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Abstract

As Newell (1990) has argued, every cognitive architecture
should include a knowledge base modeling human long-term
memory (LTM). A critical analysis of current architectures,
however, reveals that none of these seems to implement
such an LTM component in a completely satisfactory manner.
Based on the problems with existing approaches identified by
this analysis, a new LTM component has been developed and
fully implemented. This new LTM is able to model a wide
range of memory effects and to resolve the problems identified
with existing approaches.

Introduction
In his seminal book, Newell (1990) states 13 constraints on
the human mind which characterize human cognition. Due to
their characterizing function, these constraints pose require-
ments for any cognitive architecture trying to truthfully model
human information processing: an architecture can only be
assumed to be mind-like if it exhibits the same constraints as
the human mind.

One of the constraints Newell (1990) enumerates is the
ability to persistently store and subsequently retrieve in-
formation about the environment. Accordingly, an essen-
tial part of every cognitive architecture should be, as An-
derson and Lebiere (2003) recently termed it, a knowledge
base which corresponds to humanlong-term memory(LTM).
Moreover, including a component realizing some knowledge
base, though necessary, is not sufficient to build a complete
cognitive architecture. Rather, the way the knowledge is
stored and accessed should mirror memory structures and
processes as observed in humans.

In this contribution, we argue that current cognitive archi-
tectures do not realize LTM in a completely satisfactory man-
ner. Thus, we developed and implemented a new LTM com-
ponent improving on the existing approaches. This LTM will
subsequently be termed LTMC as it is part of the cognitive
architectureCasimir which is being developed by our group
(cf. Schultheis, Bertel, Barkowsky, Freksa, & Seifert, 2005).

The remainder of this article is structured as follows: first,
three current cognitive architectures, namely EPIC (Kieras &
Meyer, 1997), Soar (Newell, 1990), and ACT-R (Anderson
et al., 2004), are analyzed with respect to the way they im-
plement LTM1. As a result of this analysis, several problems

1There are several versions of Soar and ACT-R available which
differ in their implementation as well as underlying theoretical as-
sumptions. In this article, we are discussing both architectures in
their most recent version, i.e., Soar 8.6 and ACT-R 6.0.

with each of the current LTM components are identified. Sec-
ond, LTMC will be described and validated by showing (a)
that it resolves the problems associated with the existing ap-
proaches and (b) its ability to accurately model human LTM
effects. In concluding, we touch on work in progress aimed
at making LTMC available to the ACT-R architecture.

LTM in Current Architectures
Given the success of all three above mentioned architectures
in modeling human cognition, the concerns regarding their
LTM might not be immediately comprehensible. Thus, each
architectures’ LTM will be considered in more detail below.

LTM in EPIC and Soar
In EPIC, LTM consists of several discrete blocks of informa-
tion. All production rules are evaluated with respect to these
blocks. If the condition of a production requires some infor-
mation to be present for the production to be applicable and
this information is in LTM, the production’s actions will be
taken. Implicitly, such a representation and use of knowl-
edge assumes that all blocks in LTM are always completely
available. Although such permanent availability might be de-
sirable for information processing systems in general, it is
not in accord with basic findings regarding human memory.
First of all, several studies (e.g., Godden & Baddeley, 1975)
have shown that the availability of information in long-term
memory is context-dependent: information obtained in a cer-
tain situations is best retrieved in situations which are sim-
ilar to s. Second, beginning with the work of Ebbinghaus
(1885), numerous studies indicate that information may be
lost from LTM over time (see Wixted & Ebbesen, 1991, for
an overview). Finally, both context dependence and forget-
ting do not occur in an all or none fashion but gradually. That
is, forgetting and change of context may make it harder to
retrieve information from LTM, but not necessarily render
retrieval impossible. Since the availability of knowledge in
EPIC’s LTM does neither depend on context nor on the time
elapsed since information storage, it seems to be a rather in-
accurate model of LTM in humans.

LTM in Soar comprises only production rules which are as-
sumed to realize the associative and context-dependent nature
of human memory. If the conditions for a certain production
match the current context, its actions may retrieve certain in-
formation by putting this information into working memory.
However, this associative context dependence is not graded:
either a current context allows to retrieve certain knowledge
(i.e., to apply a certain production) or it does not. Conse-



quently, LTM in Soar is in disaccord with basic findings re-
garding human LTM.

LTM in ACT-R

The LTM of ACT-R not only realizes the above stated as-
pects of human LTM, but also has been shown to be able to
account for a wide variety of memory effects (see Anderson
et al., 2004, for an overview). Nevertheless, Rutledge-Taylor
(2005) has recently argued that ACT-R’s LTM may be inad-
equate as a model of human LTM, since the representation
structures employed in ACT-R’s LTM are not general enough.
Substantiating the broad concern of Rutledge-Taylor (2005),
we identified three problems regarding both ACT-R’s capabil-
ities to model task-specific empirical data and the suitability
of ACT-R’s LTM as a model of human LTM in its entirety. In
the rest of this section we will explicate the three identified
problems in detail after shortly summarizing the characteris-
tics of ACT-R’s LTM.

Characteristics of ACT-R’s LTM The basic building
blocks of ACT-R’s LTM arechunks. Chunks are structured
collections of information: each chunk comprises a type spec-
ification, severalslots, and, potentially, for each slot a value.
Which slots a chunk offers depends on its type and a chunk
type definition lists all slots a chunk of this type might have.
The value of a slot may be a chunk, a string, or a digit. In ad-
dition, every chunk has an activation value which is a floating
point number determining its availability.

It is further assumed in ACT-R that the chunk types and
chunks available to a model—corresponding to one person
being modeled—are specific to that model. Accordingly, the
LTM of ACT-R is model-specific and comprises all chunks
which have been created during the existence of a model.

To access chunks in LTM during a model run, the type of
the chunk to be retrieved has to be specified. Only chunks of
the given type can be retrieved. Optionally, values for differ-
ent slots of chunks of this type may also be indicated. In prin-
ciple, every chunk to be retrieved must match all of the slot
values specified2. Of all of those chunks which match both
the type and the slot values the one with the highest activa-
tion will be retrieved. In doing so, the activation value of each
matching chunk in the scope of a certain retrieval is computed
by summing three sources of activation: base level activation,
spreading activation, and noise. The base level activation is
determined by the frequency and recency of a chunk’s use:
the more frequent and more recent a chunk has been used the
higher its base level activation. In contrast, spreading acti-
vation is not determined by the history of a chunk, but by
the current context. Every chunkc which is currently part of
the context increases the activation of those chunks in LTM
which contain or are equal toc. The third contribution to ac-
tivation is a random number added to the activation value of
a chunk as noise. It is assumed that this random number is
logistically distributed with mean0.

Assigning an activation value to each chunk and using it as
just described, nicely allows to model all of the basic memory
effects listed in the previous section. Yet, as will be detailed
in the next section, several problems are associated with the
structure of ACT-R’s LTM as well as its use.

2An exception to this will be discussed in the problems section.

Problems with ACT-R’s LTM There are at least three is-
sues raising doubt regarding the suitability of ACT-R’s LTM
as a model of human LTM:

• Model specificity: It is common practice when modeling
memory effects (see e.g. Anderson & Reder, 1999), to in-
sert just the immediately task-relevant chunks into LTM.
Accordingly, LTM normally consits only of some 10 to
30 chunks. Obviously, it is highly implausible that a hu-
man’s LTM contains just that few discrete blocks of infor-
mation. It also remains unclear whether the accuracy of the
model would still be given when the task-relevant knowl-
edge would be embedded in additional, potentially inter-
fering information. A further difficulty potentially arising
when trying to construct a less task-specific LTM is due
to the way knowledge is structured in the different ACT-R
models. Similar to knowledge itself, knowledge structure,
i.e., the chunk types used, is also model-specific. Therefore
it is uncertain (a) whether chunk types working well when
considered in isolation still do so when considered together
or (b) whether one could create a unified chunk structure
which both represents all knowledge used in ACT-R mod-
els so far and still gives adequate modeling results.

• Inflexible structure : Chunks group information and how
they group it (e.g., the number of slots) is determined by
their corresponding chunk types. Furthermore, chunks are
the atomic elements of memory access: if successful, a
retrieval request will result in a single, complete chunk.
Accordingly, the atomic elements of retrieval are groups
of information and, importantly, how the information is
grouped depends only on the chunk types. In particular,
the available types of grouping do not depend on the con-
text in which retrieval occurs. Put differently, information
that will be retrieved together in one context will be re-
trieved together in every context. Thus, chunks and chunk
types impose an inflexible grouping on the knowledge in
ACT-R’s LTM—a problem which is aggravated by the fact
that chunk types have to be preset by the modeler and can-
not be changed or newly created during a model run. Such
structuring however, does not seem to be in accord with the
general idea of context dependence of human LTM.

• Partial matching: On the one hand, access of information
in human LTM is quite focused. That is, if one tries to
remember the solution to a mathematical problem which
one has solved previously, the result of the memory ac-
cess will almost never be anything completely unrelated to
this mathematical question. Consequently, by default only
those chunks in ACT-R’s LTM which match the chunk type
as well as all specified values given in the request (see
above) may be retrieved. On the other hand, as for in-
stance the investigations by Erickson and Mattson (1981)
have shown, in certain situations, retrieval results may dif-
fer slightly from what has been requested. Since in such
cases the result of the retrieval does not perfectly match the
retrieval request, this phenomenon has been termedpar-
tial matching. The only way to accommodate such mem-
ory phenomena in ACT-R is to employ a mechanism also
called partial matching. For this mechanism to work, the
modeler has to detail values for pairs of chunks giving
their respective similarity to each other. Once this is done



those similarities are taken into account during retrieval:
all chunks of the specified chunk type are considered and
the activation of those which do not perfectly match the
requested slot values will be decreased inversely propor-
tional to the similarity values between the differing slot
values. Although this mechanism allows ACT-R to account
for partial matching phenomena, it seems to be rather ad-
hoc and is not arising from the structure and general mech-
anisms of ACT-R’s LTM (cf. Altmann, 2000).

In summary, none of the three considered architectures seems
to realize a knowledge base modeling human LTM in a com-
pletely satisfactory manner. Therefore, LTMC which im-
proves on the existing realizations has been conceptualized
and implemented. LTMC and its evaluation will be presented
in the next section.

An Improved LTM
The objective in developing LTMC was twofold: first, LTMC

should be capable of representing human LTM in its entirety
and not just with respect to specific tasks. Second, LTMC

should improve on the existing models regarding cognitive
plausibility. To achieve both goals it seemed reasonable to
start from those aspects of existing LTM conceptions that
have proven to be valuable and replace just those aspects of
previous conceptions which the preceding analysis has iden-
tified as being problematic.

When comparing the three discussed cognitive architec-
tures, ACT-R’s LTM not only seems to be the most elaborate
one, but also has been most successfully applied to model-
ing human memory phenomena (cf. Anderson et al., 2004).
Moreover, the problems identified with this approach seem to
be mainly structural. The mechanisms realizing context de-
pendence and memory decay, namely base level activation,
spreading activation, and noise, seem to satisfactorily mirror
processes in human LTM. It is merely the chunk structure
of knowledge representation which seems to cause problems.
Consequently, LTMC realizes an advanced structure while at
the same time largely adopting the activation related mech-
anisms of ACT-R. In doing so, LTMC is able to resolve all
of the three problems associated with ACT-R’s LTM without
compromising those aspects of ACT-R’s LTM which seem to
be in accord with human LTM.

Structure
The basic building blocks of the new structure are nodes and
connections between them. Each node comprises a name, a
unique identifier, and one or more connections to other nodes.
The name of a node is a string and its main purpose is to indi-
cate which entity in the world a certain node stands for. The
unique identifier on the other hand serves rather a technical
function in allowing the system to address every single node.
As a third component of each node, connections establish
links to other nodes. Some of these links ensure the efficiency
of the technical realization by implementing a binary search
tree on all nodes in LTM whereas the other links represent as-
sociations between nodes in LTM. Since only connections of
the second type are of interest regarding psychological phe-
nomena, the following description will concentrate on those.

The links in LTMC generally bear no meaning other than to
establish associative connections between nodes. In particu-

London Parisnorth-of

Figure 1: Three nodes with two links representing the fact
that London is north of Paris.

lar, links do not constitute relations, but relations are also rep-
resented as nodes. As a result, there are essentially two kinds
of nodes in LTMC : object nodes representing objects (e.g.,
persons, buildings, countries, etc.) and relation nodes rep-
resenting relations between entities (e.g., north-of, has-color,
between, etc.). It is by linking these two types of nodes that
knowledge is represented in LTMC . For instance, the knowl-
edge that London is north of Paris would be represented as
depicted in Figure 1.

Representing relations as nodes has at least three advan-
tages: first, relations of differing arity can easily be accom-
modated in the same framework. Consider, for example, the
relation “between” which has arity three. If relations were
represented by connections, representing “between” would be
rather difficult, since every connection links just two nodes.
With relations as nodes however, “between” can be easily
represented by linking the corresponding relation node to the
three entities to be related. Second, relations as such can be
primed, i.e., the process of activation spreading takes into ac-
count not only the entities which are related, but also the re-
lations themselves. Third, by representing relations as nodes,
categories and subsumptions of categories for relations can
be built. For example, the knowledge that “north-of” is a “di-
rection relation” can be explicitly encoded.

Apart from knowledge about concrete entities LTMC also
contains information about classes or categories of entities.
One important aspect of the knowledge about categories is
their subsumption relations as in the above example of “north-
of” and “direction relation”. Since representing subsumption
relations as nodes would lead to infinite regress they are rep-
resented by connections, calledisa-connections.

To sum up, the representation structure employed in LTMC

consists of object and relation nodes which are associatively
linked. Knowledge about entities is represented by associa-
tive links between the corresponding nodes. Moreover, the
representation structure supports organizing knowledge in a
subsumption hierarchy (i.e., an ontology) of categories and
concrete instances. Thus, the representation of knowledge in
LTMC roughly takes the form of a tree with the most general
entity as the root and concrete instances as the leaves (see
Figure 2).

Processes

Retrieval of information from LTMC is activation-based.
Like in ACT-R, every node has an activation value which is
the sum of the base level activation of the node, the activa-
tion spread to that node, and some randomly varying activa-
tion (i.e., noise). On every retrieval request, the activation
of each node, starting out at0, is computed in the follow-
ing way: first, elements currently in context (i.e., in working
memory or in the environment) increase the activation of cor-
responding nodes in LTM. If, for example, a person is asked
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most general entity

Figure 2: Structure of the knowledge representation.

which direction relation holds between London and Paris, the
activation of the nodes “direction relation”, “London”, and
“Paris” will be increased. The amount of activation which en-
ters LTM is fixed and this amount will be equally distributed
to all nodes which receive activation.

Second, the activation inserted into LTM by the previous
step will be spread from node to node via their associative
links. The activation that a nodeN receives—either from
the context or from another node—is added to its current ac-
tivation. Furthermore, a certain fraction of the just received
activationfN

act is spread to all nodes associatively linked toN
except for the node from whichN initially received the acti-
vation. The amount of activation any neighbor ofN receives
is inversely proportional to the number of neighbors ofN .
More precisely, ifN hasm neighbors to which activation is
spread, each of these neighbors’ will be increased byfN

act/m.
Spreading stops when the amount of activation to be spread

from a node to its neighbors falls below a certain threshold.
This mechanism not only avoids infinitely spreading activa-
tion, but also is in accord with the way the human nervous
system works: a neuron will only transmit a signal (i.e., ac-
tivation) to its neighbors if the activation it receives is above
a certain threshold (cf. Kandel & Schwartz, 1985). How-
ever at the same time, using such a threshold introduces a
free parameter into the system. Since too many free param-
eters potentially reduce the explanatory value of the model,
we decided to make the threshold dependent on the amount of
overall stimulation from the contextScontext by setting it to
Scontext ∗ 10−4. Dependence of the threshold on the amount
of stimulation has its analogue in neural processing where
neurons are less sensitive to signals after high stimulation (cf.
Kandel & Schwartz, 1985).

There is one further mechanism constraining the direction
of activation spreading. As described in the previous sec-
tion, information in LTMC comprises both knowledge about
categories and knowledge about instances. With the spread-
ing process as introduced so far it would be possible that
activation stemming from some instance node would spread
to the category node the instance is subsumed by and from
there back to some other instance node. For example, if the
node “Kofi Annan” spreads activation to the category “Per-
son” this activation may then spread from the “Person” node
to every person of which there is knowledge in LTM. Put
differently, when trying to remember something about Kofi
Annan all the persons one knows would eventually come to
one’s mind. Since this seems highly implausible, any activa-
tion emanating from an instance node is constrained to never
spread downwards in the subsumption hierarchy. Following a
similar argument, activation emanating from a category node
is constrained to never spread upwards in the hierarchy.

Once spreading has stopped, as the third step of the re-
trieval request, both base level activation and noise are added
to each node’s activation. The formula to compute the former
is identical to the one used in ACT-R (Anderson et al., 2004).
That is, the base level activationBi of a node at timetc is
determined by the formula

Bi = ln(
n∑
1

(tc − tj)−d)

wheren is the number of times this node has been used and
tc − tj is the time elapsed since thejth use of this node. A
node is assumed to be used when it is part of the result of a
retrieval request or when it is stored in LTM. Also identical
to ACT-R are the formulas for computing (a) the noise to be
added to each node’s activation and (b) the retrieval latency.

The amount of activation a node has after adding all three
sources of activation is the basis for determining which nodes
to retrieve. Only those nodes can be retrieved which have an
activation above a certain threshold. This threshold is defined
as the average activation of the nodes in LTM. Choosing the
threshold in this way has two advantages: first of all, it re-
duces the number of free parameters, since the threshold has
not to be set by the modeler. Second, such a relative threshold
is not susceptible to overall variation of activation (e.g., due
to changes in global arousal). When using an absolute thresh-
old, on the contrary, the threshold would have to be reset by
the modeler with every change in global arousal.

It is further assumed that the result of a retrieval request
will not be the set of all nodes with an activation above thresh-
old, but just one connected subset of those nodes. A con-
nected subset is defined as being a set of nodesSN such that
for every pair of nodesNi, Nj in SN there is at least one se-
quence of nodes fromSN Ni, Ni+1, . . . , Nj−1, Nj for which
holds that for allNm with i ≤ m < j Nm is associatively
linked to Nm+1. Because a retrieval request may give rise
to more than one connected subset, an additional criterion
is needed to select one of those subsets as the result of the
request. Like with selecting the nodes, the selected subnet
should be the one most prominent compared to the others.
Different from selecting the nodes however, average activa-
tion of each subnet does not seem to be sufficiently informa-
tive to determine prominence of subnets, since the number of
nodes in a subnet can be assumed to have an impact on its
prominence as well. To take into account both the activation
and the number of nodes of a subnet we define prominence of
a subnet as being the sum of the activation of all nodes in that
subnet. That is, the result of the retrieval will be the subnet
with the highest overall activation.

Given its structure and the just described processes, LTMC

can easily account for all basic memory phenomena. Since
(a) the activation inserted into LTM at the beginning of a re-
trieval request is added to those nodes which are related to
the context and (b) the height of the nodes’ activation deter-
mines whether they are retrieved, nodes related to the context
and nodes associatively linked to these will have a higher ac-
tivation and thus a higher chance of being retrieved. This
shows that the availability of knowledge in LTMC , like in hu-
man LTM, is context-dependent. Moreover, due to the use
of base level activation, the time elapsed since the last use



of the node does influence its activation value and thereby
its chance of being retrieved. Hence, also the second basic
memory phenomenon is taken into account: information may
be lost from memory with time. Owing to the real valued
nature of activation both context dependence and time depen-
dence are modeled as occurring in a graded fashion which is
in accord with human memory phenomena. Furthermore, the
modeling capabilities of LTMC go beyond those basic mem-
ory effects. For example thefan effect(e.g., Anderson, 1974)
arises straightforwardly from the way activation spreads from
node to node: the more associative links a node has to other
nodes the less activation will be spread to those nodes. By
accounting for both basic memory phenomena and additional
memory effects, LTMC clearly improves on the LTM compo-
nents of EPIC and Soar. More importantly, LTMC also im-
proves on the LTM of ACT-R in avoiding the problems which
we have identified with the latter.

Consider first the problem of the inflexibility of the chunk
structure used by ACT-R’s LTM. This chunk structure pre-
defines how information is grouped together and thus which
information will be retrieved together. In contrast, our ap-
proach does not impose such a predefined structure on the
knowledge in LTM. Which information is retrieved together
is determined entirely by the processes of context activation,
spreading activation, base-level activation, and noise. Of
course, any subnet resulting from a retrieval request to LTMC

is also grouped information and could be recoded as a chunk
given a suitable chunk type. The important difference is that
in our approach the grouping is only transient, i.e., context-
dependent. Given another context, the information as it is
retrieved from LTMC may well be grouped differently. Con-
sequently, LTMC is more flexible than ACT-R’s LTM com-
ponent in providing information for different reasoning situ-
ations (i.e., in different contexts). Therefore, LTMC seems
more plausible as a model of multi-purpose human LTM.

A second advantage of LTMC compared to ACT-R’s LTM
is the way that partial matching is realized. In ACT-R, by de-
fault, only chunks matching all of the specified characteristics
of the requested chunk can be retrieved. This amounts to a de-
terministic, ungraded selection of knowledge from LTM. The
only way to avoid such deterministic selection is by hand-
coding the grading into the model using similarity values. In
LTMC , on the other hand, retrieval request specifications just
determine which nodes are initially activated. Due to the
activation-related mechanisms, this initial activation place-
ment only influences the chances of some information being
retrieved, but does not prevent any information from being
retrieved. Thus, graded selection, i.e., partial matching, in
LTMC directly arises from its structure and processes. To il-
lustrate this point, a model of an experimental task pertaining
to partial matching is presented in the next section.

The Moses Illusion

Consider the question “How many animals of each kind did
Moses take on the Ark?” Despite the fact that people know
that it was Noah not Moses who built the Ark and took an-
imals on it, people frequently answer “two” to the question
like they would if Noah were the subject of the question. This
phenomenon of answering a question which, in principle, has
no answer due to an exchanged agent, object or verb, has been

Table 1: Empirical and LTMC model results with respect to
the first experiment of Erickson and Mattson (1981). Model
results for each question are based on 100 model runs.

Question Study Results Model Results
Noah / Moses 81% 81%
Jonah / Joshua 40% 46%
Bell / Edison 44% 48%
Ahab / Nemo 44% 43%

termed theMoses illusion(see Park & Reder, 2004, for an
overview).

Several explanations for this phenomenon have been pro-
posed. Although the debate which explanation might be cor-
rect is not completely settled yet, as Park and Reder (2004)
argue, the empirical results accumulated over the years best
support the assumption that the Moses illusion stems from
partial matching. According to this explanation all of the in-
formation given in the question, including “Moses”, is used to
request facts from LTM. Since there is no information on any
Moses having taken animals on an Ark, this retrieval request
does not perfectly match any content of LTM. Yet, Moses
is assumed to be sufficiently similar to Noah to frequently
retrieve the required information, namely “two”, from LTM
(e.g., Moses as Noah is part of a biblical tale and both are
described as being old). It is argued that the question with
Moses partially matches the facts which are stored with Noah
and his Ark to retrieve this information. To model such a par-
tial matching effect in ACT-R, the similarity between Moses
and Noah would have to be coded explicitly. On the contrary
LTMC does not need any hand-coded similarity values to ac-
count for such a partial matching effect.

To corroborate this claim, we modeled the first experiment
reported by Erickson and Mattson (1981). In this experi-
ment, 28 participants had to answer the four following ques-
tions: “How many animals of each kind did Moses take on
the Ark?”, “In the biblical story, what was Joshua swallowed
by?”, “What is the nationality of Thomas Edison, inventor of
the telephone?”, and “In the novel ’Moby Dick’, what colour
was the whale that Captain Nemo was after?”. In a subse-
quent test, Erickson and Mattson (1981) determined which
participants had the knowledge necessary to answer the ques-
tions in their correct formulation, and for those determined
the percentage with which the illusion occurred (see Table 1).

In modeling these experimental results all information nec-
essary to answer the four questions was inserted into LTMC .
For example, nodes and links were created to encode that
Noah sailed the Ark, Moses and Noah are both old and part
of a biblical tale, the Ark contained pairs of animals, etc.
Note however, that the task-relevant information was not the
only knowledge in LTMC during the simulation. Rather, all
instance nodes were linked to category nodes and a consid-
erable number of additional nodes (about 700) were part of
LTM. Thus, the memory effects exhibited have been obtained
in the scope of a considerable amount of additional and po-
tentially interfering information.

As can be seen in Table 1, the modeling results mirror those
which have been observed in the original experiment: the cor-



relation between model and empirical results is0.99. To ob-
tain these results, the only parameters which were fit were the
overall amount of activation (set to 50) inserted into LTM on a
retrieval request and the fractionfact of activation distributed
from a node to its neighbors (set to 0.7). In particular, no sim-
ilarity values between certain entities had to be set to obtain
those partial matching results. For example, the percentage
difference between the Noah / Moses and the Jonah / Joshua
questions arises directly from the knowledge representation
itself. Because Moses has more links to Noah (e.g., both are
old and part of a biblical tale) than Jonah has to Joshua (in
fact, nothing much is assumed to be known about Joshua)
activating Moses will spread more activation to the relevant
knowledge than activating Joshua will regarding the second
question.

This model not only shows that LTMC can account more
parsimoniously for partial matching effects than ACT-R’s
LTM but also, in contrast to usual ACT-R models, obtained
its results on the basis of more realistic knowledge base, i.e.,
one containing more than just the task-relevant knowledge.

Related Work
LTMC bears some resemblance to semantic networks as pro-
posed by Collins and Loftus (1975). Yet, there are several
notable differences: first, their approach is more qualitative
than quantitative. That is, activation spreading processes are
only roughly sketched giving no account of how exactly ac-
tivation is distributed from node to node. Second, there is no
mechanism for changing the availability of knowledge due to
practice (i.e., no learning). Third, relations are represented as
edges between the nodes, not as nodes. As our fully imple-
mented LTMC addresses all of these issues it is also a real im-
provement on the LTM Collins and Loftus (1975) proposed.

Conclusions
In this article, a critical analysis of the realization of LTM in
current cognitive architectures has been presented. This anal-
ysis revealed several problems associated with each of the ex-
isting approaches. Based on these issues, the new LTM com-
ponent LTMC has been conceptualized and implemented for
cognitive architectures improving on the existing ones. More
precisely, LTMC accounts for (a) basic human memory phe-
nomena such as context and time dependence of knowledge
accessibility, (b) various additional memory phenomena like
the fan effect, (c) the structural flexibility of human LTM,
(d) partial matching phenomena more straightforwardly and
parsimoniously than ACT-R, and (e) the fact that a cogni-
tively plausible architecture should allow for a task-unspecific
knowledge base.

From a technical perspective LTMC is a software module
with a clearly defined interface allowing LTMC to be inte-
grated into existing cognitive architectures. Currently, we are
working on integrating LTMC as an additional module into
ACT-R which will make this improved LTM available to a
larger community of cognitive modelers.

Acknowledgments
In this paper work done in the project R1-[ImageSpace] of the
Transregional Collaborative Research Center SFB/TR 8 Spa-
tial Cognition is presented. Funding by the German Research

Foundation (DFG) is gratefully acknowledged. We also thank
Eduard Krieger, Shane Lile, and Johannes Quistorp for their
help in implementing the system.

References
Altmann, E. M. (2000). Memory in chains: A dual-code

associative model of positional uncertainty. In N. Taat-
gen & J. Aasman (Eds.),Proceedings of the third interna-
tional conference on cognitive modeling.Veenendaal, The
Netherlands: Universal Press.

Anderson, J. R. (1974). Retrieval of propositional informa-
tion from long-term memory.Cognitive Psychology, 6, 451
- 474.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., & Qin, Y. (2004). An integrated theory of
the mind.Psychological Review, 111(4), 1036 - 1060.

Anderson, J. R., & Lebiere, C. (2003). The newell test for
a theory of cognition.Behavioral and Brain Sciences, 26,
587 - 639.

Anderson, J. R., & Reder, L. M. (1999). The fan effect: new
results and new theories.Journal of Experimental Psychol-
ogy: General, 128, 186 - 197.

Collins, A. M., & Loftus, E. F. (1975). A spreading activa-
tion theory of semantic processing.Psychological Review,
82(6), 407 - 428.

Ebbinghaus, H. (1885).̈Uber das Ged̈achtnis: Untersuchun-
gen zur experimentellen Psychologie. Leipzig: Duncker &
Humblot.

Erickson, T. D., & Mattson, M. E. (1981). From words to
meaning: a semantic illusion.Journal of Verbal Learning
and Verbal Behavior, 20, 540 - 551.

Godden, D. R., & Baddeley, A. D. (1975). Context-dependent
memory in two natural environments: On land and under
water.British Journal of Psychology, 66, 325 - 331.

Kandel, E. R., & Schwartz, J. H. (1985).Principles of neural
science(2 ed.). Amsterdam, The Netherlands: Elsevier.

Kieras, D. E., & Meyer, D. E. (1997). An overview
of the EPIC architecture for cognition and performance
with application to human-computer interaction.Human-
Computer Interaction, 12, 391 - 438.

Newell, A. (1990).Unified theories of cognition. Cambridge,
MA: Harvard University Press.

Park, H., & Reder, L. M. (2004). Moses illusion: Implica-
tion for human cognition. In R. F. Pohl (Ed.),Cognitive
illusions. Hove: Psychology Press.

Rutledge-Taylor, M. (2005). Can ACT-R realize ”Newell’s
dream”? InProceedings of the 27th annual meeting of the
Cognitive Science Society.

Schultheis, H., Bertel, S., Barkowsky, T., Freksa, C., &
Seifert, I. (2005). Casimir: Comprehensive computational
modeling of mental spatial knowledge processing. InPoster
Proceedings of the Conference on Spatial Information The-
ory (COSIT). 14. - 18. Sept. 2005, Ellicottville, New York.

Wixted, J. T., & Ebbesen, E. B. (1991). On the form of
forgetting.Psychological Science, 2, 409 - 415.


