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Abstract 

Spatial orientation is involved in a variety of common tasks, 
which are often difficult for individuals to perform. In this 
paper, a model is used to demonstrate that a general strategy 
may be adapted for use in different spatial orientation tasks. 
The predictions of the model, which was adapted from a 
model for another orientation task, closely match human 
performance on the target task. More importantly, the model 
provides insights into how individuals solve these sorts of 
tasks, and supports the conclusion that similar strategies can 
be adapted and used in different tasks. 

Introduction 
Navigation in unfamiliar environments is a common task 
performed by humans. In many cases, maps are used to 
guide decision making and minimize errors. The use of 
maps in these contexts requires that the information on the 
map be brought into correspondence with the visual world 
surrounding the individual. This is a potentially difficult 
process, and anyone who has gotten lost when visiting a 
new city can attest to the problems that can arise. 

In situations where maps are used, it is often the case that 
the fundamental goal is to identify or locate some particular 
object, landmark, or place. There are two scenarios that may 
occur in this basic task. First, there may be something 
notable in the environment that the individual attempts to 
locate on the map. Visitors to theme parks are often drawn 
to visually impressive attractions in the park. To identify 
what a particular attraction is, however, requires locating it 
on the map, based upon the visual information available in 
the environment (a find-on-map task). 

On the other hand, one can search in the environment for 
an item identified on the map (a find-in-scene task). 
Conference attendees may be given a map of the local area 
with the conference venue highlighted. In this situation, the 
features identified on the map must be used to locate the 
appropriate building (or room) in the environment. These 
two tasks are analogous, but not identical. They both require 
that information from a map be brought into correspondence 
with information available through visual perception (a 
visual scene). However, in the first scenario, the target’s 
location is known relative to the egocentrically-based visual 
scene, while the target is identified within the 
allocentrically-based map in the latter scenario. 

Research on spatial orientation has investigated a variety 
of tasks to explore how individuals represent and 
manipulate spatial information. Tversky and her colleagues 

(e.g., Franklin & Tversky, 1990; Tversky, 2003) have used 
orientation tasks to examine how individuals encode and 
remember spatial information. Her spatial framework theory 
emphasizes the role of the major axes of the body and the 
physics of the world in determining the ease with which this 
information can be accessed. Other research by Sholl has 
pursued a similar goal (e.g., Easton & Sholl, 1995; Sholl, 
1995). Her research focuses on the role of alternative spatial 
coordinate systems, including body-centered and 
environment centered frames of reference. 

Other research has used perspective taking as a paradigm 
to investigate the role of different strategies on performance 
(e.g., Huttenlocher & Presson, 1979; Presson, 1982; Wraga, 
Creem, & Proffitt, 2000). This research illustrates that the 
particular operations that are used to transform spatial 
information can have implications for performance. 
Gunzelmann and Anderson (2005) illustrate how the 
strategies identified for perspective taking can be applied to 
the kinds of spatial orientation tasks considered here. This 
provides initial evidence that general strategies may apply 
across a range of spatial tasks. 

Finally, Hintzman, O’Dell, and Arndt (1981) provided a 
number of demonstrations of the results typically found in 
the sorts of orientation tasks described here. Across 
experiments, participants were asked to perform variations 
of the find-in-scene task, which required indicating the 
direction of a target relative to an indicated orientation (an 
egocentric judgment). Using a variety of stimuli and 
methods, they demonstrated a common pattern of results, 
with effects of both the relative direction of the target and 
the discrepancy between the egocentric orientation of the 
individual and the indicated orientation for the trial 
(misalignment).  

Current Research 
All of the research described above has produced similar 

patterns of results on tasks that require reasoning about 
spatial information presented in multiple reference frames. 
However, the investigations do not provide detailed 
explanations of the strategies or mechanisms that are 
involved in producing these results. Gunzelmann and 
Anderson (2004) present a model of human performance on 
a find-on-map task. This model made accurate quantitative 
predictions about human performance on that task using a 
strategy based on verbal reports from participants in the 
study (see Gunzelmann & Anderson, in press for a more 
detailed discussion of the strategy). 

 



 

This paper explores the issue of whether similar cognitive 
mechanisms and strategies can be used to explain 
performance on find-in-scene tasks. While it seems 
reasonable to expect that performance would be similar, 
spatial information for the task must be manipulated 
differently depending on which sort of orientation task is 
performed. Thus, in this paper, the model from Gunzelmann 
and Anderson (2004) is extended to perform the find-in-
scene task and to generate predictions of performance.  

 

Figure 1: Sample Trial. The white dot on the map 
indicates the target, and the blue point (on the edge) 

indicates the viewer’s location. 
The model is used to illustrate that the same high-level 

strategy can be used in both tasks. However, the details of 
how the strategy is executed are different. A comparison of 
those details indicates that the same steps are involved, but 
in a different order. As a result, the model predicts that the 
pattern of results in the find-in-scene task should be 
identical to the find-on-map task. To test that prediction, I 
conducted an experiment, where participants were asked to 
perform the find-in-scene task, using the same experimental 
design as was used in Gunzelmann and Anderson (2004). 

Experiment 
The results described in this paper represent the data from 
only a portion of the entire experiment. Other aspects of the 
experiment are beyond the scope of this paper. Here I focus 
on the find-in-scene task, and the results that are used to 
evaluate the model presented below. 

Method 

Participants The participants in this study were 16 
individuals recruited from the local community surrounding 
the Air Force Research Laboratory in Mesa, AZ, which 
includes Arizona State University’s Polytechnic Campus. 
There were 6 males and 10 females in the study, with an 
average age of 32 years. Participants were paid $10 per hour 
for their participation. 

Materials The task used in this research is illustrated in 
Figure 1. The figure shows a typical trial, with two views of 
a space depicted. On the left is an egocentrically-oriented 
view, while the right shows an allocentric map. On the map, 
a single object is highlighted in white (in the experiment it 
was red) to indicate that it is the target. Participants’ task 
was to identify which of the objects in the egocentric visual 
scene corresponded to the target highlighted on the map. 
Responses were made by clicking on the appropriate object. 

For this experiment, six unique configurations of objects 
in the space were used. These configurations are identical to 
those described in Gunzelmann and Anderson (2004), and 
were designed by organizing the objects into groups, 
arranged according to quadrants in the space. In each 
configuration, there were groups of 1, 2, 3, and 4, which 
were distributed among the four quadrants of the space. The 
six configurations represent the six possible arrangements of 
the group sizes relative to each other. In the experiment, 
each configuration was presented in all 8 45-degree 

rotations on the map, with the quadrants defined by the 
main axes (+; Figure 1) or obliquely (X). This resulted in 48 
different maps being shown to participants during the study. 

The target in each trial could appear in any of the four 
quadrants. Any other objects in the quadrant served as local 
distractors. Finally, the viewer in each trial was positioned 
at the bottom, right, left, or top of the map, always looking 
straight across to the opposite side. This manipulation 
created 4 levels of misalignment between the orientation of 
the egocentric view (forward = up) and the orientation of the 
map. 

Each participant completed all of the possible trials 
defined by the factors just described. This results in 768 
trials (6 quadrant configurations in 8 rotations, with 4 
possible target locations and 4 possible levels of 
misalignment for each). These were presented in a random 
order, using a drop-out procedure. If a participant made an 
error on a particular trial, that trial was repeated at some 
point later in the experiment, with the restriction that no trial 
was presented twice in a row (unless it was the last 
remaining trial in the experiment). 

Procedure The experiment involved 2 sessions, however all 
of the trials for the task presented here were completed in 
one of those sessions, which lasted approximately 2 hours.1 
At the beginning of the session, participants were provided 
with instructions on the task, including a sample trial to 
complete. These instructions were computer-based, and 
each participant was required to respond to the sample trial 
correctly before beginning the experiment. The 
experimenter answered any questions participants had 
before they began. 

                                                           
1 In the other session, participants completed the original find-on-
map task from Gunzelmann and Anderson (2004; in press), with 
the order of tasks counterbalanced. Whereas the order in which 
these tasks were completed had an overall impact on performance, 
with the second task being completed more rapidly, F(1,14)=18.12, 
p<.001, none of the interactions involving task order were 
significant. While consideration of the find-on-map task is beyond 
the scope of this paper, it is worthwhile to note that there was no 
significant difference in overall performance on the two tasks, 
F(1,14)=0.39, p>.50, and the pattern of results was quite similar 
(r=.931). This provides further support for the model described 
below. 

 



 

Trials were divided into blocks of 20, and participants 
were given the opportunity to take a break after each block. 
Response times (ms) and accuracy were recorded for each 
trial by the experiment software. 

Results 
The data were analyzed to explore the effects of three main 
factors, the position of the target relative to the viewer, the 
number of objects in the cluster containing the target, and 
the misalignment between the egocentric visual scene and 
the map. All three of these factors had an influence on 
performance. As targets were positioned off to one side or 
the other, and as they were farther from the viewer, response 
times increased, F(7,98)=11.55, p<.001. Response times 
also increased as more objects were positioned nearby to the 
target, F(3,42)=92.47, p<.001. Finally, as the misalignment 
increased, response times increased as well, F(3,42)=45.65, 
p<.001. Notably, error rates were low in this experiment, 
with overall accuracy of about 92%. These errors tended to 
follow a pattern similar to the response time data (r=.64), so 
they are not considered further here. 

In addition to the main effects, there were interactions in 
the data. The impact of the size of the cluster was influenced 
by the extent of the misalignment between the two views. 
As the degree of misalignment between the two views 
increased, the impact of additional distractors near to the 
target increased (Figure 2). This interaction was highly 
significant, F(9,126)=10.83, p<.001. There was also an 
interaction between the location of the target and the 
number of nearby distractors, F(21,294)=3.65, p<.01. In this 
case, the pattern of results is less clear. The number of 
nearby distractors has an impact on performance, regardless 
of where the target is located relative to the viewer. The 
strongest effect appears to be that the location of the target 
had little impact when there were no nearby distractors 
(Figure 3). 
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Figure 2: Empirical results and model data for the 

interaction between the number of nearby distractors and 
misalignment. 
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Figure 3: Empirical results and model data for the 

interaction between the number of nearby distractors and 
target location. 

Finally, the location of the target influenced the impact of 
misalignment on performance (Figure 4). The effect of 
misalignment was reduced in cases when the target was 
located near the horizontal center of the field of view (the 
first and last points on each line). This effect was also 
significant, F(21,294)=2.53, p<.02. 
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Figure 4: Empirical results and model data for the 
interaction between the location of the target and 

misalignment. 

Discussion 
The results of this experiment show that, although 
participants were able to successfully solve the problems, 
several factors that were varied made the task more or less 
challenging. The influence of misalignment reflects a 
commonly investigated aspect of human performance on 
this kind of task. When two views of a space become 
increasingly misaligned, it is more difficult to establish 
correspondence between them (e.g., Hintzman et al., 1981; 

 



 

Rieser, 1989; Wraga et al., 2000). In addition, the results 
relating to the impact of the target’s location and the number 
of nearby distractors present are consistent with results from 
the find-on-map version of this task reported previously 
(Gunzelmann & Anderson, 2004; in press). 

All of the results support the conclusion, described in the 
introduction, that performance on these two types of 
orientation tasks is similar in many important ways. In the 
next section, this conclusion is examined in more detail, by 
evaluating how the strategy reported by participants 
completing the find-on-map task can be adapted and used to 
complete the find-in-scene task used here. To quantitatively 
assess this relationship, a computational cognitive model is 
used to evaluate how successful the adapted strategy is at 
accounting for the data reported for this experiment. 

Computational Cognitive Model 
The model described here was created in the ACT-R 
cognitive architecture (Anderson et al., 2004). ACT-R is a 
hybrid cognitive architecture, which posits a distinction 
between declarative and procedural knowledge at the 
symbolic level. Subsymbolic mechanisms influence the 
operation of the architecture by impacting which knowledge 
is used in particular situations, as well as controlling 
latencies in accessing or using that knowledge. The 
production cycle in ACT-R is serial, with a single 
production rule being executed (fired) on each cycle. 

The production system component of the architecture 
operates by matching against the contents of buffers, which 
are the interface between the productions and other 
modules. Modules perform distinct processing tasks. For 
instance, there is a motor module, a vision module, and a 
declarative memory module. Modules operate in parallel, 
and subsymbolic evaluations within the modules are carried 
out in parallel as well. The results of the processes within 
each module are deposited in the module’s buffer(s), which 
can then be accessed by the production system. The result of 
a production firing is to modify the contents of buffers 
directly, or to make requests of particular modules, which 
eventually result in changes to the buffers. 

Model Overview 
For ACT-R to perform a particular task requires that the 
knowledge necessary for performing the task be added to 
the architecture. In Gunzelmann and Anderson (2004), the 
knowledge took the form of a particular strategy for doing 
the find-on-map task, which was based on verbal reports 
from the participants in the study. The strategy involves 
encoding the location of the target in the visual scene 
hierarchically. First, a group of objects containing the target 
is identified, and the position of the cluster is encoded 
relative to the viewer. Then, the location of the target within 
that cluster is encoded relative to the other objects in the 
group. This representation is updated relative to the viewer’s 
location on the map, and then used to identify the 
appropriate object. The steps involved in this strategy are 
summarized in Table 1. 

Table 1: Steps for the find-on-map task. 
 

Step Description 
1 Locate target (in visual scene) 
2 Encode location of cluster 

-Egocentric reference frame 
-Right/left/center 

3 Encode target location (in visual scene) 
-Egocentric reference frame 

-Right-left/near-far position 
4 Find viewer on map 
5 Identify allocentric reference frame 
6 Update cluster location 

-Convert to allocentric reference frame 
7 Locate cluster (on map) 
8 Update target postion 

-Convert to allocentric reference frame 
9 Locate target (on map) 

10 Respond 
 

The find-in-scene task is quite similar to the find-on-map 
task used in Gunzelmann and Anderson (2004). To examine 
the implications of an analogous strategy on performance 
for the task used here, a model of the find-in-scene task was 
generated by adapting the model described in Gunzelmann 
and Anderson (2004). Essentially, this model was produced 
by re-ordering the steps involved in performing the task to 
correspond to the demands of the new task. Table 2 presents 
the steps in executing the solution strategy in the model for 
the find-in-scene task. 
 

Table 2: Steps for the find-in-scene task. Step numbers in 
parentheses reflect the step number for the find-on-map task 

in Table 1. 
 

Step Description 
1 (4) Find viewer on map 
2 (5) Identify allocentric reference frame 
3 (1) Locate target (on map) 
4 (2) Encode location of cluster 

-Egocentric reference frame 
-Right/left/center 

5 (6) Update cluster location 
-Convert to egocentric reference frame 

6 (3) Encode target location (on map) 
-Egocentric reference frame 

-Right-left/near-far position 
7 (8) Update target postion 

-Convert to egocentric reference frame 
8 (7) Locate cluster (in visual scene) 
9 (9) Locate target (in visual scene) 
10 Respond 

 
There are several special cases, which are not represented 

in Tables 1 or 2. For instance, if the target is very near to the 
viewer or directly in front of the viewer, then some steps 
may be skipped (see Gunzelmann & Anderson, 2004 for 
details). However, these special cases are the same for both 

 



 

tasks. As a result the same steps are involved in executing 
the general solution strategy for both versions of the task. It 
is only their order that differs. The implication of this is that 
performance on the find-in-scene task should be similar to 
the performance on the find-on-map task. The data 
presented above support this, showing a pattern of results 
similar to those presented in Gunzelmann and Anderson 
(2004). In the next section, additional details about the 
model are presented, followed by a description of the 
model’s performance for the experiment presented above. 

Model Details 
The processing steps involved in executing the general 
strategy for these tasks is responsible for the qualitative 
performance of the model. The quantitative performance, 
however, depends on the values for several parameters. The 
first, the retrieval latency, uses the same value (0.11s) as 
was used in Gunzelmann and Anderson (2004). This 
parameter controls the time required to retrieve a chunk 
from declarative memory. In this task, knowledge is needed 
about the objects on the screen, right versus left, etc. Each 
time one of those pieces of information is needed, it takes 
110ms for the declarative module to place the appropriate 
chunk into the retrieval buffer, where it can be accessed by 
the central production system. 

A second parameter reflects the costs associated with 
moving between 2-D and 3-D coordinate systems, which is 
required to align information in the two views. This 
parameter was set to 1.0 s, which is higher than where it was 
set in the previous model (0.25 s). This parameter helps to 
capture the substantially longer response times of 
participants in this study (4.93 s versus 3.77 s on average). 

The final parameter that was manipulated reflects the 
speed of processing the spatial information in the images. 
These operations are involved in updating the descriptions 
of the cluster location and the location of the target within 
the cluster as the model solves the task. This occurs in the 
task during steps 5 and 7 in Table 2, which involve 
conversion to an egocentric reference frame. The model 
does this by updating the descriptions generated using the 
allocentric frame of reference of the map to match the 
egocentric frame of reference in the visual scene. The 
spatial updating parameter used in this model differs from 
the value used in Gunzelmann and Anderson (2004). In this 
model, it was set to 0.9s, whereas it was set to 0.6s in the 
earlier model. 

In the model, each of the operations needed to update a 
piece of spatial information requires an amount of time 
equal to the value of the spatial updating parameter. The 
number of operations increases as the number of nearby 
distractors increases, and as the misalignment between the 
two views increases. For instance, no updating is necessary 
when the two views are aligned (i.e., when the viewer is 
located at the bottom of the map). The special cases, 
mentioned above, largely represent instances where these 
updates can be skipped. For instance, if a cluster is located 
straight ahead of the viewer, there is no need to encode 
information about left versus right to support searching for 

the cluster on the map; straight ahead suffices. Jacobsen 
and Waters (1985) provide an empirical demonstration of 
how coordinating left-right and near-far axes impacts 
difficulty, including the benefits associated with being “in 
the middle.” Additional details concerning this mechanism 
are described in Gunzelmann & Anderson (2004). 

All of the other parameters in the model were set to the 
same values as were used in Gunzelmann and Anderson 
(2004). The parameters that were different may be 
associated with individual differences in abilities that are 
relevant for this task. For instance, the parameter that is 
associated with extracting allocentric information from the 
visual scene may be associated with familiarity with the 
types of virtual environments used in this experiment. The 
second parameter is associated with spatial ability, relating 
to the speed with which individuals can update their frame 
of reference. Research has shown individual differences in 
mental rotation ability (Just & Carpenter, 1985), so it should 
not be surprising that different participant groups would 
differ with respect to this ability in this experiment. 
Familiarity with the kinds of virtual environments used here 
could also impact performance with respect to this factor. 
Mental transformations can be performed more quickly with 
familiar material (Bethell-Fox & Shepard, 1988).  

Model Performance 
The model presented here was adapted from the model 
reported in Gunzelmann & Anderson (2004). Thus, it 
predicts that performance on the find-in-scene task should 
be influenced by the same factors as the find-in-map task. 
Since the empirical data conform to this prediction, the 
qualitative predictions of the model are a good fit to the 
results from this experiment. In fact, the overall qualitative 
fit of this model to these data (r=.96) is as good as the fit of 
the original model (r=.95) to the data reported in 
Gunzelmann & Anderson (2004). 

The model captures the trends illustrated in Figures 2-4. 
In Figure 2, the impact of a.dditional nearby distractors 
increases as misalignment increases (r=.983). In Figure 3, 
the model predicts that the impact of target location will 
arise, regardless of how many nearby distractors there are 
(r=.912). This figure illustrates the largest discrepancy 
between the model and human performance. In the 
empirical data, there is little or no effect of the target’s 
location when there are no nearby distractors, whereas there 
is an effect in the model. Finally, Figure 4 illustrates that the 
model makes accurate predictions about how the target’s 
location relative to the viewer influences the effect of 
misalignment on performance (r=.980). Overall, these 
results show that the model accurately captures the relative 
influence of these different factors on performance. 

The model captures the quantitative level of performance 
of the participants as well, using the values described above 
for the parameters (RMSD=0.278 s, 0.416 s, and 0.250 s for 
Figures 2, 3, and 4, respectively). The average RMSD is 
0.315 s, which is comparable to the fit reported in 
Gunzelmann and Anderson (2004), where the average 
RMSD was 0.287 s. 

 



 

General Discussion 
The experiment presented here illustrates several 
phenomena associated with orientation tasks, including the 
well-established impact of misalignment on performance. In 
addition, this research adds additional evidence that the 
location of the target, as well as the location of the 
distractors, can have significant influences on performance 
in this kind of task. 

The model extends earlier work to a somewhat different 
orientation task. The changes that were implemented 
illustrate how the strategy for the find-on-map task can be 
adapted to successfully apply to the find-in-scene task. The 
general strategy has been shown to make use of efficient 
strategies from the perspective-taking literature 
(Gunzelmann & Anderson, 2005), and careful analysis of 
the empirical data provides additional support for the 
strategy, in addition to the verbal reports from participants 
(Gunzelmann & Anderson, in press). 

The model captures the trends in the human data, with 
about the same degree of accuracy as the model presented in 
Gunzelmann & Anderson (2004). This further supports the 
notion that similar high-level strategies may be adapted for 
other variants of this kind of spatial task. The hierarchical 
encoding that participants report using for these tasks can be 
applied much more generally to representing spatial 
information (McNamara, Hardy, & Hirtle, 1989; Stevens & 
Coupe, 1978). Combined with the capacity for making 
spatial transformations, like mental rotation, the general 
strategy reported here could be adapted for use in a variety 
of tasks that require reasoning about spatial information. 
Future research will be directed at understanding how the 
strategy adaptation process occurs, and what the limits are 
on the ability to adapt general strategies to novel tasks. 
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