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Abstract 

We have developed a methodology for using a normatively 

correct task model as the basis for a training methodology and 

for the provision of performance feedback within a national 

missile defense (NMD) simulated task environment (STE).  

This methodology has allowed us to explore: 1) the relative 

impact of expert versus optimal feedback, 2) the differences 

in task performance among an optimal model, a cognitively 

plausible rule-based model, and an instance-based model of 

the NMD task, and 3) the effectiveness of methodologies for 

constructing cognitive models directly from expert 

performance data.. 

Introduction 

Successful training in complex environments is normally 

accomplished through the interaction of a trainee and a 

skilled expert, but experts are an expensive commodity.  

Using an optimal model of task performance subject to 

human constraints may be a more efficient way to develop 

models of skilled human performance for use in training, 

especially since optimal models are often simpler to 

validate, test, and debug than corresponding expert models.  

In addition, optimal models constrained by human 

plausibility can be constructed in domains where no experts 

are available or even exist.  Cognitive architectures, such as 

ACT-R (Anderson & Lebiere, 1998), encapsulate human 

processing constraints and can be used as a framework for 

constructing constrained optimal models.  Combining such 

a model with a simulated task environment (STE) permits 

close model-trainee interaction because the model can 

interact with the same interface as the trainee, allowing a 

model-based tutor to closely observe and guide trainee 

performance.   

We aim to use an optimal model to achieve dual goals of 

guiding learning in a study of human participants and 

providing examples from which a cognitive model learns 

(i.e., rather than construct a model through programming, 

we will induce a model through learning mechanisms). 

Our efforts to induce cognitive models from optimal 

models have shown that there are important fundamental 

and theoretical differences between optimal and constrained 

optimal models, and that the different feedback they provide 

can be expected to similarly impact both human learning 

and the induction of a cognitive model from that feedback. 

This report presents an overview of some of the 

interesting aspects of inducing cognitive models from and 

being trained by optimal algorithms we have identified so 

far, together with an illustrative case study and an initial 

evaluation of the methodology. 

Optimal Algorithms for Defining Task 

Performance 

A key concept in computer science is the notion of optimal 

algorithmic approaches to particular problems.  This notion 

has been used to characterize the relative performance of 

various algorithms, each with its own strengths and 

weaknesses.  Algorithms may be optimal, but impractical, 

or as is more often the case, they may be sub-optimal, yet 

preferable for practical reasons. 

The field of cognitive modeling has employed similar 

constructs, leading to research into the optimality of human 

behavior (e.g., Newell & Simon, 1972), and, in particular, 

the optimality of human behavior given human cognitive 

processing constraints (e.g., Kahneman, Slovic, & Tversky, 

1982; Best & Simon, 2000; Best, 2004). 

Research Objectives 

The broad goals for our research are to understand the 

relationship between optimal task performance and human 

performance.  Specifically, the research objectives for the 

current work are as follows: 

• Investigate the different consequences of an optimal vs. 

an expert model in learning and performance (e.g., an 

expert model might not perform the task as well as an 

optimal system, and an optimal system might not direct 

a training session as well as an expert model).   

• Develop a process model of (relatively) expert human 

performance based on normative performance and 

validated by empirical data.  

• Determine if there is a continuum from normative to 

expert to novice performance or whether there are 

qualitative differences between the categories and what 

the empirical effect on training is. 

• Investigate the cognitive limitations of human 

performance and the associated individual difference 

variables.  Human performance may be effectively 

optimal given the constraints imposed by the perceptual 

system, memory system, etc.  By carefully comparing 



human performance with the various models proposed 

above, it should be possible to isolate the factors that 

influence human performance on the task (Lovett, 

Reder, & Lebiere, 1999).   

In more general terms, we seek to use optimal task 

performance to frame human performance, especially when 

taken in the context of human processing constraints.  

Further, optimal performance may provide a basis for 

constructing suitable learning environments.  Finally, 

optimal algorithms may also provide an automatic method 

for constructing a cognitive model: If an optimal task 

algorithm can be used to drive a learning cognitive model, it 

may be possible to induce a cognitive model of task 

performance with little development effort.  The model 

simply does its best imitation of an optimal algorithm 

performing the task.  This last research objective will be the 

focus of the remainder of this paper. 

Instance-based Learning within ACT-R 

The work described here depends heavily on the 

capability of the ACT-R cognitive architecture (Anderson & 

Lebiere, 1998) to learn correct behavior from examples.  

This learning capability, in this case, is specifically the 

declarative memory learning mechanism of ACT-R. 

Instance-based models of human performance have been 

constructed for many individual decision processes.  For 

example, Lebiere, Wallach, and West (2000) showed how 

the fundamental memory processes encoded in the ACT-R 

cognitive architecture can account for human behavior in 

games such as the Prisoner’s Dilemma, a game in which a 

payoff matrix specifies positive and negative payoffs based 

on not just the player’s move, but the opponent’s move as 

well (games like this are of particular interest to economists 

since many economic systems can be analyzed in game-

theoretic terms).  In this case, the human performance was 

captured through two simple uniform architectural processes 

– power law learning (and decay), and stochasticity.  These 

were incorporated into a general strategy based on 

determining the most likely outcome given each of the 

player’s potential moves, and choosing the move with the 

best of the likely outcomes (stochasticity is essential to 

prevent the opponent from making easy predictions of the 

player’s strategy).  The ACT-R equation that produced both 

adaptation and stochasticity for this model is given below: 
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The first term of this sum represents the strengthening in 

memory of a particular piece of information (a chunk) each 

time it is either retrieved from memory or (re)created.  In 

this term, tj represents the time since the j
th
 reference, while 

n is the number of references to the chunk, and d is the 

decay rate.  The implications of this formula are that 

activation increases with use and decreases with time with a 

functional form that produces both the power law of 

learning and the power law of decay.  Assuming even 

distribution of the chunk references over time allows for 

approximating activation with the shown function of decay, 

number of chunks, and total life of the chunk, L. 

Stochasticity is provided by the second term of the sum, 

normally distributed noise with a mean of 0 and a standard 

deviation determined by the activation noise parameter, s.  

These equations provide the basis for instance-based 

learning and decision-making within the ACT-R 

architecture.  In general, instance-based techniques such as 

the method described here naturally generalize to situations 

which are similar to those that have been seen before, but 

are not exact matches to previous situations or behavior.      

Task Environments for Studying Learning 

The selection of task environments in which to pursue our 

research objectives has been driven by the need for an 

environment which is dynamic, fast-paced, time-pressured, 

and non-obvious, yet still amenable to the calculation of 

optimal performance.  Initially, we have identified a 

National Missile Defense task, a task in which participants 

attempt to save lives by placing appropriate defensive units 

on cities of various populations in the face of an imminent 

attack.  This task has the following beneficial properties: 

• A straightforward optimal algorithm that is unlikely to 

be discovered by a participant. 

• Time pressure. 

• Repeated similar but non-identical trials that provide 

the opportunity both to learn and to measure learning. 

• An interface operable by cognitive models and humans.  

Using this task environment, we have embedded an optimal 

algorithm for use as a training aid.  We have both tested 

human performance that leverages this training aid and 

constructed a cognitive model capable of learning from it.   

The National Missile Defense Task 

The NMD task is a simulated task environment that 

presents a scenario in which a subject must allocate a 

limited number of reserve Ground Based Interceptor (GBIs) 

missiles across individual cities under a ballistic missile 

attack.  The interface in this task displays information about 

each city under attack, including the city population, the 

number of GBIs currently allocated to the city and the 

probability of intercepting the incoming missile. 

A scenario consists of as many decisions as there are 

GBIs to be allocated.  (The number of GBIs available 

depends on the number of cities.)  The task participant is 

presented with a set of initial conditions for one of the 

scenarios—i.e., size of cities, probability of their targeting 

by enemy missiles and initial GBI allocation—and is then 

asked to make their allocations.  The appropriateness of 

their decisions is based on the probabilistic expectation of 

lives saved by the allocation, where that expectation for a 

particular city is a function of the number of GBIs allocated 

as well as the population of the city: 

 

Expected lives saved = population * (1 - 0.30
Number of GBIs

) 



 

Figure 1: National Missile Defense Task interface 

Figure 1 shows the primary NMD task display, consisting 

of a panel containing a set of cities, each with a population 

and some assignment of ground based interceptor (GBI) 

missiles to defend it from possible attack.  The center 

bottom of the display shows the number of GBIs used and 

remaining in reserves while the lower left portion of the 

screen is focused on a countdown.  The number of GBIs 

used is represented using a color bar and a slider control.  

The population and percentage of savings of life can be read 

off of the area for each city, most easily by paying attention 

to the area produced by combining these measures.  The 

green areas above, then, represent the lives that will be 

saved by allocating the missiles as chosen above. 

In addition to this screen, every trial gives one of three 

forms of feedback: 1) a summary of what the student chose 

to do, 2) an after-action review of the outcome of the actions 

taken by the student and a comparison to optimal 

allocations, and 3) stepwise feedback during problem 

solution in the form of beeps when the student strays off of 

the optimal solution path.   

Human Performance on the NMD Task 

Space precludes fully describing human performance on the 

NMD task.  We will instead focus on a key aspect of human 

performance on the task to explore the effectiveness of the 

modeling efforts. Figure 2 presents the learning exhibited by 

human participants across trials that we hope to capture with 

a cognitive model.  This graph presents the percentage of 

decisions by trial for human participants that are, in fact, the 

optimal decision.  Initially, participants make approximately 

50% of their moves consistently with an optimal model, 

while by the 70th trial they are exceeding 80% decision 

optimality by trial.  This measure represents optimality by 

move rather than optimality by problem solution and 

therefore tracks how well participants stayed in lock-step 

with an optimal model (the same steps taken in different 

order for a particular problem would produce a lower 

percentage of optimal decisions, but the same outcome for 

the trial, so this measure is significantly more sensitive to 

the process used by participants than overall outcome). 
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Figure 2: Percentage of Optimal Moves by Trial 

Modeling the NMD Task 

Potential alternatives for constructing a model of this task 

include the use of a pure optimal model (i.e., algorithm), a 

rule-based cognitive model that encodes the basic 

functionality of the optimal model, and an instance-based 

model that encodes the individual decisions but does not 

represent the optimal decision process in its entirety.  Each 

of these will be discussed in turn below. 

 

Pure Optimal Model 

The first computational model developed as part of this 

project is a pure optimal computational model.  The 

algorithm is based on a simple hill-climbing principle that 

can be applied to monotonic spaces like the NMD problem.  

Monotonic here means the individual moves do not interact, 

and will always have the same outcome, regardless of 

permutations.  For example, a missile allocated in the NMD 

task and then de-allocated would leave the trial in exactly 

the same state it was in prior to the moves.  Similarly, 

adding a missile to a city will always increase the protection 

afforded to that city by the same amount regardless of what 

has been done elsewhere within the trial. 

Given this problem space, the construction of the initial 

algorithm was straightforward.  The algorithm is an iterative 

algorithm that always seeks to change missile allocations in 

the direction of the greatest available gain.  Since the excess 

missiles are initially in reserve, this means that each 

allocation must save more lives than the decrease in reserves 

costs, and that no allocation could save more than the 

chosen move.  The algorithm terminates on the first iteration 

that no new assignments are made at which point the 

(optimal) solution is returned.   

 

Rule-based Cognitive Model 

Although the pure optimal model is conceptually 

straightforward, it was not obvious how to leverage the 

algorithm in a teaching situation.  To investigate the utility 

of the algorithm for learning and teaching, we implemented 

the algorithm within the ACT-R cognitive modeling 

framework.  The intention of this effort was to cast the 



optimal algorithm into cognitive operations, thereby 

providing both a task analysis and a potential mediating 

algorithm simultaneously.  Those cognitive operations can 

be characterized within the ACT-R framework as the 

operation of production rules.  An example of a production 

rule involved in the task is presented here in pseudocode: 

 
If adding a missile to City B will save 

more lives than adding a missile to City A 

then City B is currently the best candidate 

location for a missile. 

 

In this capacity, the ACT-R language served primarily as 

a programming language, but one that introduced cognitive 

constraints.  This (unusual) use of the architecture proved 

extremely useful from a task analysis perspective.  In 

particular, the ACT-R architecture provides high fidelity 

estimates for the speed of cognitive operations.  The optimal 

algorithm, as expressed in ACT-R, took more than a minute 

to complete a trial in a pilot version of the NMD task (using 

any reasonable estimates of the speed of the constituent 

operations).  However, the original NMD task was 

temporally structured in a way that prevented students from 

interacting with the task for all but the last few seconds of a 

trial.  The model clearly predicted the mental arithmetic 

could not be completed in such a short time frame.  

Attempts to apply the optimal algorithm to solve problems 

confirmed this prediction: the task as structured could not 

easily or practically be solved using the optimal algorithm 

with human constraints. 

The performance of the algorithm, because it is not 

stochastic, and because time was not a serious 

consideration, is completely unremarkable: it produces the 

optimal answer exactly each and every time (and thus 

produces trivially perfect graphs and figures as well). 

 

Instance-based Near Optimal Model 

One of the primary technical objectives of this project is to 

investigate the utility of instance-based modeling techniques 

based on a cognitive architecture to quickly develop high-

quality cognitive models.  To this end, we constructed a 

performance model using the ACT-R cognitive architecture.  

This model, which is based on the rule-based ACT-R model 

discussed above, will now be described in detail. 

Initially, the model starts with a particular scenario 

consisting of five cities each having a population, an initial 

allocation of missiles, and a follow-on city having a given 

probability of a follow-on attack and a number of reserve 

missiles that protect it.  These facts are perceived and 

encoded into the declarative memory of ACT-R.  For 

example, the first city in scenario 1 is represented as 

follows: 

 
City1   99.326 

    isa PERCEPT 

    city 1 

    pop 1839449 

    miss 0 

The model makes allocations by inspecting the cities in the 

scenario in a left-to-right fashion (echoing the solution 

method used by a human task expert), and identifying the 

city that would maximize the number of lives saved by 

increasing its allocation of missiles.  For each city, the 

model attempts to retrieve a previous example of a similar 

evaluation (it has a bias to retrieve rather than calculate).  If 

the model has never performed a similar calculation prior to 

this, or it cannot retrieve the result of the previous 

calculation, it instead calculates it.  The potential gain of 

adding a missile is compared with the best possibility so far 

during the trial for each city and the follow-on city (thus 

limiting comparisons to the best previous city and the 

current city).  Based on these calculations, the city that 

presents the opportunity for the greatest gain is selected to 

receive a defensive missile. 

As the trial continues, the model either continues 

allocating missiles or decides to leave the rest of the 

missiles in reserve for a follow-on attack, thereby 

completing the trial.  The model then receives feedback 

indicating the chosen and desired (optimal) allocation of 

missiles to the cities.  Example feedback is show below: 

 
City 5 population 1728296  

missiles allocated 3: missiles desired 2 

Follow-on city 6 population 2368000 probability   

0.25 missiles left 0: missiles desired 1 

 

The model processes the rows of the feedback one at a 

time, inspecting the chosen and desired coverage for that 

city.  In this example, the model has allocated 3 missiles to 

city 5 (instead of the optimal 2) while not leaving any 

missiles in reserve to defend from a follow-on attack 

(instead of the optimal 1).  Upon receiving this feedback, 

the model notes that an incorrect allocation was made, and 

that more missiles should have been kept in reserve. 

The effect of this “noticing” is that the model stores an 

instance in declarative memory that corresponds to the 

action that should have been taken (the optimal choice).  

This instance, a chunk of information now stored in 

declarative memory, will have the opportunity to be 

retrieved the next time the model attempts to evaluate the 

alternative allocations that can be made during a trial.  The 

assumption that is latent in this process is that the learner is 

consciously choosing to attend to the feedback screen, and 

that the same process would not necessarily be engaged by a 

more passive or less problem focused viewing of the 

information.  This assumption is borne out by the 

differences in human performance observed in the three 

feedback conditions – the summary screen detailing the 

difference between actual performance and ideal 

performance appears to be a key driver of successful 

learning in this task. 

Relating Model Performance to Human 

Performance 

The preceding section describes the qualitative aspects of 

the instance-based model – the actions taken and their 



sequencing.  This provides the first level of model 

performance description by demonstrating that the model 

performs the task and does so in a way that does not overtly 

violate the constraints of human performance.  (This 

prerequisite step in model validation is often skipped before 

commencing with a quantitative analysis of second-order 

model effects.  Finer-grained distinctions are certainly 

important, but the finer details of model correspondence are 

irrelevant if the broader details are wrong.) 

Quantitative issues of interest include describing and 

explaining the proportion of time the model stays on the 

optimal path, the parameters that impact that performance, 

and issues surrounding learning.  We chose to investigate 

the use of two parameters in tuning model performance: the 

accuracy of feedback, and the accuracy of calculations.   

The first parameter, accuracy of feedback, is of interest 

for two reasons: 1) we determined that the existing version 

of the task had a bug in it which had resulted in occasionally 

incorrect (noisy) feedback in a prior study, and 2) expert 

feedback is likely to be at least slightly sub-optimal.  To 

investigate this, we conducted a search across the parameter 

space of these variables to identify a portion of that space 

that corresponded to a range of human performance 

observed.  The key measure is the percentage of moves 

made on the optimal path while varying the feedback 

accuracy and noise in mental calculations. 

Figure 3 shows the percentage of moves made on the 

optimal path while varying the feedback accuracy and noise 

in mental calculations (note that “noisy” feedback was still 

close to optimal feedback).  These parameters have roughly 

equal effects and combine approximately linearly. 
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Figure 3: Effect of Feedback Accuracy and Mental Noise 

 

Taken together, more accurate feedback and less 

calculation noise both result in better (learning) performance 

of the cognitive model, and are additive factors. 

   

Learning in the Instance-Based NMD Model 

The NMD model described above is a learning model that 

accumulates knowledge.  As trials progress, the model 

depends more and more on recalling previous items rather 

than calculating the proper choice of action.  This transition 

from calculation to memory retrieval might be labeled as 

“simply memorization”, but in fact it does go beyond that. 

Figure 4 shows the learning performance of the instance-

based model of the NMD task compared to human 

performance (repeated from Figure 2), plotting trial number 

against percentage above optimal performance and 

presenting trendlines for both data sets with their equations: 
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Figure 4: Human and Model Optimality by Trial 

The near-identity of the best-fitting equations for human 

and model learning demonstrates that learning within the 

ACT-R framework, represented here as the transfer of 

operations from a procedural, algorithmic form into a 

memory-based pattern matching process, captures the key 

aspects of the learning demonstrated by the human 

participants.  The lesser variability exhibited by the model is 

a product of the value of the ACT-R noise parameter and the 

number of individual model runs (in this case, 20).  These 

values can be chosen to closely match human variability, or, 

alternatively, to expose the trend in the model learning.  A 

more subtle point is that the learning demonstrated by the 

model is constrained by the representation chosen to learn 

within.  These topics will now be addressed in greater detail. 

The learning that takes place during an experimental 

session involves, qualitatively, the transfer of the seat of 

performance from a set of rules that algorithmically explain 

how to perform the calculations necessary for the task to the 

declarative memory of ACT-R.  This has the flavor of what 

has been termed “Recognition Primed Decision Making”, 

but rather than a vague notion of expertise having to do with 

recognition, it is made explicit here: expertise is the 

accumulation of task knowledge instances that allow the 

expert to make ever finer discriminations. 

In this case, the ACT-R model is learning how many 

missiles go with a city of a particular size, and that begs the 

question of what it should be learning.  The answer to that 

question depends on whether the goal is to model human 

performance, or whether there is an absolute performance 

goal or criterion to reach.  From the perspective of the 

optimal algorithm the number of missiles depends 

completely on the relative needs of the other cities presented 

in the scenario. A city of 100,000 people, for example, may 



receive two GBIs if the remainder of the other cities in the 

scenario includes less than 50,000 people, but that same city 

might receive no GBIs if the other threatened cities all had 

populations exceeding a million people.  Thus, the current 

representation may impose a ceiling on performance. 

Representational Choices 

The model was developed with two free parameters: 

feedback accuracy and mental arithmetic accuracy.  We 

initially expected that learning effects exhibited by human 

task participants could be captured, if somewhat 

unsatisfactorily, by a systematic variation of the mental 

arithmetic accuracy parameter.  However, the learning 

exhibited by the model based purely on memory effects 

captures both the time scale and the qualitative shape of the 

learning demonstrated by students in the laboratory. 

The representation itself, though appearing impoverished, 

is actually sufficient for performing the task at a high level 

of competence.  The following chunk is an example of the 

actual content of the learning: 

 
Increment417    1.417 

    isa INCREMENT 

    pop 1738842 

    miss 2 

    prob 0.75 

    eval 0 

 

This particular fact is used by the model to decide that, if 

confronted with a city of population 1,738,842 that already 

has two missiles allocated, and a 75% chance of a follow-on 

attack, it is best to leave it at that (this is how the model 

interprets the meaning of “eval 0” – the number represents 

an estimate of the number of lives that would be saved by 

increasing the allocation, or 0 if it would be expected to cost 

more lives than it saves).  These incremental solution 

improvement chunks are created during the feedback 

session, and though they are initially difficult to retrieve and 

sparse (there are many situations there is no relevant 

memory for early on) they eventually cover the problem 

space and support good performance. 

Optimal Feedback versus Expert Feedback 

The simulation studies conducted examined learning with 

varying amounts of noise added to the conclusions reached 

by the automated feedback engine.  The results from the 

simulation studies indicated that, while small differences in 

feedback quality (like those expected between optimal and 

expert performance) have small impact, the impact on 

performance tends to scale with the difference in quality 

between optimal and actual feedback. 

The simulation results also support the use of actual 

expert performance to drive the development of a cognitive 

model.  The initial actions taken by the current model, 

though based on an optimal algorithm, contribute little to 

the eventual learning.  Rather, the initial algorithm provides 

a scaffolding that enables some task performance; the 

quality of that initial performance is largely irrelevant.  The 

optimal rule-based model simply provides a framework to 

get the model into the task, where the learning is actually 

memory based and is produced by making mistakes, not by 

performing correctly.  That is, the mistakes provide the 

opportunity for feedback.  The difference between what was 

done and what should have been done is what forms the 

basis for all of the learning exhibited by the model. 

Evaluation of Methodology and Conclusions 

The simulation studies conducted examined learning with 

varying amounts of noise added to feedback.  The results 

from the simulation studies indicated that, while small 

differences in feedback quality (like those expected between 

optimal and expert performance) have small impact, the 

impact on performance tends to scale with the difference in 

quality between optimal and actual feedback. 

This paper demonstrates a method for quickly developing 

cognitive models that capture human behavior in the 

absence of both human experts, and human performance 

data to validate the model against.  An optimal model 

provided guidance to a cognitive model that was initially 

simply a rough shell of the task structure.  The feedback 

from the optimal model then provided the details to hang on 

this scaffolding.  The resulting model, though simpler to 

construct than many cognitive models, captured not only the 

eventual performance of human task participants, but also 

mimicked their learning performance. 
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