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Abstract 

The paper presents proposal of a new ACT-R model of 
working memory (WM) search process, explaining both 
‘serial-like’ and ‘parallel-like’ modes of processing observed 
in this task. The model implements an idea of WM focus of 
attention: due to updating process a few items may be actively 
kept and easily accessed in ACT-R goal buffer. Search 
process consist of two phases. In the first one, goal buffer is 
scanned serially. If the result of scanning is negative, the 
second  phase – standard parallel chunk retrieval from ACT-R 
declarative memory – occurs with certain probability. The 
model aptly simulates steep decrease in accuracy as well as 
steep increase in latency for responses to five most recent 
stimuli, and shorter latencies of accurate negative responses 
than latencies of positive responses to less recent stimuli. 
These two predictions are impossible to obtain for existing 
ACT-R one-phase parallel model of recognition memory. 
Moreover, our model predicts 94.8% of variance for two 
groups of Ss that differ in latency pattern of search process.  

Introduction 
Despite intensive research on different cognitive strategies 
exploited by humans in complex tasks like reasoning, 
problem solving, and decision making, individual 
differences in elementary cognitive processes are rarely 
modeled. Such simple processes are treated as fixed part of 
human cognitive architecture, and its parameters are 
believed to be invariant. However, empirical results from a 
memory search tasks (refered to as MST in the rest of this 
paper) suggest that people differ substantially in a way they 
perform such kind of tasks.   

In the paper, we present a new two-phase model of 
recognition memory that simulates different chronometric 
patterns of a search process (i.e. ‘parallel-like’ vs. ‘serial-
like’ ones) observed in MST, with the change in only one 
parameter: the scope of simulated WM focus of attention. 

Is WM Search Serial or Parallel? 
In his seminal paper, Saul Sternberg (1966) examined 
whether people search short-term memory (STM) in a serial 
or parallel way. Ss were shown 1 up to 6 digits (memory set, 

MS), and then another digit, that could belong (positive 
condition) or not (negative condition) to MS. Sternberg 
found steep linear RT curve rising with increased MS size. 
He concluded that STM had been searched serially and 
approximately 38 ms was needed to scan one MS element. 

Sternberg result, steep linear MS size curve, was 
replicated in countless studies. However, some studies show 
that when MS size exceeds six elements, RT curve slope 
becomes moderate and it looks rather curvilinear (Theios, 
1975) or log-like (Jou, 2000). It may indicate that items 
which cannot be held in STM are retrieved from long-term 
memory in parallel-like search process (Theios, 1975).  

Moreover, Townsend’s study (1974) showed that even in 
case of MSs not exceeding six elements, Sternberg’s results 
can also be predicted by parallel models that are capacity-
limited. Thus, one cannot discriminate between these two 
models on the basis of linearity of MS size curve. The focus 
of research switched to the issue of whether memory search 
is self-terminating or exhaustive (i.e. it cannot stop until all 
items are scanned), with more evidence for the former idea 
(Van Zandt & Townsend, 1993). 

In most of the experiments within Sternberg paradigm 
verbal stimuli and relatively long presentation times (about 
1 sec. per element) were used. Exploitation of non-verbal 
stimuli and/or shorter presentation times brings even more 
confusion to the issue of modeling STM search. In such 
experimental conditions MS size curves become almost 
perfectly flat (Nęcka & Orzechowski, in preparation; Balas, 
Stettner, & Piotrowski, 2005). 

Another problem in evaluating model of STM search 
appears when individual differences in MST are examined. 
Even with relatively slow presentation time of 700 ms, two 
different ways of processing can be identified (Chuderski & 
Orzechowski, 2005). People who respond faster obtain flat 
MS curves, while people responding slower show steep 
curves. Accuracy of both groups do not differ significantly, 
so the differences in MS curve slopes cannot be explained in 
terms of speed-accuracy trade-offs. 

It seems that people are capable of both serial-like and 
parallel-like memory search, and there exist significant 
individual differences in this process among them. 



Examining Individual Differences in MST 
In order to evaluate the proper model of WM search, but 
facing confusions cited above, we decided to gather and 
model data rather on position curves (i.e. relationship 
between a position of an item in MS and latency or accuracy 
of response for that item) than on MS size curves. 

On a basis of our previous results cited above, we expect 
that individual differences in position curves will appear, 
and we claim that the proper model of WM search should 
predict these differences in a very natural way (optimally, 
with change in only one of its parameters). 

Method 
23 women and 57 men were examined, with mean age of 
17.45 (sd=0.73). We used computerized MST with a pool of 
16 consonants as stimuli, each one 2×1.5 cm in size. Four- 
and eight-items MS sizes were used in an experiment and 
varied within Ss. Eight trials for each target position (1-4 or 
1-8, depending on MS size condition) were presented in 
positive condition (96 trials total), and another 96 trials in 
negative condition, on random. An asterisk presented before 
first stimulus in each trial served as a fixation point. Two 
presentation times (400 and 800 ms) were varied between 
Ss. After presentation of MS a mask was shown for 500 ms 
and then a probe letter appeared inside a rectangle. If Ss 
decided that a probe was presented in MS in a current trial, 
they had to press key “Z”, in opposite case they were to 
press “M”. Cues on computer screen helped Ss to remember 
proper response keys. The time for response was limited to 
1500 or 3000 ms, varied between Ss. The progress bar 
shown under each probe indicated how much time was left 
to respond. The manipulation in time for response 
independent variable was aimed at changing Ss strategy of 
search. We expected that a shorter time will result in more 
parallel search and, thus, less steep position curve. The same 
relation was expected in case of a presentation time 
independent variable. 

After completing the task, Ss were given a questionnaire, 
whether they searched memory carefully testing each item, 
or responded intuitively on basis of familiarity of a probe, or 
were just guessing. Only data from 71 Ss that filled the 
questionaire and did choose first or second answer were 
analysed. In another question, 66,2% Ss admited use of 
mnemotechnique of silent rehearsal, while remaining Ss 
reported use of chunking or visualisation. It suggests that a 
proper model of stimuli encoding in MST has to implement 
rather general attentional trace-activation mechanism, 
instead of implementing rehearsal within a phonological 
loop as the only method of activating traces (which is 
probably appropriate for modeling serial recall, and in case 
of long presentation times, see: Huss & Byrne, 2003). 

Results and Discussion 
Neither time given for response nor time of presentation 
influenced accuracy dependent variable. Crucial for this 
research, a position effect in case of accuracy is presented in 
Figure 1. The effect was highly significant, F(3, 67)=8.74, 
p<0.001, F(7, 63)=27.79, p<0.001, for MS size 4 and 8, 
respectively. In the most interesting MS size 8 condition, 

accuracy for all pairs of items on neighbouring positions 
differed at p<0.01 level, except differences for pairs on 
positions 3-4 and 7-8, which were not significant (p>0.1). In 
case of pair 1-2, the difference indicates strong primacy 
effect. The ‘no’ responses were more accurate than average 
‘yes’ responses, F(1, 69)=38.79, p<0.001. MS size 4 
responses were more accurate than MS size 8 responses in 
both positive, F(1, 69)=338.78, p<0.001, and negative 
condition, F(1, 69)= 44.57, p<0.001. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Observed (solid lines) and simulated (dashed 
lines) accuracy (% correct) for target positions within MS. 
 

Although both factors: time for response and time of 
presentation, influenced latency of responses (p<0,01), they 
did not interacted with a target position and then will not be 
analyzed further. Again, position effect (see: Figure 2), in 
case of latency of correct responses dependent variable was 
highly significant, both in MS size 4, F(3, 67)=19.85, 
p<0.001, and MS size 8 conditions, F(7, 63)=28.88, 
p<0.001. In MS size 8 condition, all item pairs except 5-6 
pair differed significantly (p<0.05; for pair 4-5 a difference 
was marginally significant, p=0.071). In case of pair 1-2 the 
difference indicates strong primacy effect. The ‘no’ 
response was faster than responses for target on positions 2, 
3 and 4 (p<0.05) and its latency was higher than average 
latency for ‘yes’ response, both in MS size 4, F(1, 
69)=22.53, p<0.001, and MS size 8 conditions, F(1, 
69)=9.83, p=0.003. 

 
 
 
 
 
 
 
 
 
 
 
Figure 2: Observed (solid lines) and simulated (dashed 
lines) latencies for target positions within MS. 
 

The most important conclusion from presented data is, 
that position curve for MS size 8 is steep for 5 most recent 
target positions (198 ms difference between latencies for 
items on positions 1 and 5), while it is rather flat for 
remaining positions (with position 2 as exception, see 
Discussion), with strong primacy effect observed. 



To search for individual differences in a way people 
searched WM, we computed a difference between average 
latency for four least recent positions minus average latency 
for four most recent positions (position curve slope 
indicator, PCSI). With application of this method, in 
general, one can expect four results. First, Ss may not differ 
significantly, then position curves for low- and high-PCSI 
Ss would be more or less parallel. Second, low-PCSI Ss 
may have higher latencies for recent positions than high-
PCSI Ss, but lower – for least recent ones. Then position 
curves would cross. Third and fourth, both curves may be 
parallel at only one (start or end) part of the curve. And this 
is the case we have found: both groups did not differ in 
response latency for four most recent target positions, but 
for the rest of positions low-PCSI group appeared to have 
flat position curve, while the curve of high-PCSI group was 
rising (p<0.001) up to position-2 point. This indicates that 
low-PCSI Ss search for the least recent positions is probably 
done in more parallel-like way. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Observed (solid lines) and simulated (dashed 
lines) latencies for target positions for both groups. 

Modeling MST in ACT-R  
ACT-R cognitive architecture (Anderson et al., 2004) is a 
theory of mind expressed as central control structure 
operating with procedural knowledge (productions) on 
chunks of information available in buffers of several 
specialized modules (e.g. visual, auditory, goal, and 
declarative memory modules). Working memory in ACT-R 
may be defined in two ways: as a subset of highly active 
elements of declarative memory or as a process of spreading 
source activation (i.e. attentional resource) from current goal 
to declarative elements strongly linked with that goal. These 
two conditions are often strongly correlated: memory traces 
are highly active due to additional activation being spread 
from the goal. Two other factors affecting trace accessibility 
are: a learning process (strengthening its link to the goal or 
rising its base activation) and decay of activation in time. 

Within ACT-R there are two methods of trace retrieval 
from working memory (Anderson, Bothell, Lebiere, & 
Matessa, 1998). In some specific conditions (like time-
pressure), most active memory element is retrieved and 
tested against a probe. Target element may not be the most 
active one, so a negative response in positive condition 
(error of omission) is probable. Alternatively, a production 

may try to retrieve an element identical to the probe. The 
higher activation of successfully retrieved element, the 
lower latency of retrieval. Due to the partial matching 
mechanism, an element similar but not identical to the probe 
may be retrieved and, by an error of omission, accepted as a 
target. If there is no target or target-like element above 
certain threshold at all, retrieval failure with long latency 
occurs.  

A simple ACT-R model of word recognition memory was 
proposed by Anderson et al. (1998, pp. 222-225). It retrieves 
the most active word trace as a candidate and checks 
whether it is identical to a probe. Source activation is being 
spread from the probe to a corresponding trace in memory. 
The model predicts almost linear relationship between the 
number of elements in a list and their recognition latency 
(ibidem, Figure 7.7). Thus, the model does not fit some 
recent data described previously in this paper: flat SS curves 
of fast responding Ss (Chuderski & Orzechowski, 2005) or 
log-like SS curves (Jou, 2000). It is neither coherent with 
the data presented in last section: the slope of position curve 
for five most recent items in Anderson et al. (1998, Figure 
7.8) is approx. 80 ms only, while the same slope observed in 
our data is 198 ms. Shorter latencies of accurate negative 
responses than of positive responses to less recent stimuli, 
observed in our data, cannot be easily predicted with 
existing ACT-R model, either. In negative condition (a foil) 
it always retrieves less active chunk or reaches retrieval 
threshold, what causes long retrieval, and thus long response 
latency. Any parameter manipulation (for example in 
latency factor), undertaken in order to rise steepness of a 
position curve, would probably increase the difference 
between foil and target latency, making the model even less 
fitting our data. Finally, existing MST model predicts rather 
good accuracy of response, while our data shows that also 
low (60-70%) or random level (50%) accuracy may be 
observed, depending on position of a target item in MS. 

Relying on retrieval from active part of declarative 
memory, as modeled by Anderson et al. (1998), is probably 
a very reasonable strategy in case of semantic material 
(words), that is presented for long time (1.5 s) and can be 
intensively rehearsed. However, with the use of small set of 
letters, huge level of interference within declarative memory 
appears quickly and the task becomes very difficult. Relying 
on automatic access to declarative memory may then lead to 
very low accuracy. Engle (2002) proposes, that in such 
circumnstances controlled attention, that preserves 
important information in active and interference-secure 
state, has to be involved in storage of memorized material. It 
seems that existing ACT-R MST model cannot be 
generalized to such conditions. More attentional processes 
have to be implemented within a proper model of MST with 
limited number of non-semantic stimuli. 

As position curves presented in previous section indicate, 
within the scope of five most recent elements, MST (with 
varying MS size) has similar characteristics to n-back task, 
where latencies and number of errors grows with increasing 
n-back. The only difference is, that in exclusive n-back tasks 
(McErlee, 2001) a stimulus, to become a  target, must be 
repeated at exact n-back position, while in MST it may 
occur at any position  



An ACT-R model of n-back task was presented by Lovett, 
Daily, and Reder (2000). The most interesting observation is 
that two different strategies were exploited by subjects. 
Some Ss used an ‘activation’ strategy for encoding stimuli 
in WM: they were just activating a current stimulus during 
its presentation. In a decision phase, their responses were 
based on subjective familiarity of a new element. 
Individually modeled attentional resource parameter (W) did 
not influence observed accuracy. Other subjects used 
‘update’ strategy – they actively maintained and updated 
recent stimuli in WM. Efficiency of this updating process 
was highly dependent on individual W value.  

A Two-Phase Model of WM Search 
As Ss are probably able to update only a few elements in 
WM, they are not able to maintain actively all elements in 
eight stimuli version of MST, as low accuracy in 2-, 3- or 4-
position condition in our data indicates. Thus, all Ss must 
use ‘familiarity’ decisions for elements exceeding their 
active part of WM, which is often referred to as a focus of 
attention (FA; Cowan, 1995) or an area of direct access 
(Oberauer, 2002).  

We introduced the idea of attentional focus (or, more 
strictly, the idea of Oberauer’s direct access area) into our 
model of WM search. However, in relation to other aspects 
of WM structure, our model was not designed in any 
intentional compliance with (much more general in their 
scope) Cowan’s nor Oberauer’s theories. We assume that 
only elements in WM focus of attention may be volitionally 
updated, and that individual differences in current WM 
focus of attention capacity, resulting in differences in 
stimuli encoding, affect memory search process and explain 
results presented earlier in this paper. 

WM Focus of Attention During Encoding 
Like most ACT-R models of WM, our model also encodes 
simulated stimuli, “presented” on a computer screen during 
MST, into episodic memory traces. In case of this study, 
these traces are chunks encoding information that particular 
letter appeared in the current list. However, according to 
ACT-R theory, making a new trace, without additional 
effort to hold it active in memory, results in almost 
immediate decay of chunk’s activation below threshold. To 
achieve a satisfactory accuracy, a cognitive system runs 
processes (productions in our model) aimed at activating the 
traces until the probe arrival. This may be done with a focus 
of attention. Its average capacity is estimated on about four 
elements (Cowan, 2000), but attention can also be surely 
intensively focussed on just one element (McErlee, 2001).  

In our model, process of activation consist on retrieval of 
the most active trace from declarative memory (maximally 
twice in a row) and placing it in the goal buffer, which 
works as an attentional focus. Its capacity is limited (a 
model parameter), so if this capacity is overloaded, a chunk 
placed in the stack least recently is overwritten by the most 
recently activated chunk. No spreading of activation from 
goal buffer to declarative memory occurs, focus is treated as 
structurally distinct part of WM. 

When a capacity parameter is set to one element, model’s 
encoding is similar to ‘activation’ strategy of Ss from Lovett 
et al. (2000). Just one (most probably currently presented) 
chunk is just activated as much as presentation time allows, 
and loaded into the goal buffer. So, the more recent stimulus 
is, the greater chance for it to be the only element held in the 
focus. When capacity parameter is set to greater value, lets 
say 3 or 4 elements, this may be treated as implementation 
of ‘update’ strategy from Lovett et al. – Ss constantly keep 
and update in attentional focus significantly more elements 
than one.  

Two-Phase Search Process 
As letters used in our experiment can probably be perfectly 
distinguished one from another, and they are almost void 
semantically (in comparison with words, syllables, and 
images), we assume that, along with spreading of activation, 
also partial matching mechanism may be switched off. 
However, in case of more meaningful material, our model is 
able to implement ACT-R activation spreading (from a 
probe to items in memory that are similar physically or 
semantically to this probe), and partial matching (of these 
similar items).  

When the probe is presented, the model starts searching 
memory traces for the one identical with the probe. Instead 
of just retrieving the most active memory trace, as in 
Anderson et al. (1998), our model runs two phases of 
memory search. In a first phase, traces in the focus of 
attention are checked serially, one by one, starting from the 
most recent one. The model’s focus represents stable, 
probably self-activating, representations. So, in the model, 
these representations (like goal chunks in ACT-R) can be 
directly reached by search-process productions, at no 
additional time. At each test of focus contents, traces 
already checked are marked. In accordance to Oberauer’s 
(2002) theory of WM structure, the model must switch from 
attending to the first element in focus of attention, to the 
remaining elements, and in such case one additional 
production has to be fired.  

If the model uses ‘activation’ strategy, i.e. capacity 
parameter is set to one or two elements, only the most recent 
element(s) are checked in the first phase, in less than 100 ms 
on total. If ‘update’ strategy is used, due to longer process of 
serial testing of contents of the focus, the first phase may 
last up to 200 ms (in case of four traces held in the focus), 
depending on the exact value of parameter representing time 
to access each element in the focus. As we believe, this 
value should be oscillating around 40 ms (i.e. a little bit 
faster that default firing time for regular productions).  

If a result of focus test is negative, the model may run a 
second, parallel phase of WM scanning. However, the 
second crucial parameter – probability of stopping the 
search after the first phase, controls if the second phase runs 
at all. When the number of elements checked in the first 
phase is relatively high (large capacity of the focus of 
attention), and the MS size is relatively low, the additional 
errorful parallel phase of search would yield little 
probability of success, but would take huge amount of time. 
In such case, in time-pressured conditions, sometimes it is 
much more reasonable to generate the negative answer 



immediately after the first phase. This phenomenon may 
result in correct negative responses that are faster than 
positive responses generated after the second phase. We 
believe that the parameter regulating the chance of running 
the second phase may be strategically altered by Ss on basis 
of their current attentioanl capacity, of the size of MS, and 
of experimental conditions in which the search task is 
applied. However, this hypothesis must be experimentally 
verified in future research. 

When the second phase runs successfully, the model tries 
to directly retrieve, from a declarative memory, the trace 
with a ‘letter’ slot equal to the probe letter. The standard 
mechanism of ACT-R is exploited: the more often and more 
recent the trace was being activated (i.e. retrieved) during 
encoding phase, the better and faster it is available for 
retrieval. If an activation of the trace looked for is not above 
the threshold (because it decayed or a target was not 
presented at all), long latency retrieval failure occurs. 
However, such a case does not determine negative response 
of the model. Sometimes, especially when MS size is large, 
model tries to guess an answer, with some chance for a 
positive answer. This is based on an assumption, that Ss are 
probably aware, when many letters were presented, that a 
unsuccessful retrieval may indicate the fact that they forgot 
the element as well as the fact that there was no such 
element presented at all. In consequence, the third model’s 
parameter controls probability of guessing ‘yes’ when the 
second phase fails to retrieve any memory chunk.  

So, when attentional capacity is set to some higher value, 
after a probe is presented the model has a opportunity to rely 
its search process on fast but serial access to chunks actively 
maintained in the focus of attention. When current 
attentional capacity is low, instead of scanning the focus 
(which in this case is almost empty), relatively slow but 
parallel retrieval from declarative memory is executed. 

Simulation Results 
Simulated data were generated in 5000 runs. Three default 
ACT-R values: 50 ms for time to fire a production, 0.5 for 
decay parameter, and 0.0 for base level constant, were used. 
Three parameters were optimized to produce the best fit to 
empirical data: retrieval threshold (0.63), activation noise 
(0.08), and latency factor (0.17). The time for accessing 
focus of attention was set to 40 ms. Time needed to decode 
a stimulus was set to 150 ms, while time to activate a trace 
was set to 300 ms. 

The first and most important model specific parameter, a 
capacity of a focus of attention, was randomly varied from 1 
to 2 elements in 4-item MS size condition, and from 1 to 4 
elements in 8-item condition. The second specific 
parameter, the probability of stopping the search after the 
first phase, was set to 0.03 for the 4-item MS size condition 
and to 0.25 for 8-item condition. Last specific parameter, 
i.e. marginal probability of guessing ‘yes’ in case of 
retrieval failure, was set to 0.035 for each additional item 
outside a focus of attention.   

The rationale for using different values for 4- and 8-item 
conditions is, as we believe, that in short MS case, which is 
relatively easy, people do not need to rely on updating of 

their focus of attention. In such case, data pattern generated 
by our model, with its specific parameters set to low values, 
is very similar to pattern obtained from Anderson et al.’s 
(1998) model. Accuracy is high, negative condition 
response is the longest one, while the steepness of position 
curve – moderate. However, in much more difficult case of 
a longer, 8-item list, high values of these parameters switch 
on additional processes of first-phase serial attentional 
search, while stopping retrieval from declarative memory in 
significant proportion of model runs. And this results in 
obtaining pattern of data characteristic for longer lists: low 
accuracy for the least recent items, log position curve, and 
negative responses faster than some positive ones. In 
consequence, with 14 parameters set, 28 empirical data 
points are predicted with very good fit: R2 equals to 0.968, 
and RMSD – to 2.7, in case of accuracy, while R2 equals to 
0.934, and RMSD – to 17.0, in case of latency. Simulated 
accuracy is presented in Figure 1 (dashed lines), latency – in 
Figure 2 (dashed lines). 

Crucial for testing the model is an apt simulation of group 
differences in chronometric pattern of WM search. In case 
of 8-item condition, when two separate simulations were 
run: one with focus capacity parameter varied between 1 
and 2, and the other with parameter varied between 3 and 4, 
all other parameters unchanged, the model predicts observed 
individual differences in RT position curve for low- and 
high-PCSI Ss (Figure 3, dashed lines) with following values 
of goodness of fit measures: R2=0.948, RMSD=17.4.  

Summary and Conclusions 
The proposed model has very good fit to the empirical data. 
One and only significant prediction deviation in accuracy 
consist on simulated but not observed primacy effect in 4-
item MS size condition. As such effect was often observed 
in other our experiments (e.g. Balas et al., 2005), we 
decided not to modify the model in order to eliminate it. The 
mechanism of negative responses generation has to be 
corrected, as Ss negative responses are faster than model’s 
responses. The drop in R2 in case of latency prediction (both 
for average results and PCSI groups) is also caused by a 
significant rise in RT for responses to items on position 2. 
We also observe sometimes such deviation in case of 
second-in-row stimulus in our experiments (unpublished 
data), and we speculate that origin of this phenomenon may 
lie in processes outside the scope of WM search model. For 
example, due to high probability that the first stimulus in a 
list captures subject‘s attention for about 500 ms, processing 
of second stimulus in a row may be often impaired.  

We conclude that the proposed model is a new and apt 
proposal explaining how WM search processes may be 
organized. The model captures some phenomena, previously 
mentioned in this paper, that seem to lay outside the scope 
of existing ACT-R model of Anderson et al. (1998). The 
easily obtained, i.e. only with a small change to a value of 
focus of attention capacity parameter, prediction of 
individual differences observed in case of a RT position 
curve is a very strong argument in favor of the model. 



We suggest that the idea of working memory focus of 
attention – implemented as highly active, easily accessible, 
and general purpose structure distinct from declarative 
memory, which stores information currently operated on 
(i.e., that has just been processed by some cognitive 
processes, or is just being prepared for processing), should 
be exploited in ACT-R models to a greater extend. As WM 
attentional focus may be involved in numerous memory, 
attention, cognitive control, and decision making tasks 
(Cowan, 2000; Engle, 2002), more intensive exploitation of 
focus of attention construct within ACT-R may increase 
aptness of this theory and provide better understanding of 
many cognitive phenomena. For example, another model 
developed in our lab – a model of flexible control in task 
switching (Chuderski, submitted), explains with the use of 
WM focus of attention why during random task sequences 
successive task repeat trials are faster (because of activation 
boost in task rule retrieval, as all task rules are stored in 
declarative memory), while during predictable sequences 
repeat trials latencies are constant (due to fast access to FA, 
where proper task rule is usually loaded in switch trial). 

Our work contributes also to the serial vs. parallel 
memory search debate by suggesting the central role of 
individual differences in chronometric characteristics of 
search process. We believe, that although there really exist 
pure serial and pure parallel phases of search, the process as 
a whole is a mixture of both types of processing – a mixture 
that is different for different people. 

By now, the model presented in this paper is particularly 
suitable for predicting data obtained from experiments 
where longer stimuli lists, that include items with low 
semantic associations (i.e. letters, digits, geometric figures, 
etc.), are used, and from research conducted in time-
pressured experimental conditions. The work aimed at 
generalization of the model onto search among semantically 
related items, probably involving the process of spreading 
activation, will be an interesting area of future research. As 
in real life people probably more often search for 
meaningful material in their WM, such future model seems 
to be more ecologically plausible. 
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