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Abstract 

Cognitive architectures provide a definition of an abstract 
machine to support programming of cognitive models and 
intelligent systems.  The point of the abstract machine is to 
provide the most useful set of processes and representations 
for developing such models, and the machine usually comes 
hand in hand with a programming language.  However, most 
cognitive architectural languages are specified at a very low 
level, which hinders model development in a number of ways.  
We have developed an abstract machine and language that 
generalizes across architectures, allowing modelers to move 
up a level in their model specification.  This serves a variety 
of scientific and engineering goals. 

Introduction 
This paper describes our development of high-level 
abstractions for modeling cognitive processes and intelligent 
behavior, together with a formal computer language based 
on these abstractions.  The work is in the spirit of past 
research into cognitive architectures, which provide 
functional components and data representations for the 
purpose of modeling human behavior.  Each cognitive 
architecture defines an abstract machine together with a 
language for programming that machine.  However, until 
recently, there has been little effort to identify the 
commonalities across existing cognitive architectures, 
which would also make it more clear which architectural 
differences are important from a theoretical point of view. 

Our efforts to produce an abstract language for cognitive 
modeling have shown that there are important fundamental 
and theoretical differences between the most prominent 
cognitive architectures (Crossman et. al., 2004; Jones & 
Wray, in press).  However, much of the work involved in 
building specific cognitive models is the same no matter 
which architecture one is using.  This is particularly true for 
defining high-level knowledge representations, building a 
structured task analysis, and implementing this with a 
conventional sense-retrieve-act decision cycle.  One goal of 
this research is to make it feasible for common modeling 
activities to be accomplished within a common framework 
and formal language.   This should make it easier to build 
and maintain models, facilitate exploration of model 
variations within a particular cognitive architecture, and 
enable comparing models across architectures. 

To this end, we are developing an abstract formal 

cognitive modeling programming language that generalizes 
the common structures and processes found in existing 
cognitive architectures.  Our approach combines a high-
level overview and analysis of a number of architectures for 
cognition and intelligent agents with a fine-grained analysis 
of two of the most prominent cognitive architectures.  Our 
current work involves developing a language and compilers 
to specify high-level cognitive models and translate them 
into executable ACT-R (Anderson, 1998) and Soar (Newell, 
1990; Wray & Jones, 2005) models.  This has required us to 
be extremely careful about managing the theoretical 
differences and assumptions behind ACT-R and Soar, and 
generalizing those into a useful abstract framework that can 
be represented in a formal, high-level language. 

Together with the development of the language and 
compilers, we are working with initial modeling examples 
to help refine and evaluate the language.  This report 
presents an overview of some of the interesting language 
features we have identified so far, together with illustrative 
examples and initial evaluations of the language design. 

Abstract Machines and Languages 
A key concept in computer science is to define appropriate 
levels of abstraction for different types of tasks.  This 
approach has led to the notion of an abstract machine; an 
interpreter that provides a fixed set of functional 
components, together with a “machine” language that 
operates on those components.  The cognitive science field 
has also produced work in this spirit, leading to the 
development of cognitive architectures.  A cognitive 
architecture can be considered as a virtual machine that 
provides functional components for the essential elements 
of the human mind 

Cognitive architectures have added to our understanding 
of mental processes by providing formal abstractions of 
those processes.  Current architectures, however, have 
necessarily provided low-level abstractions, meaning that 
their associated programming languages are also low-level, 
akin to assembly languages for intelligent systems.  Such 
languages require undue effort on the part of model builders 
and make it difficult to develop high-level solutions that are 
not mired in details.  In some respects, one of the strengths 
of cognitive modeling is that it forces the modeler to be 
precise in developing a theory.  However, in many instances 



it would be more useful to work at higher levels of 
abstraction when developing individual cognitive models. 

Research Goals 
The goals for our research can be divided into two broad 
categories.  On one hand, developing higher level 
abstractions will provide scientific advantages for advancing 
our understanding of human thinking.  On the other hand, 
the effort should also improve the efficiency and correctness 
of engineering applied human behavior models. 

Scientific Goals 
Our scientific goals focus on making it easier to develop, 
understand, reuse, and compare cognitive models and 
components of those models: 
• Creating a clean distinction between the parts of a model 

that depend on the unique aspects of the architecture and 
those that do not. 

• Eliminating or reducing the number of possible different 
ways to create a particular model, thereby reducing 
potential confounding factors when comparing models. 

• Fostering reuse across cognitive models, especially in 
terms of high-level task knowledge. 

• Allowing straightforward comparisons of the same model 
within two different cognitive architectures. 

• Encouraging exploration and fine-tuning of architectures  
while holding a model’s high-level abstractions constant. 

Engineering Goals 
Our engineering goals aim primarily at controlling the costs 
of development, maintenance, and deployment of cognitive 
models and applied knowledge-intensive agent systems: 
• Fostering reuse, thereby reducing development expense. 
• Decreasing number of lines of code and programming 

constructs necessary to implement a complete model. 
• Improving compile-time and run-time error checking 

during model implementation. 
• Decreasing software maintenance costs by allowing code 

updates at higher levels of abstraction and incorporating 
software engineering constructs. 

• Allowing model specification only to the level of detail 
necessary for a particular application or research effort. 

• Informing the creation of abstract-level design tools and 
integrated development environments. 

Overview of Cognitive Architectures 
To accomplish these goals, we are focusing on three 
elements: a language for specifying agent behavior at a high 
level with reusable components (HLSR), a mapping 
between this language and the underlying architectures (a 
compiler), and a methodology for developing agents.   

Important constraints on HLSR’s design arise from the 
fact that sophisticated cognitive models and agents must 
incorporate significant amounts of knowledge.  There are 
many good engineering platforms for building software 
systems, including “lightweight” agent systems.  However, 
these platforms are clearly not suitable for implementing 
agents that incorporate large amounts of knowledge, that 
must maintain sophisticated internal representations of 

situational awareness, and that must manage the 
maintenance and pursuit of complex sets of interacting 
goals.  In contrast, cognitive architectures have traditionally 
focused on exactly such capabilities.    

In addition, cognitive architectures perform in a least 
commitment (Weld 1994) manner, making context-sensitive 
decisions about behavior and resource allocations, and 
flexibly adapting those decisions in the face of a changing 
environment or assumptions.  Least commitment 
mechanisms, in which control decisions are made at every 
decision opportunity, contrasts with traditional control logic, 
in which control decisions are fixed when the program is 
designed and compiled.  Least commitment is a 
fundamental requirement for autonomous, flexible, 
adaptable behavior. Cognitive architectures also generally 
provide explicit mechanisms for relating parallel processing 
(for example, at the level of memory retrieval, pattern 
matching, or analysis of courses of action) to serial 
processing (where behavior systems must ultimately 
generate a serial set of commitments to action).   

As platforms for knowledge-intensive models, cognitive 
architectures also support the encoding of knowledge into 
executable models.  Many architectures focus on symbolic 
representations of this knowledge while others  also support 
subsymbolic processing (e.g., the retrieval process in ACT-
R’s associative network).  However, for HLSR, we are 
targeting a symbolic level of abstraction, leaving 
“subsymbolic” processes to inform the implementation 
level.  Symbolic encoding of knowledge has a natural 
relationship to symbolic programming languages, which is 
ideal for systems that lead the “double life” of serving as 
human behavior models and application programs.   

Knowledge in cognitive architectures is encoded 
associatively, as opposed to procedurally or functionally, as 
is standard practice in software engineering.  Each 
architecture includes a mechanism for associative retrieval 
of potential courses of action, and a conflict resolution 
mechanism for choosing between the candidates. We argue 
(and research into cognitive architectures seems to confirm) 
that associatively represented knowledge is a fundamental 
key to capturing mixed-initiative commitment to action, 
which is expected of artifacts with human-like intelligence. 

A final reason to focus on cognitive architectures is that 
they generally provide at least some account of all aspects 
of intelligent behavior, and provide explicit structures and 
processes for modeling them.  In particular, this breadth 
includes learning and long-term adaptation to new 
environments, which will be a key part of future 
development of sophisticated human behavior models.  
Much additional research is needed before learning is used 
in robustly engineered, knowledge-intensive agents.  
However, learning is critical and successful efforts to design 
abstract frameworks for intelligent agents must address the 
challenges of learning early in design.    

HLSR Language Constructs 
The selection of constructs and execution semantics for 
HLSR has been driven by several factors.  Initially, we 
identified a set of core elements that appear to be relatively 
similar across cognitive architectures, including: 



• A declarative memory structure and a retrieval method 
• Goals 
• A procedural memory, particularly containing information 

to achieve goals 
• Mechanisms for timely reaction to external events.  
• A decision process that iteratively selects goals to achieve 

and actions to execute based on input and the contents of 
procedural and declarative memory 

The key guiding principle behind identifying these 
components has been to find useful levels of abstraction, 
specifically the abstraction of low-level programming and 
architectural details.  Appropriate abstractions will allow 
HLSR to compile models into multiple architectures and 
reduce the amount of code necessary.  HLSR’s design has 
also included an emphasis on the target architectures.  The 
language not only needs to produce code that will execute 
on the target architectures, but should also take advantage of 
the unique capabilities of each target architecture whenever 
possible.  Finally, we apply the principle of “least surprise” 
in our design, selecting constructs and semantics that are 
familiar and intuitive to cognitive modelers. 

Following these constraints, we have developed a set of 
high-level primitive language features together with a code 
generation paradigm that exploits the strengths of the 
individual target architectures.  In this section we provide 
three detailed examples of core language features in HLSR: 
the relation, the transform, and the activation table.  
Relations serve an abstraction of declarative memory 
structures, including goals.  Transforms serve as an 
abstraction for procedural knowledge indexed by particular 
goals (and possibly other relations). Activation tables serve 
as an abstraction for pattern-based reaction that must cover 
a range of possible response situations.   

A relation, shown in Figure 1, is an n-ary relationship 
between atomic symbols or other relations in declarative 
memory.  HLSR relations are defined by listing a name and 
the attributes that the relation references, similar to Prolog 
syntax.  A relation’s declaration can optionally contain a 
met condition; a predicate logic statement that indicates 
when particular instantiations of the relation may exist in 
declarative memory.   A relation can be used in three ways.  
First, it can be asserted as a fact; i.e., an assumed belief that 
the relation holds for the given arguments.  Second, it can 
be asserted as a goal; i.e., a desire that the relation holds for 
given arguments.  Third, it can be used as a declarative-
memory query; i.e., a request to retrieve one or more known 
instantiations of the relation.   

An important design decision for queries concerns how 
many instantiations a single query should attempt to 
retrieve.  Currently, HLSR queries always retrieve a single 
instantiation, even if multiple instantiations exist in 
declarative memory.  HLSR requires retrieval of the “best” 
single value that meets the conditions of the query.   We 
refer to this as the retrieve best semantic.  Each architecture 
may apply its own process (e.g. the subsymbolic activation 
process in ACT-R), together with retrieval and similarity 
semantics engineered into the model, to determine which 
instantiation is “best” under a given set of conditions. 

Because relations can be both asserted (assumptions) or 
inferred from the met conditions (entailments), retrieval 

strategies must include logic about whether to retrieve pre-
existing facts or to execute a more complex logical 
computation.  The HLSR compiler defines this process, the 
retrieve v. compute decision, for each target architecture. 

 

Figure 1: Example of HLSR relations 

The transform, shown in Figure 2, is a conditionally 
executed procedure.  Transforms consist of a name, 
attributes, trigger conditions, and a body.  The attributes 
behave like local variables for a transform and define the 
transform’s interface to the rest of the model.  Trigger 
conditions are a set of queries combined by logical 
conditions.  These serve as a query, the instantiation of 
which indicates that the transform should be executed.  The 
body is a list of queries and actions.  Queries can be 
specified in any order (or in parallel) but actions execute 
serially, in the order specified.  If a model requires parallel 
execution of particular actions, this can be accomplished by 
including each action in a separate transform, because 
multiple transforms may execute in parallel (if the target 
architecture supports this type of parallelism).   

 

Figure 2: An example of a transform in HLSR 

transform MoveDiskToPeg(d isa Disk,p isa Peg) ( 
  # Consider if a goal to put disk d on peg p 
  consider-if ( goal<DiskOnPeg>(d, p) ) 
  body ( DiskClearToMoveToPeg(d, p) 
         DiskIsOnPeg(d, other-peg) 
         consider-instead( 
           DiskIsOnPeg(d, other-peg),  
           new<DiskIsOnPeg>(d, p)))  
) 
 
# If DiskCleartoMoveToPeg or DiskIsOnPeg 
#  fails, an impasse is generated.  A query 
#  can retrieve a goal to resolve this impasse,  
#  where “trans” binds to the transform instance 
impasse<MoveDiskToPeg>(trans) 

# Relations without a met condition 
relation Peg (name isa string) 
relation Disk(name isa string, size isa integer) 
# Relations with a met condition 
relation SmallerThan(a isa Disk, b isa Disk)  
  ( met ( a.size < b.size ) ) 
 
relation TopDiskOnPeg(peg isa Peg,  
                      top-disk isa Disk) ( 
met (DiskOnPeg(top-disk, peg) 
     forall DiskOnPeg(other-disk, peg) 
       if(other-disk != top-disk) 
       then(SmallerThan(top-disk, other-disk)))) 
 

(A) Defining Relations 
 
# “disk” is the top disk on “peg” 
new<TopDiskOnPeg>(disk, peg) 
# A desire to make “disk” top on “peg” 
new-goal<TopDiskOnPeg>(disk, peg) 
# Is “disk” the top disk on “peg?” 
TopDiskOnPeg(disk, peg) 
 

(B) Using Relations 



 
All queries and actions must execute successfully for a 

transform to complete execution successfully.  If a 
transform query fails to retrieve anything, the transform 
suspends and automatically creates a subgoal.  This is 
similar to impasse-driven universal subgoaling in Soar or 
the automatic subgoaling of means-ends analysis.    

The activation table, shown in Figure 3, combines 
concepts from truth tables and production rules as a 
mechanism for specifying conditional actions.  Our aim is 
to provide an easy way to specify a number of conditional 
actions that span many possible situations.  An activation 
table’s condition block defines a set of logical queries.  The 
subsequent action block lists labeled sets of actions where 
the label determines when it is executed.  Each character of 
the label can be either T (true), F (false), or * (don’t care).  
These characters are associated with the numbered labels in 
the condition from left to right (i.e. condition 1 is associated 
with the first character on the left, condition 2 with the 
second, etc).  If the pattern defined by the action label 
matches the pattern formed by evaluating the logical 
conditions in the condition block, the action statements for 
that label execute (e.g., if conditions 1, 2, and 3 all evaluate 
to logical true, the actions defined for TTT would execute).  
The resulting action block resembles a truth table, making it 
easier for a modeler to detect gaps and inconsistencies in 
the action specification. 

 

Figure 3: Example of an Activation Table 

As with other queries in HLSR, the queries in an 
activation table use the retrieve-best semantic. However, 
depending on the goals of the model, transform actions may 
be intended to apply to all retrievable instantiations of the 
queries.  For such cases, we must develop exhaustive-search 
code-generation fragments for each target architecture.  
Depending on the details of the architecture, it may search 
for all the instantiations in serial or in parallel.   

Summary 
The language constructs described above demonstrate how 
HLSR abstracts core elements of the underlying 
architectures, making them easier to program by hiding low-
level details.  HLSR does not dictate a particular goal-
management system or set of query-retrieval strategies, 
leaving these implementations up to the code-generation 
templates created for each target architecture.  However, the 
HLSR language does obviate the need for “information 
meta-tagging” (such as goal-achieved flags) that often bogs 
down the construction of individual cognitive models.   

Compiling HLSR 
The goal of compilation is to generate code compatible with 
each target architecture (for now, Soar and ACT-R) that 
executes within the constraints the HLSR language defines.  
This goal is sufficient for logically correct execution.  But 
to be useful in practice, compilation should also: 
• Generate code roughly equivalent to what a human 

trained in modeling for that architecture would generate. 
• Generate code that takes advantage of the unique 

capabilities of the underlying architecture, such as 
automated reason maintenance in Soar and sub-symbolic 
activation in ACT-R. 

In the longer term, our intention is to focus on optimizing 
compilers that can generate code that both executes 
efficiently and maximally exploits the architecture in ways 
that would be time consuming or difficult to do by hand. 

Our approach to compilation is to define architecture-
specific microtheories of compilation for HLSR constructs 
and constraints.  A microtheory is a description of the 
structures, templates, and execution strategies that will be 
used at the architectural level to execute each HLSR 
construct.  Without HLSR, developers have to define these 
structures and strategies manually on a case by case basis 
for each model and model sub-component, relying on 
expertise to effectively apply them.  Using HLSR, the 
compiler does this for the modeler. 

For each HLSR construct and constraint, there are often 
several ways to execute it on the target architecture.  For 
example, goals in Soar can be implemented using either 
Soar’s automated subgoaling system or by representing 
goals as “beliefs” using Soar’s reason-maintenance system.  
Advanced HLSR compilers may support more than one 
microtheory for key constructs, allowing the HLSR 
developer to select the most appropriate construct for their 
model at compilation time.  The modular design of 
microtheories encourages such variability in model design. 

Initially, we are implementing only one microtheory per 
construct. To provide an illustrative example, we discuss 
below the microtheories associated with queries of the 
TopDiskOnPeg relation (defined above in Figure 1).  

ACT-R Micro-theory for Relation Queries 
HLSR’s model of declarative memory is a single pool of 
relation instances (facts) that can be retrieved via queries.  
This is similar to ACT-R’s declarative memory model, 
which includes data chunks and a retrieval mechanism.  The 
challenge lies in mapping clusters of queries that share 
variables, such as the TopDiskOnPeg query, to ACT-R 
retrievals that function correctly and produce useful 
behavior and data.  ACT-R does not provide direct support 
for the predicate logic used by queries.  Typically, queries 
must instead be mapped to a series of retrievals and tests, 
with intermediate results and variables stored in ACT-R’s 
goal buffer.  The exact strategy used by an ACT-R modeler 
for the retrieval often depends on the structure and quantity 
of the chunks being queried and the behavior the modeler is 
interested in, with alternatives including: 
• Cognitive looping, which executes each retrieval serially, 

checking the logical constraints after each retrieval.  For 

activation-table DecomposeMoveTower() ( 
 conditions ( 
   1:TowerOnPeg(tower, destination)     
   2:DiskOnPeg(tower.base, destination) 
   3:NextSmallestDisk(tower.base, next) 
 ) actions ( 
  TTT:(new-goal<TowerOnPeg>                 
         new<Tower>(next),destination)) 
  TF*:(new-goal<TowerOnPeg>  
         (tower.base, destination)) ) 
) 



retrievals that fail the logical constraints, the system must 
backtrack to retrieve another instantiation. 

• Reordering of conditions to reduce the number of 
retrievals for which multiple chunks could be retrieved.  
This requires knowledge of the cardinality and keys of 
each type of chunk. 

• Using ACT-R’s spreading activation and/or partial 
matching to retrieve a chunk that is “close” to the right 
value, and then just use this chunk. 

• Restructuring declarative memory to store complex links 
between structures explicitly when it is known that they 
will be tested. 

The current HLSR compiler implements a version of the 
first strategy, though it should be possible to support the 
first three by making minor changes to the HLSR language.  
The fourth can be done explicitly by the HLSR developer by 
redefining relations.  The ACT-R microtheory for matching 
queries implements the following algorithm: 
• Relations with no met condition map to chunk types in 

ACT-R, treating them like chunks (with some additional 
slots added to aid processing of meta-information). 

  

Figure 4: ACT-R retrieve, harvest, check pattern  

• Nested HLSR queries (which have other queries in their 
met condition) are incorporated recursively, flattening the 
query into a set of fact retrievals and attribute tests. 

• An ACT-R retrieval goal guides the multi-step retrieval 
process for the flattened query. 

• Fact retrievals and their related attribute tests convert to 
ACT-R chunk retrievals. 

• Logical conjunctions and shared variable storage convert 
to “harvest productions”, which simultaneously test the 
result of a query and store the result in a goal slot. 

• HLSR generates additional productions to handle retrieval 
failures.  Failures can trigger other processing such as 
backtracking to find additional retrievals, or can indicate 
the end of a process.  

The core of the ACT-R retrieval micro-theory is the 
“retrieve-harvest-check” pattern.  An example of this pattern 
for the DiskOnPeg retrieval in the TopDiskOnPeg HLSR 
production is shown in Figure 4.  This is a common pattern 
of productions found in ACT-R models, though it is often 
optimized by hand.  Its compiler implementation uses more 
productions than an expert might use, but automates the 
pattern’s implementation as a reusable package.   

Soar Micro-theory for Relations 
Compiling relations to Soar inverts the challenges of 
compiling to ACT-R.  Soar has no long term declarative 
memory: all permanent knowledge is stored as productions.  
It has a short term declarative memory (working memory), 
structured as a graph accessed from a root node called the 
state.  Retrievals in Soar involve link following rather than a 
general search over the entire pool of memory.   
Furthermore, these retrievals retrieve all values that match a 
pattern, not just the one best value as HLSR requires. 

On the other hand, Soar productions support pattern 
matching over a subgraph of memory providing a fairly 
straightforward mapping of complex HLSR queries to Soar 
productions.  The structure of relations in HLSR map 
naturally to Soar WMEs that share a common root symbol. 

The essential aspects of the Soar microtheory for retrieval 
are the fact storage structure, the retrieval mechanism, and 
especially the strategy for retrieving one best value for each 
query.  The standard approach to structuring declarative 
memory in Soar is to partition the state into sub-graphs 
based on data type and the context in which it is used.  
Processed sensory data and problem solving results are 
asserted deliberately using operators, while additional facts 
are inferred using truth-maintained elaboration productions.   

To retrieve the best, the Soar microtheory must produce 
partitions of memory that allow for general retrievals while 
not generating excessive partial matches that would greatly 
reduce production matching efficiency.  Our approach to 
facilitating general queries is to store all facts in a single 
pool partitioned by object type.  That is, to access a fact the 
WME graph would be navigated from the root state through 
the object pool and the fact typename to the fact instance 
itself as seen in Figure 5.  This limits partial matches to the 
number of simultaneously asserted facts of a given type.  

The retrieval process is a three part process basd on the 
typical Soar modeling strategy described above. 

;;; Goal to retrieve TopDiskOnPeg 
(chunk Retrieve_TopDiskOnPeg_In_Context  
    disk nil peg nil step intial  
    processed nil supergoal nil) 
 
;;; ACT-R productions doing the retrieve, 
;;;  harvest and handle error pattern 
(p retrieve-disk-on-peg-1R 
   =goal> 
      isa  Retrieve_TopDiskOnPeg_In_X_Context 
      peg  =peg 
      step initial 
==> 
   +retrieval> 
      isa DiskOnPeg 
      peg =peg 
   =goal> 
      step 1R)    ;;; retrieval 
(p harvest-disk-on-peg-1S 
   =goal> 
      isa  Retrieve_TopDiskOnPeg_In_X_Context 
      peg  =peg 
      step 1R 
   =retrieval> 
      isa DiskOnPeg 
      peg  =peg   ;;; make sure it succeeded 
      disk =disk  ;;; harvest 
==> 
   =retrieval> 
      processed  =goal  ;;; may rtv another 
   =goal> 
      disk =disk  ;;; store result 
      step 1S)    ;;; Success for step  
(p harvest-disk-on-peg-1F 
   =goal> 
      isa  Retrieve_TopDiskOnPeg_In_X_Context 
      step 1R 
   =retrieval> 
      isa error 
==> 
   =goal> 
      step 1F)    ;;; Failed at step 1  
;;;; More productions 



 

Figure 5: Soar structure and retrieval production 

• Directly asserted facts (those stored in declarative 
memory via an action) are kept in the type-partitioned 
memory pools until they are explicitly retracted. 

• Facts that can be inferred using HLSR relation met 
conditions are compiled into elaboration productions that 
assert the given relation if the met condition matches.  
These productions are constrained to fire only when 
needed (when an action using the assertions is executed).  
Figure 5, shows examples of these elaborations.  Multiple 
values may be asserted for the same relation. 

• Retrieval occurs when the retrieved values are needed to 
execute an action.  Given an action and all of the facts 
asserted in the object pool, the compiler outputs 
productions to propose an operator for each combination 
of facts necessary to bind the variables used in the action.  
At this point, Soar’s operator selection process will select 
only one operator for execution, the other operators are 
retracted, and Soar is left with one set of retrieved values 
to use (meeting HLSR’s “retrieve one best” constraint).   

Soar’s retrieval process selects the one “best” value for a 
query randomly.  It is possible to bias the selection of 
operators using preferences, including probabilistic.  To do 

this effectively would require either the definition of a more 
sophisticated retrieval strategy (e.g., ACT-R’s subsymbolic 
activation mechanism) or the ability to add preference 
knowledge through HLSR.  We are currently exploring each 
of these possibilities. 

Conclusions 
HLSR provides an abstract architecture and language for 
developing cognitive models and intelligent systems.  Its 
design has combined a top-down approach (analyzing 
similarities across a variety of cognitive and agent 
architectures) and a bottom-up approach (working in detail 
to provide a language that can compile to both ACT-R and 
Soar models).  The language’s design has already allowed 
us to characterize a number of subtle differences between 
ACT-R and Soar, such as their approaches to retrieval and 
exhaustive matching.  But these results are in the context of 
a set of uniform abstract processes and representations that 
the architectures both share.  Future work will produce more 
detailed comparisons of the architectures, as well as 
demonstrations of usability and reusability to accomplish 
the scientific and engineering goals of using an abstract 
machine and language as a basis for cognitive modeling. 
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# Create pool to store objects, but index 
#  by type to reduce partial match costs 
^top-state 
 ^objects      ;# fact pool 
  ^typename 
   ^object     ;# a fact instance 
    ^paramname  
    ...        ;# params and internal tags 
 
# Compute smallerthan when we need to 
#  find the top disk on a peg 
sp {topdiskonpeg*retrieve*smallerthan 
  (state <s> ^retrieveal-request <rqs>) 
  (<rqs>     ^request <rq>) 
  (<rq>      ^type TopDiskOnPeg) 
--> 
  (<rqs>         ^request <new-request>) 
  (<new-request> ^type SmallerThan)} 
 
# One retrieval production (peg is known) 
sp {retrieve*topdiskonpeg*peg*no-topdisk 
  (state <s> ^retrieval-request <rqs> 
             ^objects <objs>) 
  (<rqs>     ^request <rq>) 
  (<rq>      ^type TopDiskOnPeg 
             ^params <param>) 
  (<param>   ^peg <peg>) 
  (<objs>    ^object <st-1>) 
  (<st-1>    ^type DiskOnPeg 
             ^disk <top-disk> ^peg <peg>) 
 -{ (<objs>  ^object <st-2>) 
    (<st-2>  ^type DiskOnPeg 
             ^disk { <other> <> <top-disk> }  
             ^peg <peg>) 
    (<objs>  ^object <st-3>) 
   -{ (<st-3>  ^type SmallerThan 
                ^a <top-disk> ^b <other>) } } 
--> 
  (<objs>    ^object <new-object>) 
  (<new-object> ^type TopDiskOnPeg 
                ^peg <peg> 
                ^top-disk <top-disk>)} 


