table 1 lists PH 
for each level of highlighting validity. When both the total 
number of items and number of highlighted items is low, as 
it is in this experiment, PH will always be high because the 
random chance of finding the target in any given position is 
high (20%). The high PH is what drives the model to predict 
such fast times for valid trials, and it may be that subjects 
are not as fast in valid trials because they are not so likely to 
search the highlighted item first. 

Finally, Fisher et al.’s algebraic model does not take into 
consideration the possibility that subjects may attend to 
some subset of the unhighlighted options, then attend to the 
highlighted option, then if necessary, finish searching the 
unhighlighted options. As shall be shown with the ACT-R 
models, the ability to attend to the highlighting at any time 
may be important for replicating the human data.

What contributes to the adaptability of human visual search 
behavior in an environment where cues have some probability 
of being helpful or hindering? Given a fairly simple paradigm 
like the digit search in a 5 x 1 array used by Fisher and Tan, 
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Figure 3. Predicted RTs of Fisher et al.’s optimal model and 
RTs from human data.

Table 1: Values for PH given highlighting validity.

Validity PH

0.0% 0.785
12.5% 0.837
25.0% 0.882
37.5% 0.919
50.0% 0.949
62.5% 0.971
75.0% 0.986
87.5% 0.994
100.0% 0.998
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Figure 2. Sensitivity in block 1 as a function of validity 
percentage condition. 



there are a couple of decisions that could be made by the 
user at a variety of different times throughout the task. Users 
can potentially elect to attend or avoid the highlighting each 
time they shift their visual attention, though they might not 
actually make that decision that often. Then there are issues 
of self-evaluation of performance: do users evaluate their 
own performance at the level of whole trials or some smaller 
level, such as individual shifts of attention? Fisher et al.’s 
algebraic model has no answer to offer for these questions.

An ACT-R model can shed some light on the above 
questions, since it must be explicitly programmed to attend 
or avoid highlighting either with every shift of attention or 
only the first one. It could also evaluate its own performance 
at either a macro level (i.e., a full trial) or micro level (i.e., 
each shift of attention). Two ACT-R models were constructed 
to compare to Fisher et al.’s algebraic model and to make 
inferences about people’s search behavior in reference to the 
micro versus macro issues discussed above.

The ACT-R Models
The ACT-R (Anderson et al., 2004) cognitive architecture was 
used to construct two models of this task. The two models, 
macro-level and micro-level, were identical except in the 
level at which they learn: whole trials or individual shifts of 
attention, respectively. On any given trial with highlighting 
present, the models selected and fired one of two productions 
which caused them to attend to (”attend-red”) or avoid the 
red item (”avoid-red”). At the start of each highlighted trial, 
both productions match the contents of the buffers, which 
include a buffer-stuffed red item. “Attend-red” made the 
models move visual attention to the red item. “Avoid-red” 
made them seek an unattended black item. If the currently 
attended item was a target, the models output a press of the 
appropriate key. 

If the item was a distractor, a production, “highlighted-
distractor”, fired. This production was marked as a failure 
in the micro-level model, but it was left unmarked for the 
macro-level model and is the critical difference between the 
two models. If the red item was still unattended, then the 
models still had the decision to make as to whether to attend 
to or avoid the highlighting (“avoided-red-distractor-find-red” 
and “avoided-red-distractor-find-black”, respectively). In the 
case of control trials, the models simply fixated unattended 
items until they found the target. 

Production priors were set as in Table 2. The priors for 
“avoid-red” were set equal to the random chance that the 
target was in either the highlighted or unhighlighted subset, 
20% chance for the highlighted group since one item would 

be highlighted out of a total of five items in the display. Priors 
for “avoided-red-distractor-find-red” and “avoided-red-
distractor-find-black” were set equal to the random chance 
that the target would be in either highlighted or unhighlighted 
subset, given that one unhighlighted item was already 
examined and found to be a distractor. The probabilities for 
successes and failures for “attend-red” were set following 
the same rule, thus 20 successes and 80 failures. But it was 
found that the model did not attend the highlighted item 
often enough to generate a similar RT pattern to the human 
data. This could imply that people may be inclined to check 
highlighted subsets at rates greater than chance.

One consequence of this set of priors is that the model 
will be slightly biased toward examining an unhighlighted 
item first, but not as biased as if it were simply ignoring 
highlighting altogether and checking each item randomly. 
ACT-R computes the utility of every production i using 
Equation 1, where Pi is an estimate of the probability that if 
production i is chosen the current goal will be achieved, G is 
the value of that current goal, and Ci is an estimate of the cost 
(typically measured in time) to achieve that goal (Anderson 
et al., 2004). Equation 2 computes P and Ci is the simulated 
time elapsed between firing production i and firing another 
production that is marked as a success. Thus “attend-red”’s 
utility started at .5 * 20 - 0.05 = 9.95 versus 15.90 for “avoid-
red.” 

This seems valid as a set of  starting assumptions about the 
expectations about highlighting subjects brought with them 
to the experiment given a lack of measurement of the match 
between subjects’ information search goals over the course of 
their lives and the highlighted items they have encountered. 
The priors were scaled to values between 10 and 100 such 
that the model would start a run with some biases in the 
productions it chose, but not so biased as to be inflexible to 
learning new utilities over the course of the 384 trials.

Two ACT-R models were used to explore the question: 
When is an action a success or a failure? If learning occurs 
at the macro (trial) level, all trials are successful because the 
target is always eventually found. Learning, then, occurs 
only as a result of a trial taking relatively more or less time 
to complete. But if learning takes place at a micro level 
(individual attention shifts), then all attention shifts toward 
distractors are failures and only the attention shift toward 
the target is a success. Learning only by time elapsed might 
not be enough feedback to change behavior. If so, the model 
may need the failures encountered when attention shifts to 
distractors are explicitly tagged as failures. 

At trial onset (highlighted trials), the models had two 
competing productions: “attend-red” and “avoid-red”. 
Subsequent shifts of attention within the trial had similar 
productions that competed to make the model either attend 
to the highlighted item if it had not already, or else avoid 
the highlighted item. The models were run with the expected 
gain noise parameter set to 3 because it resulted in the best 

Production Successes Failures Initial Utility
attend-red 50 50 9.95
avoid-red 80 20 15.90
avoided-red-
 distractor-find-red

25 75 4.90

avoided-red-
 distractor-find-black

75 25 14.90

Table 2: Production priors for the ACT-R model.

Ui = PiG −Ci (1)

P = Successes
Successes + Failures (2)



fit to the human data. The utility threshold was set to –100 to 
ensure a matching production always fired. 

Figure 4 plots the mean RTs for human and the macro-
level model’s data, per trial type, per highlighting validity 
percentage condition. Note that  unlike the human data, 
the macro-level model does not change sensitivity across 
highlighting validity percentage conditions. Note that mean 
RTs for valid trials are almost all in excess of 1,000 ms while 
mean RTs for invalid trials are all approximately 740 ms. 
The macro-level model thus has a comparatively large and 
inverted sensitivity function with respect to the human data.

By contrast, the micro-level model  unequivocally produced 
the better fit to the human data, r2 = 0.964, mean deviation 
= 67 ms (figure 5). As highlighting validity percentage 
increased, valid trials became faster and invalid trials became 
slower, as in the human data. The one major flaw in the model 
is its poor prediction of RTs for valid and invalid trials in low 
validity percentage conditions. Because it is too slow on such 
trials, the model shows too much sensitivity in low validity 
percentage conditions. More particularly, the model predicts 
RTs that are too slow for invalid trials at low validity levels, 
and does not increase enough as validity increases.

While we have determined that the micro-level model 
actually does avoid red items all the way through invalid 
trials in the low validity percentage conditions, it is not 
readily apparent why the model generates such slow RTs for 
these trials. We hope that detailed examination of proportions 
of firings of “attend-red,” “avoid-red,” and their subsequent 
shift of attention counterparts will yield clues as to what the 
model is actually doing in these trials. Despite this flaw, the 
model’s prediction of the effect of validity on sensitivity does 

closely mimic that of the human data (Figure 6), r2 = .916. 
The high correlation between model sensitivity and human 
sensitivity may be misleading because the model does fail 
to accurately predict RTs for low validity conditions and is 
generally 50 ms too fast for control trials. Despite this the 
model succeeds very well in capturing the effect of validity 
percentage condition on sensitivity. The micro-level ACT-
R model’s successful capture of the sensitivity effect is 
important because it allows the model to display the same 
qualitative trends as humans: it generally gets faster for 
highlighted trials as validity percentage increases because 
it learns to attend to the highlighting more. However as 
validity percentage increases, so does mean RT for invalid 
trials because the model more often attends to highlighting, 
including the occasions when it is still misleading.
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Figure 4. Human data versus ACT-R macro-level model 
data.

Figure 5. Human data versus ACT-R micro-level model 
data.
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General Discussion 
Fisher et al.’s (1989) optimal model of visual search of 
highlighted displays assumes that people do not always 
check the highlighted subset first, but when the total search 
space is small this model seems to overestimate the degree to 
which people do check that group first. Why do people fail to 
behave optimally, to always attend the highlighted item first 
when validity exceeds the probability of finding the target by 
random chance?

Even in very simple experiments employing a probabilistic 
environment that rewards optimizing behavior, people tend 
to match the probabilities of their responses to outcomes 
rather than optimize their behavior (Shanks, Tunney, & 
McCarthy, 2002). In this task those probabilities matter for 
costs and rewards because a shift of attention to the wrong 
item translates into wasted time. There is some evidence that 
ACT-R’s current production utility learning algorithm does 
not appropriately capture the dynamics of the environment 
with respect to cost and reward (Gray et al., in press), and 
that may be why the model fits poorly in the low highlighting 
validity percentage conditions.

The ACT-R models reveal that people seem to make 
decisions about attending and avoiding highlighting at the 
level of individual shifts of attention, rather than at the level 
of an entire trial as in the Fisher et al. model. To do that 
people are going to need to evaluate their own performance 
at that microscopic level. There is evidence from other 
similar domains that events on such a small time scale do 
have behavioral consequences (Gray & Fu, 2004). To some 
degree, people are learning the probabilities with which 
highlighting leads them to the target and they are using that 
knowledge to exercise control over where they attend. This 
learning and deciding where to attend at the micro level may 
be people’s best way to take advantage of the pop-out effect 
in an environment where what is visually salient may not 
always be what they are looking for.
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